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Abstract

Similarity concepts applied to the solid state are particularly useful when discussing the substitution of one cation by another. Here, we

present a computational study of trace-element incorporation in a range of aluminosilicate garnet solid solutions. Atomistic simulations

suggest trace elements are more soluble in a 50:50 pyrope (Mg3Al2Si3O12)–grossular (Ca3Al2Si3O12) mixture, than in either end member,

consistent with garnet-melt element partitioning experiments. Contrary to Goldschmidt’s first rule, in this solid solution large trace-element

cations may substitute for the small Mg2C and large trace elements for Ca2C. We examine also incorporation in a number of solid solutions

involving combinations of pyrope, grossular, almandine (Fe3Al2Si3O12) and spessartine (Mn3Al2Si3O12) as end members. The results are

analysed in terms of the likely ordering of the major divalent cations present in the solid solution and the size of the added trace element.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Surprisingly, the language in common use by solid state

and materials chemists rarely refers formally to similarity

ideas. Despite this, similarity—as pioneered by Ramon

Carbó-Dorca over many years—is as much a key concept in

solid state as in molecular chemistry. Many problems

encountered in this field are essentially similarity issues

such as the ease of substitution of one atom or ion by

another. This must necessarily depend on how similar are

host and substituent. Relevant applications include ceramic

processing, heterogeneous catalysis, high-temperature

superconductivity and mineral geochemistry.

In this paper we consider garnet solid solutions and

incorporation of trace elements in these solutions.

We shall see that, as a consequence of cation ordering in
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the solid solution, in some cases two ions, usually thought to

be rather dissimilar, appear extremely similar.
2. Garnet solid solutions

The ease of incorporation of dopants and trace elements

in oxides and minerals is basically a similarity problem. The

substitution of one atom or ion by another depends on the

similarity of host and substituent. The classic work of

Goldschmidt [1] many years ago established controls for

substitution in terms of the mismatch in valence and ionic

radius between host ion and substituent. The general rule is

that those dopants with the highest solubilities are most

similar in radius and charge to the host ion they substitute

for at any given crystal lattice site. Atomistic simulation

techniques have provided a quantitative foundation for this

via the calculation of the energies associated with trace

element or dopant incorporation. In end-member

compounds such as binary [2] and ternary oxides [3] and

silicates [4], there is an approximately parabolic variation of

calculated solution energy with ionic radius for any given
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charge, and there is a minimum at a radius close to that of

the host cation.

Non-ideal solid solutions present many challenges to the

theoretician and trace-element incorporation in solid

solutions has received little attention despite their obvious

importance in areas ranging from ceramic technology to

earth sciences. Most natural samples are solid solutions and

this alone makes an evaluation of how solid solution

formation influences trace-element energetics of particular

interest. Models currently in place such as those invoking

‘forbidden zones’ [5] around a given dopant are crude and

are often strikingly unsuccessful [6]. We chose to study

aluminosilicate garnets since experimentally garnet-silicate

melt element partitioning data indicate that some garnet

solid solutions show anomalous trace-element partitioning

behaviour [7] which is not intermediate between that of the

pure end members.

We started our simulations of trace-element incorpor-

ation in garnets by comparing substitution at the dodecahe-

dral X-sites (Fig. 1) of pyrope (Py, Mg3Al2Si3O12),

grossular (Gr, Ca3Al2Si3O12) and pyrope–grossular solid

solutions. We calculated the energetics of substitution of a

number of divalent trace elements and of charge-balanced

substitution by trivalent ions, using molecular mechanics

techniques appropriate for the solid state. A conventional

Born ionic model was used, in which integral ionic charges

are assigned to all species, based on accepted chemical

valence rules. Non-Coulombic two and three-body poten-

tials were taken from a set used in previous work on a wide

range of silicate minerals [8–10]. Polarisability of the oxide

ion was partially accounted for using the shell model [11].

The Coulombic terms were calculated using the standard

Ewald technique [12].

