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Understanding how enzymes ‘work’ is a fundamentally important problem in biology. Enzymes 

are outstandingly efficient natural catalysts. Better understanding of the principles by which they 
achieve these catalytic properties is a central goal in the study of protein function. It also promises 
technological spin-offs such as routes to new drugs (e.g. in the design of enzyme inhibitors); analysis 
of the effects of genetic variation and mutation (e.g. in predicting the effects of single nucleotide 
polymorphisms on metabolism of pharmaceuticals); design of new catalysts (e.g. engineered enzymes 
or synthetic, designed biomimetic catalysts incorporating the same principles). There is great interest 
in developing protein catalysts for practical applications (e.g. in the pharmaceutical, chemical and 
biotechnology industries). Developments in systems biology will also require better quantitative 
understanding of enzyme action, e.g. for cellular network modelling, in the prediction of rates for 
individual biochemical reactions, and the effects of mutations on them. Modelling has a central role to 
play in these developments. Unstable species such as transition states and reaction intermediates are 
crucial to questions of reactivity, and cannot be studied directly by experiment in systems as complex 
as enzymes. Simulation and modelling allow enzyme catalytic mechanisms to be analysed in detail, 
and can contribute directly in catalyst design and protein engineering. Computational enzymology is a 
rapidly growing area, with modelling increasingly being recognised as essential for understanding 
these fascinating biological catalysts1,2,3,4.  

Combined quantum mechanics/molecular mechanics (QM/MM) methods allow enzyme 
reactions to be modelled: a small region at the active site (where the reaction happens) is treated by a 
quantum mechanical electronic structure method, and interacts with the protein and solvent 
environment, which are included more simply (though in atomic detail) by an empirical ‘molecular 
mechanics’ force field. QM/MM methods combine the simplicity and speed of the MM treatment of the 
protein structure with the flexibility and power of a quantum chemical treatment (which allows 
modelling of bond breaking and making, and electronic polarization). QM/MM methods are becoming 
increasingly important in biomolecular modelling, in studies of enzyme mechanisms and other types of 
application. They were the topic of a recent CCP-BioSim training workshop (www.ccpbiosim.ac.uk ; 
see also ref. 39, Lonsdale et al. Chem. Soc. Rev. 2012, for a practical introduction). 

Molecular mechanics (MM) methods give a good description of protein structure and 
interactions, and are very useful for molecular dynamics simulations. Standard MM methods cannot 
be used to model reactions, though. Potential functions of this type cannot be applied to model the 
bond breaking and bond making, and electronic reorganization, involved in a chemical reaction: the 
bond terms do not allow bonds to break or form, and electronic redistribution is not be accounted for. 
Also, the MM force field parameters are based on the properties of stable molecules, and so will 
usually not be applicable to transition states and intermediates formed during reactions. Quantum 
mechanical (QM) methods, on the other hand, can give accurate results for small molecules and their 
reactions. The major problem with electronic structure calculations on enzymes is that they require 
large computational resources required, which significantly limits the size of the system that can be 
treated. Quantum chemical methods (for example ab initio molecular orbital or density-functional 
theory calculations) can currently be used practically to study reactions in systems containing perhaps 
tens of atoms. Small ‘cluster’ models of around this size can represent important active site groups, 
and can identify likely mechanisms. Ideally, though, simulations should include the effect of the 
enzyme on the reaction, and so study larger models. This can be done using QM/MM methods, which 
can now offer unprecedented levels of accuracy for enzyme reaction barriers5, comparable to 
experiment.  

Enzyme mechanisms, and the basic sources of their catalytic power, remain controversial. 
The first question to answer in studying an enzyme-catalysed reaction is ‘what is the mechanism of 
the reaction’? This means identifying all the catalytic residues (and other catalytic groups, e.g. 
cofactors) and their roles, and establishing the structure of any reaction intermediates and transition 
states. Identifying the chemical mechanisms of enzymes by experiments alone is very difficult: it is 
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often hard to differentiate between alternative proposed mechanisms. Many mechanisms given in 
standard biochemistry textbooks are probably incorrect in important details. Once the mechanism is 
known, the next challenge is to understand why the enzyme is a good catalyst, i.e. why the enzyme 
reaction is fast. Many enzymes have reaction rates which are many orders of magnitude faster than 
equivalent uncatalysed reactions in solution. Many different ideas have been put forward to explain 
these very large rate accelerations. These proposals, some well founded and some less so, are the 
centre of vigorous ongoing debates in enzymology about the origins of catalysis in some or all 
enzymes. These arguments are very difficult to settle, because the complexity and large size of 
enzymes makes experimental analysis very difficult. Examples of these controversies include the 
possible role of protein dynamics in driving catalysis2,3, ‘low-barrier’ hydrogen bonds6,7,8,9, ‘near-attack 
conformations’ 10,11, quantum tunnelling12 and the contribution of entropy3. These arguments have 
included questioning the applicability of transition state theory (a basic tool from chemical physics for 
understanding molecular reaction rates) for enzyme reactions2.  

