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Abstract: A Morita—Baylis—Hillman-type reaction has been ap-
plied to the asymmetric preparation of azaspirocycles in high yield
and diastereoselectivity. The optimisation of the reaction is dis-
cussed and a model for the origin of diastereoselectivity is pro-
posed.
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The azaspirocyclic motif is found in a large number of
natural products, including the cylindricine! and
histronicotoxin? families, halichlorine and the pinnaic
acids (Figure 1).?

histrionicotoxins

R'=OHorH

R? = H, 3-C chain or 5-C chain
R8 = H, 2-, 3-, or 4-C chain

HO
halichlorine

cylindricines
R = CgH13 or C4Hg
X = Cl, OH, OMe, OAc, SCN or NCS HO
pinnaic and tauropinnaic acid
X = OH, NH(CH,)>SOzH

Figure 1 Azaspirocycles in natural products

Ever since their discovery, formation of the asymmetric
spirocentre in these molecules has presented an inspiring
challenge to synthetic chemists. Herein we report a meth-
od for high yielding, highly diastereoselective preparation
of azaspirocycles amenable to a range of further function-
alisation as required. We were able to obtain these aza-
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spirocycles by development of methodology previously
published from our group, in which enones 2, activated by
Michael addition of a sulfide (5), were able to react with
in situ generated iminium ions 4 (Scheme 1).* Morita—
Baylis—Hillman-type (MBH-type) adducts 3 were ob-
tained after elimination of sulfide in a second step.
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Scheme 1 Morita—Baylis—Hillman-type reaction

An intramolecular version of the reaction employing a
combination of TMSOTf and BF;-OEt,, forming the
Lewis acid BF,OTf in situ,” was used to prepare the bicy-
clic pyrrolizidine alkaloid (+)-heliotridine.* The choice of
Lewis acid was critical, since a weaker Lewis acid would
not form a stable sulfide adduct at room temperature® as
required for ring closure.
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Scheme 2 Strategy for asymmetric azaspirocyclisation
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Table 1 Preparation of Azaspirocycle Precursors

O
4& A MgBr w
HO n X
070" 7O 1HF —t0°Ctort, 18h 5
1 12
(R)-phenylglycinol OW
PPTS, toluene, Dean—Stark reflux, 18 h > /
Ph
13
(0}
WH
Hoveyda—Grubbs Il, acrolein O N e} n
CH;Cly, reflux, 5 h )_/
Ph
9
n Yield (%) of 13 (over 2 steps)  Yield (%) of 9
1 30 61
2 24 66
3 27 56

We have investigated two approaches to asymmetric aza-
spirocycle formation (Scheme 2). Route A employs a ra-
cemic acyclic aminal together with a chiral sulfide. A
chiral sulfide has been used previously in an MBH-type
reaction to generate adducts of the form of 3 (Scheme 1)
with good stereocontrol.* Unfortunately no methods are
known for preparation of the acyclic aminals required for
our study and our efforts to synthesise them proved unsuc-
cessful.

We were successful in preparing the cyclic aminal 9 of
route B. Since the aminal also functions as a chiral auxil-
iary, the need for a chiral sulfide is obviated. Furthermore,
there was precedence for the reaction of related aminals
with nucleophiles showing good levels of stereocontrol.”

Table 2 Lewis Acid and Solvent Optimisation

The preparation of 9 is shown below (Table 1). The first
two steps are adapted from a known preparation of aminal
13.% The adaptation (reversing the order of the first two
steps)’ not only made purification of 13 much easier on
the scale required, but also led to a more reproducible and
less capricious process in our hands. Cross metathesis
with acrolein gave the azaspirocycle precursors 9.

Our investigations of the key azaspirocyclisation step be-
gan by replicating the conditions previously used for in-
tramolecular MBH-type reaction (Table 2, entry 1).* The
reaction was successful, although low yielding. However,
through variation of the Lewis acid employed we discov-
ered that simply using BF;-OEt, (entry 3) gave good
yields and good levels of stereocontrol. The reaction
could be extended to the 5,6-spirocycle (entry 4) but not
to the 5,7-spirocycle (entry 5).

It is noteworthy that in all of these cases the sulfide was
eliminated on NaHCO; workup and separate treatment
with DBU was not required (see Scheme 1).