Static simulations of perfect lattices (i.e. without any

trace elements present) give the lattice energy and crystal

structure at zero pressure. In the static limit the lattice
Fig. 1. The garnet structure, showing the AlO6 octahedra and the SiO4

tetrahedra. The first, second and third-nearest neighbour cation–cation

distances are labelled. The third-nearest neighbour interaction (d3) between

cations at the centre of two dodecahedra, as described in the text, is

unusually repulsive for like cations.
structure is determined by the condition vU/vXi where U is

the internal energy, neglecting vibrational contributions and

the variables Xi the lattice vectors and basis atom

coordinates which define the structure. No symmetry

constraints were applied. As a test of the potential model,

agreement between observed and computed structural

parameters for the pyrope and grossular end members is

very satisfactory. For example, the change in sign of the

difference in O–O distances between unshared and shared

AlO6 octahedral edges in pyrope and grossular is

reproduced.

Simulations of solid solutions with Mg and Ca sites were

carried out for compositions Py96Gr4, Py50Gr50, and

Py4Gr96. Mg2C ions preserve largely pyrope-type and

Ca2C ions predominantly grossular-type environments

even in Py4Gr96 and Py96Gr4, respectively. Possible cation

orderings in the solid solution were examined carefully.

Unusually, as noted also in Ref. [6], the ordering energetics

are dominated by the third nearest neighbour interaction

between cations at the centre of two dodecahedra that share

edges with the same SiO4 tetrahedron and which is repulsive

for like cations (Mg2C–Mg2C and Ca2C–Ca2C). Fig. 1

highlights this particular interaction in the garnet structure.

The polyhedral network constrains the structure such that

rigid-unit modes involving rigid rotations of the polyhedra

are not permitted [6]. When an X-site cation is replaced all

polyhedra can be distorted, with large distortions in the two

SiO4 tetrahedra which share edges with the dodecahedron

containing the new cation [6]. Mg–Mg and Ca–Ca third-

nearest-neighbour pairs are energetically unfavourable with

respect to Mg–Ca pairs in all three solid solution

compositions studied.

For Py50Gr50, a number of different arrangements of Mg

and Ca atoms [13,14] were considered. The first of these

(configuration 1) avoided all energetically unfavourable

Mg–Mg and Ca–Ca third-nearest-neighbour cation pairs.

In the remaining configurations the X-site had a range of

different first, second and third-nearest cation neighbours.

In other arrangements of the ions, the unit cell was doubled

in one direction to make it possible to surround one X-site

with two third-nearest cation neighbours of different types.

Configuration 1 was the lowest in energy. Others were

higher in energy by only 1 or 2 kJ molK1, and so

configurations containing ‘unfavourable’ Mg–Mg and

Ca–Ca third-neighbour interactions are nevertheless ener-

getically accessible at high temperatures.

These simulated structures were subsequently used as a

basis for defect energy calculations. In every computational

run, one or more defects were introduced into the crystal, e.g.

for homovalent substitution, one divalent cation at the X-site

of a perfect garnet lattice was replaced by one divalent trace-

element cation. The total energy of the defective system was

then minimised by allowing the surrounding ions to relax to

accommodate the misfit cation(s), using the conventional two-

region approach [15]. The inner region containing the

defect(s) typically contained 400 ions. Final defect energies
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Fig. 2. Calculated solution energies for a range of divalent impurities in

pyrope–grossular solid solutions. The arrows shown indicate that the

solution energies in these solid solutions are substantially lower than would

be expected from a linear interpolation between the end-member values

(dashed line).
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after relaxation, Udef, were obtained at convergence. Although

all simulations were in the static limit, defect energies in this

limit have been shown to be in close agreement with defect

enthalpies at elevated temperatures [16].

For composition Py50Gr50 we examined substitutions for

different local Mg–Ca distributions around the central

X-site in order to study explicitly the effects of local

X-site ordering on the energetics of trace-element incor-

poration. This included all possible nearest-neighbour and

third-neighbour orderings (and combinations thereof), and a

large number of second orderings.