 

 
Active site of the enzyme aromatic amine dehydrogenase (AADH), from QM/MM modelling12. 
QM/MM simulations show that quantum tunnelling is significant in this enzyme-catalysed reaction.  
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Calculations can identify likely mechanisms of enzyme-catalysed reactions. They can also 
analyse key interactions and catalytic effects. Simulations have a vital role to play, both in the 
interpretation of experimental data, and in providing a molecular level picture of enzyme reactions. An 
interesting interesting example is aromatic amine dehydrogenase (AADH), for which a combination of 
experimental structural biology, biochemical experiments and computer simulation has given an 
atomic-level picture of its reaction with the substrate tryptamine. The calculations, and experimental 
kinetic data, show that this reaction is dominated by quantum mechanical tunnelling. Kinetic isotope 
effects (KIEs, the changes in rate on replacing hydrogen with its heavier isotope, deuterium) are very 
large for this reaction, showing that tunnelling is important when a proton (hydrogen nucleus) is 
removed from the substrate and transferred to the enzyme. QM/MM methods were used to analyse 
the reaction in detail. Time-resolved crystallography captured intermediates during the complex 
reaction of the enzyme, outlining the structural path for the whole reaction (not just the tunnelling 
step). These were very challenging experiments, defining in detail the complex three-dimensional 
structure and conformation of the protein during the reaction. They show that there are no large scale 
changes in protein structure during the reaction. What the crystallography cannot do, though, is to 
show how chemical bonds break and form, and how protons are transferred, because this happens 
too quickly in the enzyme to be studied experimentally. The crystallographic structures of the enzyme 
were the starting point for computer modelling. The calculations showed that quantum tunnelling is 
indeed dominant in the reaction (99.9% of proton transfer 'goes' by tunnelling). The calculated KIEs 
agree well with experiment, which is notable in itself, given the KIEs are unusually large, and provide a 
stringent test for the theoretical methods. Calculations were then used to examine what features in the 
enzyme give rise to the observed tunnelling. Biochemists and biologists have debated a lot recently 
about what the causes of tunnelling in enzymes might be. Hydrogen transfer is a step in many 
enzyme-catalysed reactions, so the question of what may drive tunnelling is an important one. It has 
been suggested that long-range motions, or protein dynamical fluctuations, may drive tunnelling in 
enzymes. Molecular dynamics simulations (with MM methods) examined important motions of the 
protein, and their possible correlation with groups involved in the proton transfer reaction. These 
simulations showed no evidence that long-range motions of this sort are involved in promoting 
tunnelling in AADH. Long-range coupled motion of the protein is apparently not involved. Instead, 
relatively subtle, short-range motions at the active site affect the crucial distance between the groups 
between which the proton is exchanged, and so can promote (or drive) tunnelling. This finding is 
potentially generally important for understanding how reactions involving hydrogen transfer happen in 
proteins.  

Modelling of enzyme reactions also promises to make a significant practical contribution in 
areas such as drug discovery. Many enzymes are drug targets (many pharmaceuticals are enzyme 
inhibitors), and ligand design should significantly benefit from knowledge of their mechanisms. By 
showing how transition states and reaction intermediates are stabilized in enzymes, mechanistic 
modelling can help inhibitor design, adding another dimension to structure-based ligand design for 
enzyme targets. For example, β-lactamase enzymes, which break down antibiotics, are a major cause 
of the growing clinical problem of bacterial antibiotic resistance. QM/MM modelling of the TEM1 β-
lactamase from E. coli showed how the entire process of antibiotic breakdown can happen in the 
enzyme13,14. The results identified important interactions in the protein, and suggested modifications of 
existing β-lactam antibiotics that could improve their stability against lactamases, and so could provide 
a route to overcoming bacterial antibiotic resistance.  

