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Abstract

We investigate the possible use of families of momentum-space descriptors and of trivial classical descriptors for the prediction of blood–brain

barrier penetration, expressed as log BB. A 12-descriptor model based on entropy-like momentum-space quantities and on the numbers of atoms of

each type has good statistical quality for a set of 42 structurally diverse molecules. We also consider the inclusion in our models of some of the other

descriptors that have been used in earlier models for these molecules. The resulting models are not expected to be useful as-is for making genuine

predictions for much larger test sets, but the various results do demonstrate the potential benefits of incorporating momentum-space descriptors into

QSAR models for predicting log BB.

# 2007 Elsevier Inc. All rights reserved.

Keywords: Blood–brain barrier; Momentum-space; Molecular descriptors; QSAR

1. Introduction

An important consideration in the development of central

nervous system active drugs is the degree of penetration of the

blood–brain barrier. As such, it can be highly desirable to know

values of log BB, in which BB is the ratio of the steady-state

concentrations of the relevant compound in the brain and in the

blood. Values of log BB tend to lie in the range from �2 to +1;

compounds with log BB more negative than �1 are poorly

distributed to the brain whereas those with positive values

greater than 0.3 cross the blood–brain barrier fairly easily. Of

course, the determination of values of log BB is just one rather

small part of the drug discovery and design process, which also

requires a range of absorption, distribution, metabolism and

excretion (ADME) data and also toxicity data. Our emphasis

here is on log BB.

The experimental determination of log BB values is not a

simple task, involving as it does the direct measurements of the

drug concentrations in the brain and in the blood of laboratory

animals. Not surprisingly, there has been a great deal of effort to

establish QSAR models based on experimentally determined

and experiment-free molecular descriptors. The literature in

this area is of course very extensive, but we restrict ourselves

here to a brief discussion of previous work that is of particular

relevance to the present study, in which we consider the

possible use of momentum-space descriptors. It should be

stressed from the outset that this is an exploratory study: we do

not expect the particular QSAR models that we present here to

be useful as-is for making genuine predictions for large test

sets. Instead, the main aim is discover whether it could in

principle be useful to include descriptors such as ours,

alongside more traditional ones, in QSAR models for

predicting log BB values.

Young et al. [1] considered QSAR models for central

histamine H2 receptors and found, for 20 molecules, that log BB

does not correlate very well with either the octanol–water

partition coefficient, log P, or the corresponding cyclohexane–

water partition coefficient. Of greater utility was the difference

between these two partition coefficients, D(log P), which is

mainly a measure of the solute hydrogen-bond acidity. Their

best correlation for the 20 molecules is characterized by a

correlation coefficient (R) of 0.831, a standard deviation (S.D.)

of 0.439 and a Fisher-F statistic (F) of 40. The same group of
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20 molecules was also considered by Waterbeemd and Kansy

[2] using as their descriptors the molecular volume and a

quantity Lalk that is meant to characterize the total H-bonding

capacity. The required values of Lalk were calculated from

experimental log P values and from calculated molar volumes.

The resulting correlation is characterized by n = 20, R = 0.934,

S.D. = 0.290 and F = 58. Less satisfactory results were

obtained when, instead of Lalk, they used values for the

surface area of the hydrophilic part of the van der Waals

surface.

Abraham et al. [3] expressed concern about the relatively

small number of molecules (20) in the set examined by Young

et al. [1] and subsequently by Waterbeemd and Kansy [2], and

considered instead an extended set of n = 65 molecules. They

used a regression model based on the McGowan volume (Vx)

[4], an excess molar refraction (R2), a solute dipolarity/

polarizability parameter ðpH
2 Þ, and the solute hydrogen-bond

acidity and basicity (aH
2 and bH

2 , respectively). For 57

molecules (8 were removed as outliers) they achieved

R = 0.952, S.D. = 0.197 and F = 99. However, a close

inspection of the descriptor values shows that a number of

them are strongly correlated (R2 with pH
2 , R2 with bH

2 , R2 with

Vx, pH
2 with bH

2 , and aH
2 with Vx) [5]. Sun [6] has used these 57

molecules in tests of a large generic set of ‘universal’ atom-type

descriptors; a three-component partial least-squares (PLS)

model based on these descriptors gave R2 = 0.897 and a root

mean square error (RMSE) of 0.259.