Calculated solution energies Usol of trace-element J2C at

a Ca2C site in Py50Gr50 are related to the equation

JO CCa1:5Mg1:5Al2Si3O12 /JCa0:5Mg1:5Al2Si3O12 CCaO

(1)

Usol Z Udef;fðJÞCUlattðCaOÞKUlattðJOÞ

where Ulatt denotes the lattice energy of the appropriate

binary oxide. Lattice energies for the binary oxides,

obtained with the same inter-ionic potentials used for the

garnet simulations, are listed in Ref. [10]. Analogous

equations are easily obtained for substitution at a Mg2C

site and for other compositions.

The interatomic distances and orientations around a

foreign trace element adjust locally to the most energetically

favourable values, i.e. the new cation optimises its local

environment. There are no rigid unit modes in the garnet

structure and any tilting or rotation of a tetrahedron or

octahedron in the framework to accommodate a trace-

element cation in a resized dodecahedral X-site would

require the same motion of all polyhedra, and the collective

distortion thus involved would be high in energy. An

alternative, lower in energy, is distortion, primarily of the

tetrahedra and octahedra which are the direct neighbours of

the trace element.

Small changes in environment in the solid solution lead to

relatively large changes in Udef, and thus to the values of Usol,

which show some highly unusual features. The solution

energies at some Mg2C and Ca2C sites are comparable! For

example, the calculated solution energy for Ba2C (the largest

ion we consider) at a Mg site in Py4Gr96 is comparable to that

at a Ca site in grossular itself. The smallest ion we have

considered is Ni2C for which the lowest value of Usol is at a

Ca2C site in Py96Gr4 and this value is considerably lower that

those for Ni2C substitution in the end-members pyrope and in

grossular (Fig. 2). This is totally at variance with

Goldschmidt’s first rule and any simple similarity measure

based on ion size alone. In these garnet solid solutions small

trace cations are predicted to substitute for the larger host ion

(Ca2C) and large trace elements for the smaller host ion

(Mg2C).

The key to this highly surprising behaviour in Py50Gr50

appears to be the details of the ordering locally to the X-site. It

is useful to begin with the trace-element Ba2C. The first four
cation neighbours to the X-site influence the solution energy

Usol as for more dilute solutions: it is slightly larger if

surrounded by larger ions. In addition the makeup of the third-

nearest cation neighbour shell has a striking influence on

defect energies and thus on solution energies. If substitution of

the X-site cation removes an unfavourable third-neighbour

interaction by introducing a size mismatch between the ions in

this position, then defect and solution energies are lower, as the

overall compression or extension of the tetrahedron between

the two dodecahedra is reduced. For example, Usol for

replacement of a Mg2C by Ba2C is z20–40 kJ molK1

lower depending on whether the first neighbours are all Mg

or all Ca, with lower values for Ca neighbours. This is not

unexpected since in that case the X-site will be slightly larger.

However, the solution energy varies by as much as

z75 kJ molK1 depending on the nature of the third

neighbour. Overall, the lowest solution energy of Ba2C at an

Mg site is z250 kJ molK1 and at a Ca site z290 kJ molK1. It

is interesting that it is more favourable to remove a

Mg2C–Mg2C interaction than Ca2C–Ca2C, i.e. it is more

favourable to replace Mg2C–Mg2C with Ba2C–Mg2C than to

replace Ca2C–Ca2C with Ba2C–Ca2C. This appears to be due

to the small size of the Mg2C ion which is effectively too small

for the X-site, and ab initio calculations to explore this are

currently in progress.

These are striking results since they suggest the favoured

substitution site for the large Ba2C in Py50Gr50 is not

necessarily a Ca2C site as expected from Goldschmidt’s first

rule [1]. Substitution in Py50Gr50 is possible at a Mg site

depending on the local environment of this site. For

comparison [10], the solution energy of Ba2C in pure

pyrope is 462 kJ molK1 and in grossular 266 kJ molK1.

As shown in Fig. 2, the variation in calculated solution

energy along the pyrope–grossular join is thus non-linear,

with values for Py50Gr50 lower than those for either end

member. In addition, the possibility of substitution at more

than one sublattice will lower the free energy of substitution
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because of the larger configurational entropy change

accompanying the disordering of two sublattices rather

than only one. All these factors result in a predicted higher

solubility of Ba2C (and Sr2C) in Py50Gy50 than that

expected from an interpolation between the end-member

compounds.