Variation in the sulfide structure led to further improve-
ments (Table 3). Anisyl methyl sulfide was found to be
optimal (Table 3, entries 5 and 6), providing high levels of
stereocontrol and moderate to good yields. Unfortunately
we were unable to extend this protocol to the 5,7-spirocy-
cles, 6,5- or 6,6-azaspirocycles. In fact the six-membered-
ring cyclic aminals appeared to be very stable to a range
of Lewis acid and nucleophile combinations.'” In all cases
we either recovered starting material or decomposition
occurred.

The two diastereomers could be readily separated by col-
umn chromatography. The stereochemistry of the major
diastereomer was proved by X-ray diffraction analysis
(Figure 2).!! Reduction and deprotection of 10 gave the
enantiopure azaspirocycle 15 (Scheme 3).!2

(0]
L s
e} N o n H Lewis acid, SMe,
)_/ solvent, temp, 18 h
Ph
9
Entry n Lewis acid Solvent Temperature Yield (%) dr
1 1 TMSOTf + BF;-OEt, MeCN -15°C 41 83:17
(3 equiv) each
2 1 TMSOTf MeCN -15°C trace n/a
(3 equiv)
3 1 BF;-OEt, CH,Cl, -78 °Ctor.t. 78 82:18
(3 equiv)
4 2 BF;-OEt, CH,Cl, -78 °Ctor.t. 81 79:21
(3 equiv)
5 3 BF;-OFEt, CH,Cl, -78 °Ctor.t. trace n/a
(3 equiv)
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Table 3 Lewis Acid and Solvent Optimisation

0O

MH 1. BFgOEt,, (3 equiv),
o) N 0 n sulfide (3 equiv)
)_/ CHyClp, ~78 °C tor.t., 18 h
PH 2. DBU (2.5 equiv), Ph

9 CH,Cly, rt., 1h 10 oH

Entry n Sulfide Step2  Yield dr
required? (%)

1 1 SMe, no 78 82:18
2 2 SMe, no 81 79:21
3 1 PhSMe no 53 93:7
4 2 PhSMe no 35 88:12
5 1 MeOC¢H,SMe yes 73 89:11
6 2 MeOC¢H,SMe yes 63 92:8
7 3 MeOCH,SMe yes trace n/a

10 14

Scheme 3  Auxiliary cleavage. Reagents and conditions: (a) NaBH,,
MeOH, -30 °C, 1 h, 56%; (b) Na, NH;,,, THF, -78 °C, 90 s, 61%

The stereochemical outcome of the reaction can be ratio-
nalised by consideration of the pathways available to the
activated aminal (Scheme 4).

A direct S\2 approach of the trifluoroborate enol ether nu-
cleophile would occur from behind the C—O bond, which
coincidentally is also from the less sterically hindered

Nu:
\—\ .
J’NKO“BF@‘ »

Sn2-type

O

Ph

10
16 major diastereomer
observed

minor
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N o-BFs ——
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electronic °=<®jL o
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H O
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19

possible Felkin—Anh
conformations of auxiliary

major
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Scheme 4 Model for diastereoselectivity

convex face of the bicyclic aminal. This leads to the major
diastereomer observed.

An alternative Sy1 pathway may also be operational. Ap-
plying the Felkin—Anh requirement that the nucleophile
approaches over the smallest substituent (H),'* two con-
formers are possible. Of these, 19 is likely to suffer elec-
tronic repulsion between the carbonyl group and the
trifluoroborate ether as shown.!* Reaction via 17 would
lead to the minor diastereomer.

Meyers first proposed this competition between Sy1 and
Sy2 pathways in nucleophilic addition to bicyclic ami-
nals.” His findings support the application of the Felkin—
Anh model to explain diastereoselectivity in such sys-
tems. It is reasonable that the Sy2 pathway dominates over
the Sy1 pathway since the reaction is intramolecular and
would therefore benefit from a degree of bond formation
in the transition state. In addition, the transition state on
the S\2 pathway can be stabilised by the n-stacking of the
boron enolate with the phenyl ring of the auxiliary (16,
Scheme 4).1

In summary, a Morita—Baylis—Hillman-type reaction has
been developed and optimised for the asymmetric prepa-
ration of azaspirocycles. The auxiliary used can be
cleaved using a two-step sequence. The azaspirocycles
formed are potentially highly versatile synthetic interme-
diates with the capacity for a range of further functionali-
sation.
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