For a set of 57 molecules, with log BB data taken from

Young et al. [1] and from Abraham et al. [3], Lombardo et al.

[7] used as a single descriptor the computed solvation free

energy in water ðDG0
wÞ. After the removal of two outliers, they

found n = 55, R = 0.82, S.D. = 0.41 and F = 108. The reliable

computation of DG0
w is of course relatively expensive. For the

same group of 57 molecules, Clark [5] explored the use instead

of the polar surface area and of calculated log P values. After

removing two compounds, his best correlation was character-

ized by n = 55, R = 0.887, S.D. = 0.354 and F = 96.

Luco [8] modeled log BB for 61 structurally diverse

compounds, mostly taken from Young et al. [1] and Abraham

et al. [3], but with the addition of a small number of acidic

compounds. Starting with as many as 25 molecular descriptors,

including several topological and constitutional descriptors, he

obtained a three-component PLS model characterized by

n = 58, R = 0.922, S.D. = 0.318 and F = 102 (three molecules

were excluded as outliers). Feher et al. [9] examined the same

group of 61 molecules, using as descriptors just the calculated

log P values, the number of hydrogen-bond acceptors in an

aqueous medium and the polar surface area, obtaining n = 61,

R2 = 0.730, RMSE = 0.424, and F = 51. They found for the full

set of 61 molecules that their results are only slightly inferior to

those of Luco [8].

Given that it has been shown that certain momentum-space

quantities can be useful as molecular descriptors in QSAR (and

QSPR) studies [10–12], it seems very worthwhile to

investigate their possible utility for the challenging problem

of predicting blood–brain barrier penetration. We examine

here the log BB data for a set of 45 structurally diverse

molecules. As in some of our previous work, we consider three

families of descriptors, as well as hybrid models based on

combinations of these.

2. Methodology

We selected molecules for this study as follows. Our starting

point was the training set of Clark [5], which consists of 27

named compounds and a group of larger molecules, which he

labeled 1–30. Except for N2, Luco’s training set [8] includes all

of these named molecules (and with the same log BB values).

For our own study, we selected the 27 named compounds

considered by Clark [5] (as listed in his Table 1) and augmented

these with four acidic compounds considered by Luco [8]

(specifically molecules listed in his Table 1 as 57–60). We also

returned to the work of Abraham et al. [3], from which many of

these subsequent sets have in part been derived, and noticed in

their Table 8 that there are three small/symmetrical molecules

(specifically CS2, NO and SF6) that have not been included by

Clark [5] or Luco [8]. We chose to include the data for those

three molecules in the present study.

Our merged set of 34 molecules (27 named molecules from

Clark [5], four acidic molecules from Luco [8], and three small/

symmetrical molecules from the original work of Abraham

et al. [3]) includes only three systems that have log BB values

which are more negative than �0.31. In order to remedy this

obvious deficiency, we selected 11 species from the first 20 of

the numbered molecules in Clark’s training set (as listed in his

Table 1) [5]. The selection process was fairly arbitrary, except

that we took care to include a range of structural features and to

pick a number of molecules that have significantly negative

log BB values. We note that all 11 of these molecules were also

included in Luco’s training set [8], and with the same log BB

values. The final set of molecules selected for the present study

consists of 45 structurally diverse species (see Table 1 and

Scheme 1).

For each of our selected molecules, we performed AM1

geometry optimizations and then calculated the momentum-

space ( p-space) total electron density, r(p), from the Fourier

transform of the resulting wave function. One of the families of

p-space descriptors that we consider here (‘a’) is based on the

moments of momentum, as defined in the following equation:

h pni ¼
Z

pnrðpÞ dp (1)

Typically, we consider n values of �2, 0 and 2. In practice,

we calculate hp�2i and, instead of hp0i and hp2i, we use the total

number of electrons treated in the AM1 calculation (N) and the

magnitude of the total energy, jEj. We also include in ‘a’ the

molecular weight. This particular family of descriptors has

previously proved useful in QSAR/QSPR models for various

quantities, including gas-chromatography retention times, gas–

hexadecane partition coefficients and tadpole narcosis con-

centrations [12].