A similar set of arguments can be used to rationalise the

defect energies for Ni2C remembering that Ni2C is only

slightly smaller than Mg2C. Introducing a Ni2C at an X-site

where both third neighbours are Ca2C is favoured relative to

a site with two Mg2C third neighbours due to the removal of

the effective repulsion between an ion (Ni2C) and a third

neighbour (Mg2C) similar in size. This is sufficiently

important for the lowest solution energy for Ni2C to be for

replacement of a Ca2C rather than substitution of a Mg2C.

Once more this is not in line with ion size considerations.

Fig. 2 also shows results for Fe2C and Mn2C in Py50Gy50.

These lie between Mg2Cand Ca2C in size but are closer to

Mg2C. Like Ni2C, these ions are predicted to substitute at a

Ca2C site which possesses two Ca2C third neighbours and

solution energies are lower than in either of the end-member

compounds. This proposed link between dopant distribution

and local Ca–Mg ordering should be testable using EXAFS.

Fig. 3 plots the calculated solution energy as a function

of Shannon ionic radius [17] and serves as a useful summary

of our overall conclusions. Ni2C, Fe2C, Mn2C, Sr2C and

Ba2C all appear more soluble in Py50Gy50 than in either the

pyrope or the grossular end member. A large ion may

substitute preferentially for a Mg2C (with two Mg2C third

neighbours) rather than a Ca2C and a small ion may

substitute preferentially for a Ca2C (with two Ca2C third

neighbours) rather than for a Mg2C. Thus, a simple

similarity index in terms of an optimum cation radius

transferable from system to system, as suggested by

Goldschmidt, breaks down for the garnet solid solution.

The minimum in the curve for Py50Gy50 in Fig. 3 lies

between Ca2C and Mg2C. An explanation is also provided

for the anomalous trace-element partitioning behaviour of

the solid solution [7] since the net result from the
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Fig. 3. Solution energies as a function of ionic radius for pyrope, grossular

and Py50Gr50.
partitioning perspective is a solution energy vs. ionic radius

curve with a lower curvature than for either end member,

consistent with experiment.

We have only examined heterovalent substituents briefly.

For trivalent trace cations J3C, a LiC cation was placed

simultaneously on the adjacent (nearest neighbour) X-site

[10] to maintain charge-balance. Analogous equations can

be constructed for the partitioning process of trivalent trace

elements (Eqs. 4 and 7 in Ref. [10]), assuming that the local

environments of J3C and LiC are equivalent to their

environments in the corresponding solid binary oxides (J2O3

and Li2O). Since the nature of the charge-balancing

substitution is an additional factor that influences the

resulting energies, there are even more local configurations

to examine. Replacement of a Mg by a La could be charge-

balanced by the insertion of a Li in place of another Mg or

Ca in Py50Gr50, while in pure pyrope Li can only replace

Mg. Results show the most energy-efficient charge-

balancing mechanism involves the replacement of another

Ca with Li, and that overall the solution energy variation is

similar to that for the divalent elements, with solution

energies lower in the mixed garnet than in either end

member.

Hence, although structurally the Ca and Mg sites clearly

remain distinct in the solid solution, energetically they may

appear equivalent depending on the local environment,

which we have shown to be dominated by the four nearest

X-sites. EXAFS data [18] on the local relaxation around

Yb3C in pure Py and Gr confirm the structural relaxation

around trace elements at the X-site is extremely localised.
3. Other solid solutions

To what extent are the same trends evident in other

garnet solid solutions? To address this question we have

repeated the calculations for other garnet solid solutions,

involving combinations of pyrope or grossular with

almandine (Fe3Al2Si3O12) or spessartine (Mn3Al2Si3O12)

as end members. The eight-fold coordinated ionic radii [17]

of Mg2C, Fe2C, Mn2C and Ca2C are 0.89, 0.92, 0.96 and

1.12 Å, respectively, so that all these solutions involve

cations with a smaller size mismatch than the pyrope–

grossular solid solution itself.

