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Abstract

We discuss how two techniques, based on (1) lattice statics/lattice dynamics simulations and (2) Monte Carlo methods may be
used to calculate the thermodynamic properties of solid solutions and highly disordered systems. The lattice statics/lattice dynamics
calculations involve a full free-energy structural optimization of each of a number of configurations, followed by thermodynamic
averaging. The Monte Carlo simulations include the explicit interchange of cations and use the semigrand canonical ensemble
for chemical potential differences. Both methods are readily applied to high pressures and elevated temperatures without the need
for any new parameterization; at agreement between the two techniques is better at high pressures where anharmonic terms are
smaller. Vibrational contributions to thermodynamic quantities of mixing are examined. A range of examples, including binary oxi-
des, garnets and carbonates, are used to illustrate the methods.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Grossly disordered minerals and non-ideal solid solu-
tions, continue to present considerable challenges to the
theoretician. The cluster variation method (CVM) [1],
for example, widely used for metallic alloys, often
performs poorly where species involved are markedly
dissimilar, as is usually the case in ceramics and minerals.
Using parameterized Hamiltonians (e.g., of Ising type) is
increasingly difficult beyond binary alloys. Disorder in
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ionic materials has often been studied via point defect
calculations (the dilute limit). Another route has been
via the use of a �supercell� [2], in which a periodic �super-
lattice� of defects is introduced, extending throughout the
macroscopic crystal; an artificial ordering is thus
imposed on the arrangement of defects by the periodic
boundary conditions. In this paper we discuss two
multi-configuration techniques for solid solutions or dis-
ordered systems with a finite impurity or defect content
far from the dilute limit. Both of these, unlike the point
defect or supercell calculations, sample many different
arrangements of ions. Both are readily applied to high
pressure and include thermal (vibrational) effects, which
have proved problematic for traditional methods [1].

The first of these builds on an efficient method for the
fully dynamic structure optimisation of large unit cells
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which uses lattice statics and quasiharmonic lattice
dynamics (QLD). The accurate calculation of the free
energy via QLD is quick and computationally efficient
and does not resort to lengthy thermodynamic integra-
tion. The full set of free energy first derivatives is calcu-
lated analytically and a full minimisation of the free
energy with respect to all structural variables for large
unit cells is possible [3]. Here this technique is extended
to evaluate the free energies of solid solutions and phase
diagrams at any pressure. This is achieved by forming a
thermodynamic average of the free energies of a number
of configurations. No a priori assumptions are made
regarding the configurational entropy contribution;
vibrational contributions to thermodynamic quanti-
ties at any temperature and pressure are determined
straightforwardly. This configurationally averaging dif-
fers in some important respects from CVM [4], which
defines the energy of the system as an expansion of effec-
tive cluster interactions (ECIs). These ECIs are calcu-
lated by fitting to the energy of several optimized
configurations. A large range of further configurations
can then be generated by applying the ECIs within the
configuration to calculate their energy. Where the inter-
actions within the system are complex or long-range the
number of ECIs that need to be defined in the CVM can
make the expansion unfeasible [5]. Generally calcula-
tions using CVM do not take the effect of relaxation
or vibration into account. The use of quasirandom
structures (QRS) allows an estimate of the vibrational
contributions [6] and very recently Wu et al. [7] have
proposed the use of bond-length dependent force con-
stants to allow for relaxation. Application of CVM to
ionic systems such as perovskites [8] and carbonates [9]
has proved problematic.