The second family of p-space descriptors (‘b’) consists of

entropy-like quantities, as defined in Eq. (2), in which
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s(p) = r(p)/N is sometimes termed the ‘shape function’.

Sn ¼ �
Z

pnrðpÞ ln rðpÞ dp;

S0n ¼ �
Z

pnsðpÞ ln sðpÞ dp (2)

This family of descriptors (with n values of�2, 0 and 2) has

previously proved useful in a study of log P [11]. The two sets

of entropy-like descriptors are of course trivially related to one

another, as is shown in the following equation:

S0n ¼
1

N
ðh pni ln N þ SnÞ (3)

The third family of descriptors (‘g’) consists of entirely

trivial structural quantities, specifically the numbers of atoms of

each type (nX) and the number of bonds (nbond), in the sense that

this term is defined when calculating McGowan volumes [4].

We found in our previous work [12] that this family of

descriptors can produce rather good results for a range of

quantities, as characterized by (adjusted) R2 and S.D. values,

even if the somewhat increased number of descriptors leads to a

poorer F statistic.

Multiple linear regression (MLR) models were constructed

in the present work using SPSS, almost exclusively employing

the ‘simultaneous method’, which SPSS calls the ‘enter

method’ [13]. One simply specifies the set of descriptors that

make up the chosen model, except that SPPS will reject

descriptors that are too strongly correlated with the others. One

of the most useful measures of the success of an MLR model is

of course the adjusted R2 value, which takes account of the

number of variables and of the number of observations, and is

far more informative than are raw correlation coefficients or

coefficients of determination (whether quoted as R2 or R). We

do of course also quote values of the standard deviation and of

the ‘analysis of variance’ or Fisher-F statistic.

As will be discussed later, two models were also constructed

using instead the so-called ‘stepwise method’, in which SPSS

considers each of the chosen descriptors in turn. If the

descriptor contributes to the success of the model then it is

retained, but all of the other included descriptors are then

reassessed, to determine whether they are successfully

contributing to the model and thus should be retained. This

approach is recommended by statisticians not least because it

tends to result in small sets of predictor variables. However, it is

well known that this procedure does not always guarantee the

best QSAR model [14].

For a particular descriptor to be considered a useful predictor

in the final MLR model, conventional guidelines are that its t

value, i.e. the coefficient for that descriptor divided by its

standard error, should lie outside the range �2 to +2. Such t

values are also of use in determining the strongest and weakest

descriptors. Statistical outliers in the models were identified in

the present work as those molecules with absolute standardized

residuals greater than 2, as listed in the table of Casewise

Diagnostics in SPSS [13]. After eliminating outliers, and

rerunning the regression analysis, there is no table of Casewise

Diagnostics when the standardized residuals for all of the

remaining systems lie inside the acceptable range.