For each 50:50 composition we calculated solution

energies for five trace elements (Ni2C, Sr2C and Ba2C

and the two members of the set Mg2C, Ca2C, Fe2C and

Mn2C that were not major elements in each particular case).

For grossular–almandine, where the size-mismatch between

Ca2C and Fe2C is almost as large as in pyrope–grossular,

the calculated solution energies show similar trends as for

pyrope–grossular itself. The (smaller) Ni2C, Mg2C and

Mn2C preferentially substitute for Ca2C, the (larger) Ba2C

and Sr2C for Fe2C. In all cases substitution is at an X-site

where the third neighbours are the same species as at the

substitution site. Substitution removes the unfavourable
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third-neighbour interaction between ions of the same size,

e.g. Ba2C substitutes at a Fe2C site with two Fe2C as third

neighbours, replacing the Fe2C–Fe2C interaction with a

Ba2C–Fe2C interaction.

In the pyrope–almandine and pyrope–spessartine solid

solutions, where the size-mismatch is smaller, the lowest

solution energies of all five trace elements were for

substitution at a Mg2C site. In these two cases, Ni2C is now

behaving in line with Goldschmidt’s rule, while the larger ions

(Ca2C, Sr2C, Ba2C) are still deviating from this rule in their

preference for the smaller cation Mg2C. In these examples, we

are again seeing the avoidance of similarly sized cation

neighbours. The larger cations always substitute such that a

Mg2C–Mg2C first–third neighbour interaction is removed.

In contrast, in the grossular–spessartine solid solution all

the trace elements are predicted to substitute for Ca2C. The

larger cations (Sr2C, Ba2C) are now substituting in line with

Goldschmidt’s rule and the Ca2C site with the lowest solution

energy has one Mn2C and one Ca2C third-nearest neighbour;

the third-nearest neighbour interactions appear less important

here. The smaller cations are deviating from the rule in their

preference for the larger cation Ca2C. They substitute at an

X-site with two Ca2C as third-nearest neighbours removing

the Ca2C–Ca2C interaction.

It is interesting to consider the different cases when

Goldschmidt’s rule takes precedence over the removal of

unfavourable third-neighbour interactions. This is clearly

most important when the size-mismatch between the major

cations in the solid solution is largest (grossular–pyrope and

grossular–almandine). But the smallest size mismatch is for

the pyrope–almandine solution where all the cations except

Ni2C disobey Goldschmidt’s rule and the removal of the third-

neighbour interaction is dominant. The size mismatch is

greater in grossular–spessartine but only the smaller cations

show anti-Goldschmidt behaviour. It is clear that the actual
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mismatch between the major cations present in the solid solution. All

cations are more soluble than an interpolation between the end members

would indicate.
sizes of the cations as well as their size-mismatch determine

the site preference for the trace element.

The variations in calculated solution energies along the

joins are all non-linear and the 50:50 solution energies are

lower than for either end member; all 2C trace-element

cations are more soluble in the solid solution than in the end

members. This deviation from a linear trend in general

increases with size-mismatch as is clear from Fig. 4. The

curves in Fig. 5 show the variation in the calculated trace-

element solution energy for each solid solution. Note that

the minimum in each curve occurs at an ionic radius

intermediate between that of the major cations.
4. Conclusions

Under certain circumstances two ions, conventionally

taken to be rather dissimilar, can appear to be extremely

similar. Any similarity measure would need to take account

of more than the size and charge of an individual ion. Our

example shows the extra complexity of extending similarity

ideas to solids, since they illustrate well the importance of

the local structural environment of each ion and the

complexities of the defect chemistry of the systems of

interest. It will be of interest in the future to consider

similarity measures for solids similar to those used in the

Carbó molecular similarity index, involving integrals of

functions of the electron density. There remains much to do

in extending similarity concepts to the solid state and

ultimately similarity measures that relate to condensed

phases will need to take account of free rather than static

energies.
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