The second technique we use in this paper is the well-
known Monte Carlo method, implemented in such a
way that both the atomic configuration and the atomic
coordinates of all the atoms are changed (Monte Carlo
Exchange (MCX)). Absolute values of the free energy
cannot be obtained readily from Monte Carlo simula-
tions. Nevertheless, the semigrand canonical ensemble
[10] provides a convenient route to accurate chemical
potential differences accurately and hence the phase dia-
gram. All calculations reported here use widely used
interatomic potential models within the framework of
an ionic model.
2. Thermodynamics of solid solutions: theoretical

methods

2.1. Lattice statics and dynamics

In principle a solid solution can assume any state in
which each atom can be at any position. The only states
of practical importance away from the melting point will
lie at the bottom of K local minima in the energy of the
system, i.e., they correspond to a given configuration.
For each configuration k, we suppose there exists a
number of states which correspond to small or moderate
changes in the internal and external lattice strains. Using
the label k = 1, . . . ,K for the configuration, then the en-
thalpy and Gibbs energy in the isobaric–isothermal
(NPT) ensemble are given by [11]

H ¼
PK

k¼1H k expð�Gk=kBT ÞPK
k¼1 expð�Gk=kBT Þ

ð1Þ

G ¼ �kBT ln
XK

k¼1

expð�Gk=kBT Þ ð2Þ

Gk is the Gibbs energy for the relaxed structure of each
possible cation arrangement. We thus have expressions
for any thermodynamic quantity in terms of thermody-
namic quantities obtained with particular configura-
tions. The thermodynamic averaging is performed over
the results of a set of full free-energy minimisations of
different arrangements (configurations) of the cations
within a supercell.

For other than the smallest supercells it is impractical
to sum over all K configurations and all summations in
Eqs. (1) and (2) are restricted to K 0 configurations cho-
sen at random. K in the second term of Eq. (3) is
replaced by K 0 and

H ¼
PK 0

k¼1H k expð�Gk=kBT ÞPK 0

k¼1 expð�Gk=kBT Þ
; and ð3Þ

G ¼ �kBT ln K � kBT ln
XK 0
k¼1

expð�Gk=kBT Þ=K 0
 !

ð4Þ
2.2. Monte Carlo simulations

The Monte Carlo exchange simulations (MCX) [12]
are carried out within the NPT ensemble. Randomly se-
lected atoms are moved at random in order to take
vibrational effects into account. At any step, a random
choice is made whether to attempt a random exchange
between two atoms, a random displacement of an ion,
or a random change in the volume of the simulation
box with relative probabilities 1:N:1. To determine
whether the change is accepted or rejected, the usual
Metropolis algorithm is applied. The maximum changes
in the atomic displacements and the lattice parameters
are governed by the variables rmax and vmax, respectively,
and these are adjusted automatically during the equili-
bration part of the simulation to maintain an accep-
tance/rejection ratio of �0.3. Calculation of the free
energy is less straightforward than with QLD; semi-
grand canonical ensemble simulations are used to calcu-
late the difference in chemical potential of ions A and B.
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The conversion of one species, B into another, A, is con-
sidered, and the resulting potential energy change DUB/A

determined. This is related to the change in chemical
potential DlB/A by,

DlB=A ¼ �kBT ln
N B

N A þ 1
expð�DU B=A=kBT Þ

� �
ð5Þ

Every fifth step of the MCX simulation we evaluate the
energy associated with the conversion of a randomly
chosen ion type B to ion type A, DUB/A and as the sim-
ulation proceeds the average value of the exponential in
equation is determined.
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Fig. 2. DSmix (J K�1 mol�1) at 1000 K for MnO–MgO as a function of
composition calculated using QLD (filled circles). The points (trian-
gles) labeled LS are values calculated using configurational averaging
but with each configuration minimized in the static limit. For
comparison the ideal entropy of mixing is also shown (dashed line).
3. Results