One way of assessing the statistical significance of a given

MLR correlation would be to fix the order of the molecules, and

the values of the corresponding molecular descriptors, while

randomizing the order of the log BB values. In general, a new

model based on these ‘wrong’ data will have a poorer

correlation coefficient. After repeating this randomization test

many times, we could determine the probability that we can

obtain a correlation coefficient greater than or equal to the

Table 1

Observed and predicted values of log BB

Molecule Observed 12-Descriptor

model

12-Descriptor

model and DG0
w

2,2-Dimethyl butane 1.04 0.91 0.94

3-Methyl pentane 1.01 0.84 0.88

2-Methyl pentane 0.97 0.82 0.87

Methyl cyclopentane 0.93 0.89 0.93

3-Methyl hexane 0.90 0.89 0.91

Heptane 0.81 0.83 0.85

Hexane 0.80 0.78 0.83

Pentane 0.76 0.70 0.77

Carbon disulfide 0.60 0.63

Isoflurane 0.42 0.39 0.36

1,1,1-Trichloroethane 0.40 0.51 0.47

Benzene 0.37 0.47 0.47

Toluene 0.37 0.65 0.62

Sulfur hexafluoride 0.36 0.48

Halothane 0.35 0.19 0.24

Trichloroethene 0.34 0.39 0.36

Teflurane 0.27 0.37 0.38

Enflurane 0.24 0.36 0.34

Fluroxene 0.13 �0.19 �0.05

1,1,1-Trifluoro-2

-chloroethane

0.08 0.03 0.16

Methane 0.04 �0.16 �0.07

Nitrous oxide 0.03 �0.11

Nitrogen 0.03 0.02 �0.05

Diethyl ether 0.00 �0.08 0.07

Butanone �0.08 0.02 �0.01

2-Propanol �0.15 0.00 �0.09

Propanone �0.15 �0.03 �0.10

Ethanol �0.16 �0.07 �0.20

1-Propanol �0.16 �0.05 �0.17

2-Methyl propanol �0.17 0.05 �0.07

Valproic acid �0.22 �0.06

p-Acetamidophenol �0.31 �0.45

Acetyl salicylic acid �0.50 �0.59

Salicylic acid �1.10 Outlier

A �0.04 �0.24 �0.21

B �0.18 �0.09 �0.34

C �1.15 Outlier Outlier

D �1.17 �0.88 �1.08

E �0.66 �0.87 �0.68

F �0.67 �0.61 �0.67

G �1.42 Outlier Outlier

H �1.23 �1.17 �1.22

I �0.82 �0.84 �0.63

J �1.12 �1.07 �1.18

K 0.11 �0.07 �0.03

The different regression models are identified in the text, as are the sources of

the experimental data.
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‘true’ one. As is well known, the numerical value of the

probability pF that would be determined by following such a

procedure corresponds to a standard statistical measure known

as the significance of the F statistic. Models are typically

considered statistically significant if pF is less than 0.05, but we

will insist here on achieving very much lower values.

3. Results

As measured only by adjusted R2 and S.D., we found for the

45 molecules listed in Table 1 that the best single family of

descriptors is ‘g’, giving adjusted R2 = 0.748 (R2 = 0.800) and

S.D. = 0.329 [14]. Taking account also of the F statistic, the

best results are in fact for descriptor family ‘a’. Looking at

combinations of the families of descriptors, the most promising

combinations are ‘ab’ and ‘bg’, with the first of these having

both the best adjusted R2 (0.804) and the best Fisher statistic

(F = 21). We found that SPSS rejected attempts to retain S�2 in

the ‘ab’ model and also excluded all of hp�2i, jEj, molecular

weight and nC from the ‘abg’ model, which turned out to have

much the same statistical quality as did the ‘bg’ model [14].

In the light of our results for the ‘abg’ model, we returned to

the ‘bg’ families of descriptors. All of our attempts to include

also hp�2i and/or jEj and/or N and/or ln N proved unsuccessful,

because of strong linear dependence between various descrip-

tors. Further investigations (including the construction of MLR

models in which one or more descriptors is excluded) revealed

that nbond, S0 and S00 contribute very little indeed to the quality

Scheme 1. Compounds A–K and some of the ‘less familiar’ molecules listed in Table 1.
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of the ‘bg’ model, and so we chose to reject them. In this way,

we arrived at our preferred 12-descriptor MLR model.

Our 12-descriptor model is based on {nH, nC, nN, nO, nF, nCl,

nBr, nS} and fS�2; S
0
�2; S2; S

0
2g and it is characterized by n = 42,

R2 = 0.943 (adjusted R2 is 0.920), S.D. = 0.165 and F = 40.

Based on their t values, all 12 descriptors satisfy conventional

guidelines for statistical importance. The significance value of

the F statistic is pF = 8.30 � 10�15, indicating that the success

of this model in reproducing the variation in the data is rather

unlikely to be due to chance. Three of the original 45 molecules

(salicylic acid and compounds C and G) have absolute

standardized residuals greater than 2 and were thus treated

as outliers, even though we have no explanation at the present

time for their apparently aberrant behavior. The predictions of

our 12-descriptor model for the log BB values of the remaining

42 molecules are listed in Table 1 and they are displayed in

Fig. 1(a). Further numerical details for all of the models

constructed in this study are available from ref. [14].

