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Abstract: Furan- and indole-derived boronate complexes

react with alkyl iodides under radical (photoredox) or
polar (SN2) conditions to generate three-component alky-
lation products with high efficiency and complete stereo-
specificity. The methodology allows the incorporation of
versatile functional groups such as nitriles, ketones, esters,

sulfones, and amides, providing rapid access to complex
chiral heteroaromatic molecules in enantioenriched form.
Interestingly, while indolyl boronate complexes react di-
rectly with alkyl halides in a polar pathway, furyl boronates
require photoredox catalysis. Careful mechanistic analysis
revealed that the boronate complex not only serves as a

substrate in the reaction but also acts as a reductive
quencher for the excited state of the photocatalyst.

Heteroaromatic compounds are ubiquitous in natural products
and bioactive compounds and play a central role in organic

chemistry. In particular, the furan ring is a versatile moiety for
organic synthesis, readily undergoing oxidations, acid-cata-

lyzed rearrangements and cycloaddition reactions,[1] while the
indole ring is one of the most common motifs in alkaloids and
drug candidates.[2] Our group recently introduced an enantio-

specific sp3–sp2 coupling between aromatic rings and chiral
boronic esters 1 to access a variety of enantioenriched mono-

functionalized aromatic molecules (e.g. 3, Scheme 1 a).[3] Fur-
thermore, inspired by the intriguing reactivity of unsaturated
boronate complexes,[4] we showed that nucleophilic furyl-de-
rived boronate complexes 2 react with electrophiles in an

enantiospecific three-component coupling reaction (leading to
4, Scheme 1 a).[5] Key to the success of this process was the use
of highly activated electrophiles, such as the Umemoto trifle-
oromethylating agent[6] or carbocationic species. Interestingly,
the trifluoromethylation reaction was found to proceed

through a self-initiated radical chain mechanism. Independent-
ly, Studer and our group have shown that electrophilic radicals

add to vinyl boronate complexes 5 (Scheme 1 b).[7] The result-

ing a-boronate radicals 7 undergo facile single electron oxida-
tion to trigger 1,2-migration and form boronic ester adducts 8.

We envisioned extending this merger of photoredox cataly-
sis[8] with boron 1,2-metallate rearrangements to aromatic bor-

onate systems (Scheme 1 c).[9, 10] Photoredox radical-mediated
reaction of alkyl halides 6[11] with boronate complexes derived
from chiral boronic esters 1 and aryllithiums 9 and 10 should
lead to dearomatized intermediates 11 and 12. As 1,2-migra-
tion is well-known to be a stereospecific process[12] the stereo-

chemistry within boronic ester 1 should be conserved in the
process. In situ oxidation/rearomatization of 11 and 12 would

then provide chiral aromatic compounds 13 and 14 in enan-
tioenriched form. Such a transformation would constitute a
novel enantiospecific three-component alkylation protocol,

providing valuable routes to complex chiral heteroaromatic
structures. Herein, we describe the successful development of

this new methodology, which takes advantage of the versatility
and mild conditions of photoredox catalysis to introduce a
suite of synthetically valuable functional groups.

Attracted by the versatility of nitriles in organic synthesis,[13]

we commenced our studies by investigating the reaction of

furan with iodoacetonitrile (6 a) (Table 1).[14] Boronate com-
plex 2 a was formed by addition of cyclohexyl boronic acid pin-

acol ester (1 a) to 2-furyllithium, generated by lithiation of
furan with n-butyllithium in THF. Solutions of iodoacetoni-
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Scheme 1. a) Enantiospecific cross-coupling and three-component trifluoro-
methylation of furans. b) Photoredox-mediated three-component alkylation
of vinyl boronic esters. c) Planned strategy: photoredox-mediated enantio-
specific three-component coupling of furan and indole. SET: single electron
transfer, EWG: electron-withdrawing group, pin: pinacolato.
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trile (6 a) and a photocatalyst were then added and the mix-
ture irradiated with blue LEDs for 1 h. Gratifyingly, in a prelimi-

nary experiment carried out using acetonitrile/THF as solvent
(entry 1), we found that the reaction proceeded smoothly to

give the desired dearomatized intermediate 11 a in 50 % yield
using Ru(bpy)3

2 + as a photocatalyst. A solvent screen led to

the identification of a mixture of DMF/THF (2:1) as optimal,

giving 11 a in 73 % yield (entry 4). The use of the more reduc-
ing photocatalyst Ir(ppy)3 gave similar results (entry 5). In con-

trast to the photochemical three-component alkylation of vinyl
boronate complexes,[7a] we observed that the use of a photo-

catalyst was crucial for obtaining high yields in this reaction
(compare entries 4 and 6). A control experiment carried out in
the dark did not give any product (entry 7), showing the pho-

tochemical nature of this transformation. Intermediate 11 a
could be oxidized by addition of iodine and potassium ace-
tate[15] to the reaction vessel to give the desired three-compo-
nent alkylation product 13 a in 71 % isolated yield (entry 4).