3.1. MnO–MgO

We start with the solid solution MnO–MgO. Shown
in Fig. 1 are values of DHmix at 1000 K and zero pres-
sure, calculated using QLD and MCX for a 50/50 mix-
ture with a unit cell of 128 atoms and 12,870 randomly
chosen configurations. In the QLD all external and
internal degrees of freedom are optimized for every con-
figuration; for a detailed study of the convergence prop-
erties with cell size and number of arrangements, see
Ref. [13]. The MCX simulations used a simulation cell
of 512 ions, and 4 · 107 steps, following initial equilibra-
tion of 1 · 107 steps. The plot shows there is good agree-
ment between QLD and MCX, despite QLD using
vastly less configurations than MCX and neglecting
higher-order anharmonic terms (though quantum effects
are incorporated in QLD). The calculated DHmix at
1000 K is symmetric with a maximum of 5.4 kJ mol�1.
No symmetry constraints are applied in any of the calcu-
lations. We have examined previously [11] the striking
failure of mean-field approach and �hybrid� potentials
0.2 0.4 0.6 0.8
3

4

5

6
  QLD

  MCX

x
Mn

ΔH
m

ix
 [k

J 
m

ol
 -

1 ]

Fig. 1. DHmix (kJ mol�1) at 1000 K for MnO–MgO as a function of
composition calculated using configurational QLD and using MCX.
for DHmix. Entropies of mixing, DSmix calculated using
QLD, include both configurational and vibrational
entropies. Fig. 2 plots DSmix as a function of composi-
tion at 1000 K. Note DSmix is larger than the ideal value
for compositions for xMn > 0.25.

The calculation of the free energy of mixing is a
severe test of our model since DHmix and �TDSmix are
often very close in magnitude. For MnO–MgO in the
QLD, 250 configurations with a supercell of 128 atoms
are sufficient to ensure adequate convergence in the posi-
tions of the two minima in the DGmix vs. composition
curves. It is vital to allow for atomic relaxation, as dem-
onstrated strikingly in Fig. 3 which compares calculated
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Fig. 3. Variations of DGmix (kJ mol�1) at 1000 K for MnO–MgO with
composition, with and without relaxation are plotted. The difference
between the two curves demonstrate the importance of atomic
relaxation. All calculations are QLD.
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Fig. 4. DHmix along the pyrope–grossular join. Calculated values are
at T = 1500 K, pressure P = 0 (circles), 3 GPa (squares), 5 GPa
(triangles), 10 GPa (diamonds), 15 GPar (stars). Experimental data
(at P = 0) [3] are open circles. For comparison, DHmix along the
pyrope–almandine join (open triangles) is also shown.
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DGmix vs. composition curves at 1000 K with and with-
out relaxation. In the absence of relaxation DGmix is po-

sitive for all compositions studied.
Monte Carlo simulations at a given temperature in

the semigrand canonical ensemble yield the calculated
variation of DlMg/Mn with composition. As in the Mar-
gules approximation, we write the excess (non-ideal) free
energy as a third degree polynomial in the concentra-
tion. The chemical potential difference then consists of
an ideal solution term and a second degree polynomial.
The results for Dl at each temperature were fitted to
such a polynomial. Integration gives the variation of
free energy with composition, and these DGmix vs. com-
position curves are similar to those obtained using the
optimized QLD energies in Fig. 3. There is also good
agreement between DSmix values obtained via the Monte
Carlo free energy and enthalpy of mixing and those ob-
tained from QLD. From the temperature variation of
DGmix it is straightforward to calculate the phase dia-
gram, as in Ref. [13].

It is computationally much cheaper to optimize every
configuration in the static limit, using lattice statics (LS)
and replacing Gk by Hk (static) in Eqs. (1)–(4). The
vibrational contribution to Hk and the vibrational
entropy Sk are ignored. Only one set of runs over the
composition scale is required for all temperatures. The
curve labelled LS in Fig. 2 shows DSmix calculated using
this approximation. The difference between the QLD
and LS values represents the vibrational contribution
(denoted using the subscript �vib�). Neglecting effects
due to thermal expansion, the LS values of DSmix repre-
sent the configurational contribution to these quantities.
The LS values of DSmix are lower and smaller than the
ideal entropy of mixing at all compositions. The config-
urational entropy of mixing is thus smaller than the
ideal and the positive vibrational terms contribute to
the effective ideality of the solid solution. The maximum
contribution of DSmix(vib) at 1000 K is 8% of the total
DSmix for xMn = 0.5. The contribution of DSmix(vib) to
the entropy of mixing of CaO–MgO solid solutions is
much larger [12] due to the larger size-mismatch
involved between the two cations.