One of the most obvious criticisms of our 12-descriptor

model is that the ratio of molecules to descriptors (often called

the Topliss ratio [15]) is relatively small (3.5), whereas one

normally aims for a value of at least 5. On the other hand, the

model is characterized by a very low value of pF.

Using somewhat fewer descriptors from families ‘a’, ‘b’ and

‘g’ for this particular set of molecules does of course tend to lead

to poorer adjusted R2 and S.D. values, but better Fisher statistics.

Using the ‘stepwise method’ in SPSS for the reduced set of 42

molecules, we find that the preferred regression model is based

on just three descriptors, namely nN, nO and hp�2i. This model is

characterized by R2 = 0.822 (adjusted R2 is 0.808), S.D. = 0.257,

F = 58 and pF = 2.68 � 10�14. Using instead the ‘stepwise

method’ for the full set of 45 molecules, the preferred regression

model is again based on three descriptors but, this time, they are

nN, nO and S�2. The apparent importance of nN and nO seems

likely to be a feature of this particular set of molecules, but we

find it very encouraging that momentum-space descriptors such

as hp�2i or S�2 are included in these 3-descriptor models.

We could in principle have carried out further statistical tests

of our various sets of descriptors, such as the ‘leave one out’ and

related procedures that are popular in QSAR studies. We could

also have tried to use our models for test sets composed of

molecules outside our chosen set of 45 molecules, but none of

this seems at all likely to modify our key inference that some of

our momentum-space descriptors do indeed appear to be useful,

alongside simple feature counts, for log BB.

On the other hand, it does seem worthwhile to investigate also

the performance of our 12-descriptor model when it is augmented

with some of the quantities that have been utilized in previous

studies of these molecules. Returning to the full set of 45

molecules, we find that values of DG0
w [7], polar surface area [5]

and calculated log P [5] are available for 38 of them. Attempting

to use our preferred set of 12-descriptors for this set of 38

molecules (see also Table 1), we find that molecules C and G have

standardized residuals of �2.76 and�2.53, respectively, and so

they have again been treated as outliers. For the remaining n = 36

molecules, we find R2 = 0.955 (adjusted R2 = 0.932),

S.D. = 0.159, F = 41 and pF = 1.22 � 10�12. Subsequently

including DG0
w as an additional descriptor does indeed lead to

improved statistics for this set of molecules: n = 36, R2 = 0.973

(adjusted R2 is 0.956), S.D. = 0.128, F = 60 and

pF = 4.35 � 10�14. The resulting predictions of log BB are

listed in Table 1 and they are displayed in Fig. 1(b). Given the

costs associated with reliable calculations of DG0
w, we were very

pleased to find that using instead the calculated values of log P

gives results that are statistically only slightly inferior. The same

was not true when using instead the polar surface area [14].

Of course, even with such low pF values, we should not take

13-descriptor models for relatively few molecules too seriously

unless they can be shown also to be applicable to significantly

larger set of molecules. Nevertheless, we believe that the

statistical results for the various models that we have described

here, ranging from 3 to 13 descriptors, have demonstrated that it

could indeed be worthwhile to carry out further QSAR studies

on much larger sets of molecules using a combination of simple

feature counts, calculated log P values and momentum-space

quantities of the types we have examined.

4. Conclusions

We have shown that a combination of entropy-like

momentum-space descriptors and trivial classical descriptors

(the numbers of atoms of each type) leads to a 12-descriptor
Fig. 1. Correlation between predicted and observed log BB values: (a) 12-

descriptor model; (b) 12-descriptor model and DG0
w.
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model, of good statistical quality, for the log BB values of 42

structurally diverse molecules. We have also found that it can

be useful to combine our chosen set of descriptors with certain

others that have been successfully used for these molecules,

such as the computed solvation free energy in water or

calculated octanol–water partition coefficients. Of course, we

do not expect that the particular models described here will

prove to be equally successful as-is for wide ranges of

molecules outside the relatively small ‘training sets’, but we do

believe that this exploratory study has demonstrated the

potential benefits of incorporating momentum-space descrip-

tors such as ours into QSAR models for predicting blood–brain

barrier penetration (expressed as log BB), when used alongside

more traditional descriptors such as calculated log P values and

simple feature counts.
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