Having identified the optimum conditions, we explored the
scope of our photochemical transformation (Scheme 2). A wide

range of synthetically versatile functional groups could be effi-
ciently introduced by varying the alkyl iodide radical precursor.
Iodoacetophenones proved to be good substrates, leading to

the corresponding ketones in good yields (13 b and 13 c). Ethyl
iodoacetate and iodoacetamide provided ester 13 d and un-

protected amide 13 e. Iodomethyl phenylsulfone led to sul-
fone 13 g in 64 % yield.[16, 17] In addition, perfluoroalkyl chains

could be connected to the furan scaffold (13 f) starting from

readily available perfluoroalkyl iodides. The employment of ter-
tiary and primary boronic esters led to products 13 h and 13 i
in good yields, demonstrating that the process tolerates a
wide spectrum of steric demand. Furthermore, starting from

enantioenriched chiral boronic esters, compounds 13 j and
13 k were obtained with complete stereospecificity.

Attracted by the importance of the indole ring in synthetic
and medicinal chemistry, we sought to extend our enantiospe-

cific three-component alkylation reaction to N-methyl indole
(Scheme 3). Pleasingly, the reaction of boronate 15 with iodo-

acetonitrile (6 a) gave the desired product 14 a in 70 % yield.

However, in control experiments we found that neither light
nor the photocatalyst were required for the transformation.

Furthermore, addition of the radical inhibitor 1,1-diphenylethyl-
ene[7a] had no effect on the reaction outcome (see Supporting

Information–3.5 for details), ruling out a possible electron-
transfer initiated radical chain process[5] and supporting a polar

Table 1. Reaction optimization.

Entry[a] Solvent[b] Photocatalyst [PC] Yield of 11 a [%][c]

1 CH3CN/THF Ru(bpy)3Cl2·6 H2O 50
2 DMSO/THF Ru(bpy)3Cl2·6 H2O 66
3 DMI/THF Ru(bpy)3Cl2·6 H2O 70
4 DMF/THF Ru(bpy)3Cl2·6 H2O 73 (71)
5 DMF/THF Ir(ppy)3 71
6[d] DMF/THF – 26
7[e] DMF/THF Ru(bpy)3Cl2·6 H2O 0

[a] All the reactions were carried out using 1.2 equiv of furan, 1.15 equiv
of n-butyllithium, 1.0 equiv of 1 a and 1.5 equiv of iodoacetonitrile 6 a on
a 0.2 mmol scale. [b] Mixture of solvents are intended solvent/THF 2:1.
DMI: 1,3-dimethyl-2-imidazolidinone. [c] Yield measured through NMR
analysis of the crude mixture using dibromomethane as an internal stan-
dard. Intermediate 11 a was obtained as a 1:1 mixture of diastereoiso-
mers. Number in parenthesis is the isolated yield of compound 13 a after
oxidation and chromatographic purification. [d] Photochemical step time:
2 hours. [e] Reaction carried out in the dark.

Scheme 2. Scope of the enantiospecific three-component alkylation of furan.
All the yields refer to isolated product after chromatographic purification.
[a] Intermediate oxidation conditions: NaClO (aq.), DMF, @20 8C. [b] 4 equiv
of alkyl iodide were used. [c] Volatile product, number in parenthesis is the
NMR yield using CH2Br2 as internal standard.

Scheme 3. Scope of the enantiospecific three-component alkylation of
indole. All the yields refer to the isolated product after chromatographic pu-
rification. [a] Intermediate oxidation conditions: H2O2(aq.)/NaOH(aq.), 0 8C,
DMF/THF 2:1.