3.2. Garnets

Aluminosilicate garnets (X3Al2Si3O12, X =
Mg2+, Ca2+, Fe2+, Mn2+) form one of the most impor-
tant solid solution minerals in the Earth�s crust and
upper mantle. We have chosen to perform an MCX
study of two representative garnet binaries, pyrope
(X = Mg)–grossular (X = Ca) and pyrope–almandine
(X = Fe). The pyrope–grossular system presents partic-
ular complications due to the large difference in ionic
radius between Ca2+ and Mg2+ and a configurational
bias technique [12] was used to increase the number of
successful interchanges. The simulations used a cell of
1280 ions containing 64 formula units, and 2.5 · 107

steps, following initial equilibration of 5 · 106 steps.
For Py–Gr solid solutions we plot DHmix at 1500 K

and pressures from zero to 15 GPa in Fig. 4. These are
all positive with a dip at lower pressures at a composi-
tion of �50:50, possibly hinting at a preferential order-
ing of Ca2+ and Mg2+. Available experimental data
[14] are also shown. These like the calculated values
are positive and show similar asymmetry, with higher
values for pyrope-rich garnets. Nevertheless quantitative
agreement is rather poor. To some extent this can be re-
lated to large uncertainties in the calorimetric measure-
ments. For example, three measurements of the enthalpy
of pure end member pyrope differ by up to 2.4 kJ/mol
[14]. Also shown in Fig. 4 is the analogous calculated
DHmix at 1500 K for Py–Alm at zero pressure. These
values are all positive but much smaller than those for
Py–Gr, as might be expected given the smaller size
mismatch between Mg2+ and Fe2+. We suggest that an
experimental re-examination of the enthalpy of mixing
of Py–Gr and Py–Alm is highly desirable.

In Fig. 5, calculated excess volumes for Py–Gr are
compared with experiment. DVmix is large and positive,
as observed experimentally [15,16]. These results are in
better quantitative agreement with experiment than
those for DHmix although in general on the high side
and possibly less asymmetric. It is important to bear
in mind again that experimental uncertainties are large.
In contrast to the results for Py–Gr, volumes of mixing
along the Py–Alm join are small (between 0 and
0.05 cm3/mol). This agrees with Ref. [17] which con-
cludes experimental data are indistinguishable from
ideal.

In order to investigate how the atomic scale beha-
viour of the garnet solid solutions influences the thermo-
dynamic properties, we have studied the short-range
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Fig. 5. DVmix along the pyrope–grossular join. Calculations (T =
1500 K, zero pressure): solid circles, experiment (T = 295 K, zero
pressure): [4]: empty squares, [5]: solid triangles.
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Ca–Mg ordering in Py–Gr garnets. Previous experimen-
tal 29Si MAS MNR studies [18,19] together with compu-
tational results [20,21] concluded that the strongest
cation interaction is that between dodecahedral sites
linked via an edge-shared tetrahedron, i.e., between
third nearest cation neighbours. We have monitored in
our MCX simulations the nature of the third neighbour
interactions in Py50Gr50 and Py50Alm50 as a function of
temperature. Py–Alm behaves essentially as an ideal
solution, with a random distribution of third neigh-
bours. The Py–Gr solid solution is very different in that
at low temperatures there are very few Mg–Mg (and Ca–
Ca) third neighbour pairs. At higher pressures the num-
ber of Mg–Mg third nearest neighbour pairs increases in
the Py–Gr solution. This is consistent with the different
compressibilities of the Mg and Ca dodecahedral sites,
with the Ca site more easily compressible and thus mak-
ing the Mg and Ca sites more similar at higher pressures.
This is also associated with the disappearance of the
small dip in the composition variation of the enthalpies
of mixing at higher pressures (Fig. 4) and the decrease of
the enthalpy of mixing with increasing pressure.
3.3. Carbonates