Reliable prediction of pharmaceutical metabolism and toxicology (ADME/TOX) properties also 
needs better understanding of the enzyme systems involved. Developments in pharmacogenetics will 
require models to predict the effects of genetic variation on the activity and specificity on enzymes 
responsible for drug metabolism (e.g. cytochrome P450). QM/MM methods can provide uniquely 
detailed insight into reactions in P450s. For example, QM/MM studies of bacterial P450cam have raised 
controversial issues about reactivity15,16,17. Different P450 isoenzymes show very different substrate 
specificity, and hydroxylation patterns, which may be the result of orientation or binding effects18, or 
the intrinsic reactivity of different positions in the substrates. Genetic polymorphisms can have 
significant effects in determining drug metabolism19. Modelling is needed to analyse and understand 
the key factors. For example, calculations on models of aromatic hydroxylation in P450 have identified 
two different possible orientations of the substrate approach were found (‘side on’ and ‘face on’),20,21 
either or both of which may be important in the reactions of different drugs in different P450s. This 
insight from calculations led to the development of new structure-reactivity relationships. QM/MM 
modelling of human cytochrome P450 enzymes (including complexes with the drugs diclofenac and 
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ibuprofen) demonstrate the potential of QM/MM methods to deal with practical questions of drug 
metabolism22.  
 

 
Cytochrome P450 is an enzyme which is important in drug metabolism. This picture shows QM/MM 
modelling of cytochrome P450. The active site of the enzyme (the small region where the drug binds 
and reacts) is treated by a quantum mechanical (QM) electronic structure method (right). The active 
site ‘feels’ the effects of the rest of protein, which is treated by simpler ‘molecular mechanics’ (MM)22. 

 
Until recently, QM/MM investigations of enzymes have generally been limited to relatively low 

levels of QM theory, such as semiempirical methods or density functional theory (DFT). Semiempirical 
methods are computationally cheap, fast enough for QM/MM molecular dynamics simulations, but are 
prone to significant errors. For example, reaction energies and barriers calculated with semiempirical 
QM methods can be wrong by 10 kcal/mol or more. DFT (especially with the B3LYP hybrid functional) 
offers improved accuracy, and has allowed computational studies of new classes of enzymes 
(particularly metalloenzymes such as cytochrome P450)23. DFT methods, however, lack key physical 
interactions, such as dispersion, which are important in the binding of ligands to proteins.2425 DFT 
often gives barrier heights that are too low by several kcal/mol, and it does not offer a route to their 
systematic improvement or testing, making it difficult to assess the accuracy of results. Other 
modelling methods such as the empirical valence bond technique can give excellent results for 
enzyme activation energies3,26, and have provided important insight into the basic causes of catalysis. 
Such empirical approaches, though, require extensive fitting to experimental data, and do not consider 
the electronic structure explicitly. The ‘gold standard’ of quantum chemistry is provided by first 
principles – ‘ab initio’ – methods that include the effects of correlation between electrons. They allow 
calculations of rate constants with an accuracy similar to experiments, but only for molecules 
containing very few atoms, in the gas phase27. Previously, such accurate methods were limited to 
small molecules because of their enormous computational expense, which increases quickly as the 
size of the system increases. Using recent theoretical developments28 it is now possible to treat 
systems of the size of typical QM regions in QM/MM calculations on enzymes (for example, typically 
25 to 50 atoms). Using such high-level ab initio methods, accuracy comparable to experiment can be 
achieved in QM/MM calculations on enzyme-catalysed reactions5. Calculated activation energies for 
two enzyme reactions (chorismate mutase and para-hydroxybenzoate hydroxylase) agree very well 
with experiment. The agreement with experiment indicates that transition state theory provides a good 
general framework for understanding the rates of such enzyme-catalysed reactions. These results 
show that reaction barriers in enzymes can be calculated with QM/MM methods with an accuracy of 
around 1 kcal/mol (so-called chemical accuracy) in the best cases. Biomolecular modelling can now 
deliver quantitative comparisons with experiment for enzyme-catalysed reactions, and make reliable 
predictions of enzyme mechanisms. This transforms what can be achieved by calculations and signals 
a new era in computational biochemistry.  

The importance of simulations in understanding biological catalysts is certain to continue to 
grow: modelling will increasingly become an integral part of enzymology29,30,31,32,33,34,35,36,37,38,39,40. For 
an introduction to modelling enzyme-catalysed reaction mechanisms, see ‘A practical guide to 
modelling enzyme-catalysed reactions’ Lonsdale et al. Chem. Soc. Rev. 41, 3025-3038 (2012); 
http://dx.doi.org/10.1039/C2CS15297E.41  
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