Chem. Eur. J. 2018, 24, 4279 – 4282 www.chemeurj.org T 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4280

Communication

http://www.chemeurj.org


SN2-like pathway. The nucleophilic reactivity of indole-derived
borates generated from difficult-to-handle trialkyl boranes has

been described,[18] however the difficulties in accessing enan-
tioenriched chiral boranes has prevented the use of this meth-

odology for the synthesis of chiral compounds in enantioen-
riched form. Surprisingly, reactions of boronates derived from

stable boronic esters are rare with only a single report very re-
cently disclosed by Ready et al. (with p-allyl palladium com-

plexes).[19]

Through our simple protocol, indole-derived boronates 15
could be alkylated to introduce a diverse range of functional
groups, including nitriles, ketones, esters and unprotected
amides, providing functionalized indoles 14 a–d in good yields.
Various other alkyl boronic esters were also applied to the cou-
pling reaction, including primary (14 e) and enantioenriched

chiral secondary (14 f and 14 g) examples, all proceeding in

high yields and with complete stereospecificity. However,
using the bulky menthyl boronic ester provided the desired

product 14 h in only 18 % yield (albeit with excellent stereospe-
cificity) showing that steric hindrance has an impact in this re-

action. Finally, a simple control experiment showed that N-
methylindole does not undergo Friedel–Crafts alkylation with

iodoacetonitrile 6 a under our reaction conditions (see Sup-

porting Information–3.5 for details), thus highlighting the im-
portance of the boronate s-donation to the indolyl p-system

for the nucleophilicity of 15. Indeed, Mayr has shown that a
BF3K moiety (which is not as electron-donating as RBpinLi) at

the 2 position increases the nucleophilicity of N-Boc indole by
>105.[20]

To glean insights into the mechanism of the furan three-

component coupling reaction, selected spectroscopic and elec-
trochemical studies were carried out. Quantum yield measure-

ments gave a value of F= 27.8 (see Supporting Information–
3.4 for details), suggesting a radical chain pathway to be oper-

ative.[21] Fluorescence quenching analysis revealed that boro-
nate complex 2 a was an effective quencher of the excited
state photocatalyst, whereas iodoacetonitrile (6 a) was ineffec-

tive (see Supporting Information–3.2 for details). Based on
these results, we propose the mechanism depicted in
Scheme 4. The highly reducing RuI is generated by single elec-
tron transfer (SET) from a sacrificial amount of boronate com-

plex 2 a (Ep/2 = + 0.26 V vs. SCE, Figure S5) to the excited RuII

catalyst (E0[RuII*/I] = + 0.77 V vs. SCE).[22, 23] Since one electron

oxidation of analogous boronate complexes has been shown
to lead to the generation of alkyl radicals through C@B bond
fragmentation,[24] this reductive quenching phenomenon is ex-

pected to lead to by-product 16, which was indeed observed
in the crude reaction mixtures. Once formed, the electron-rich

RuI species (E0[RuI/II] =@1.33 V vs. SCE) undergoes single elec-
tron transfer with iodoacetonitrile (6 a, Ep/2 =@1.24 V vs. SCE,

Figure S6) leading to the formation of the reactive electrophilic

radical 17 and the regeneration of the RuII catalyst. Radical 17
then adds to the furyl system of 2 a generating radical

anion 18. The electron-rich radical anion is expected to under-
go SET with another molecule of iodoacetonitrile (6 a),[7, 25]

forming radical 17 and a zwitterionic species (not shown),
which undergoes 1,2-migration to release intermedia-

te 11 a.[26, 27] In this process, the excited RuII* photocatalyst op-

erates a smart initiation,[28] with the RuI species being regener-
ated by reductive quenching of RuII* either by intermediate 18
or by another molecule of boronate 2 a. Considering the high

bimolecular quenching rate constant found for boronate 2 a
(kq = 1.98 V 109 m@1 s@1, close to the diffusion limit, see Support-

ing Information–3.2 for details) and the expected low concen-
tration of reactive intermediate 18 in solution, we believe that

the second option is more likely. In this scenario a sacrificial
amount of boronate 2 a is required, rather like a “tax” that has

to be paid, to sustain the radical chain and balance undesired

termination events.
In conclusion, we have developed a novel stereospecific

three-component alkylation reaction of furans and indoles with
boronic esters and electron-deficient alkyl iodides. Mechanisti-

cally, the more electron-rich indole boronates are sufficiently
nucleophilic to react directly with alkyl iodides through a polar

pathway. Conversely, alkylation of the less reactive furyl boro-

nates proceeded through a radical pathway induced by photo-
redox catalysis. Careful mechanistic analysis showed that the

furyl boronate complex 2 plays a dual role, acting both as sac-
rificial reductive quencher for RuII* (giving the reductant RuI)
and as reactant for the three-component alkylation reaction.
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