Carbonates contribute a significant portion of the
Earth�s crust but have proved experimentally challeng-
ing [22] making them an ideal candidate for simulation.
Computationally modelling of carbonates has had
mixed success; the use of Lippmann Diagrams [23,24]
proved problematic. We have attempted to model dolo-
mite, the most abundant carbonate, using cheap poten-
tial methods [25] and preliminary results are presented
here. Dolomite, CaxMg(1�x)(CO3)2, has a hexagonal
structure with planes of cations (Ca or Mg) separated
by planes of carbonates.
Our calculations used a 72-cation unit cell (total atom
number 360) over a range of compositions. All our
calculations use LS and approximately 25,000 configu-
rations. In Fig. 6, we present the calculated phase
diagram of dolomite. The agreement with experiment
is encouraging, with reproduction of all the main fea-
tures. The main differences lie close to the end members
and in large part are artefacts of the cell size used.
4. Final remarks

Solid solutions of ionic compounds have traditionally
proved problematic for the theoretician. We have pre-
sented a range of methods for the simulation of such so-
lid solutions, the accurate calculation of thermodynamic
quantities of mixing, and also for the calculation of
phase diagrams. No empirical data for the particular
system under study are required. All the methods sample
many configurations, explicitly considering different
arrangements of ions, and allow for the local structural
relaxation surrounding each cation. This relaxation is
crucial. If ignored, the energy of exchange of any two
ions is usually very high and all exchanges are rejected,
thus sampling only one arrangement. All the methods
include vibrational effects and are applicable over ranges
of pressure and temperature. Disorder problems are
often tackled by using a general Ising model, simplified
by limiting interactions to a short range and a finite
number of multi-site couplings. Such an approach is
awkward to parameterize for ionic solids, where relaxa-
tion is crucial, and to apply over a range of pressures
and temperatures. It is not readily generalised to less
symmetric structures, to which we also wish to apply



N.L. Allan et al. / Computational Materials Science 36 (2006) 42–48 47
the general methodology outlined here. In our method-
ology, no assumptions are made as to the nature of the
solid solution.

In particular, we have demonstrated how the rapid
calculation of the free energy via quasiharmonic lattice
dynamics can be used to calculate thermodynamic prop-
erties of solutions over wide ranges of pressure and tem-
perature including DHmix, DSmix and phase diagrams.
Results compare well with those from Monte Carlo
simulations in the semigrand canonical ensemble. Agree-
ment is better at higher pressure [14] where internuclear
distances are smaller and anharmonic contributions
smaller. Quantum effects are included in the vibrational
contributions at low temperatures. Calculated entropies
of mixing include both configurational and vibrational
contributions. For the latter we have seen when extrap-
olation from the point defect limit fails. The technique is
limited by the accuracy of the quasiharmonic approxi-
mation, which breaks down with increasing amplitude
of vibration and hence at high T, typically around
two-thirds of the melting point for oxides.

The Monte Carlo and the configurational averaging
methods each have their own strengths and advantages.
Monte Carlo techniques are applicable to the solid at
high temperatures and to melts [12]. The semigrand
canonical ensemble is an attractive route to differences
in chemical potential and consequent calculation of
the free energy and the phase diagram. QLD is efficient
and gives the free energies to high precision. Further
work is in progress to develop all of the methods. We
have also used similar techniques to examine trace ele-
ment partitioning between minerals and melts [26] and
applied QLD methods to highly non-stoichiometric
compounds, such as oxygen-deficient perovskites [27].
In this case the relative energies of the configurations
also have important consequences for the ion transport
suggesting collective mechanisms are lower in energy
than conventional single-jump mechanisms [26].
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