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Abstract

Thermodynamic mixing properties and subsolidus phase relations of the rhombohedral carbonate system, (1 � x) Æ
CaCO3 � x Æ MgCO3, were modelled in the temperature range of 623–2023 K with static structure energy calculations based on well-
parameterised empirical interatomic potentials. Relaxed static structure energies of a large set of randomly varied structures in a
4 · 4 · 1 supercell of R�3c calcite (a = 19.952 Å, c = 17.061 Å) were calculated with the General Utility Lattice Program (GULP). These
energies were cluster expanded in a basis set of 12 pair-wise effective interactions. Temperature-dependent enthalpies of mixing were
calculated by the Monte Carlo method. Free energies of mixing were obtained by thermodynamic integration of the Monte Carlo results.
The calculated phase diagram is in good agreement with experimental phase boundaries.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

The rhombohedral calcite–magnesite binary, (1�x) Æ
CaCO1�x Æ MgCO3, is one of the most well studied solid
solutions in mineralogy. The experimental study of Gold-
smith and Heard (1961) identified the essential features of
subsolidus phase relations: two asymmetric miscibility gaps
separated by a narrow stability field for the dolomite-struc-
ture phase. Calorimetric studies by Navrotsky and Capobi-
anco (1987), Chai et al. (1995), Chai and Navrotsky (1996),
and Navrotsky et al. (1999) showed that the enthalpy of
formation of ordered dolomite is negative, relative to a
mechanical mixture of calcite and magnesite, but the for-
mation enthalpy for a disordered solid solution of the same
composition is positive; consistent with theoretical studies
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of Burton and Kikuchi (1984) and Burton (1987). The mag-
nitude of the enthalpy of disorder is uncertain owing to dif-
ferent calorimetric results: 1.23 ± 0.32 kJ/mol (Navrotsky
and Capobianco, 1987) for a heat-treated natural sample;
and 16.5 ± 2.5 kJ/mol (Navrotsky et al., 1999) for a syn-
thetic sample. Burton and Van de Walle (2003) published
an extensive data set of formation energies for various or-
dered supercells, that were calculated with the Vienna
ab initio simulation package, VASP (Kresse and Hafner,
1993; Kresse, 1994; Kresse and Furthmüller, 1996). The
VASP calculations also yield a negative formation energy
for dolomite and first principles phase diagram calculations
based on the VASP formation energies yield an enthalpy of
mixing of �6 kJ/mol for the random solid solution at
x = 0.5. Various theoretical approaches including the
Bragg–Willams model (Navrotsky, 1987; Davidson,
1994), different approximations of the cluster variation
method (Burton and Kikuchi, 1984; Burton, 1987) and
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Fig. 1. Correlation between the excess energies of a selected set of ordered
structures calculated with parameterized force field (Austen et al., 2005)
and VASP (Burton and Van de Walle, 2003) methods. The dashed line
corresponds to an ideal correlation.
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Monte Carlo simulations (Burton and Van de Walle, 2003;
Purton et al., 2006) achieve qualitative or semi-quantitative
agreement between predicted and experimentally deter-
mined phase relations. However, none of these studies pro-
duced a mathematically simple activity–composition model
consistent with experimental phase boundaries. Such a
model is often requested for petrological and environmen-
tal studies which attempt phase equilibrium calculations in
chemically complex systems. Here we derive activity–com-
position relations for the temperature range of 623–1323 K
with static structure energy (SSE) calculations based on the
well parameterised set of empirical interatomic potentials of
Rohl et al. (2003) and Austen et al. (2005). Calculations were
performed in the following sequence:

• Testing the empirical interatomic potentials.
• SSE calculations on a large set of randomly varied

structures.
• Fitting a cluster expansion, CE, to the SSE, i.e. finding a

mathematically simple equation that fits the excess SSE.
• Ground state analysis, i.e. finding the structures with

lowest SSE.
• Monte Carlo simulations of temperature-dependent

properties.
• Thermodynamic integration of the Monte Carlo results

to calculate free energies of mixing.
• Fit a polynomial to the Monte Carlo free energies and

calculate activity–composition relations.

This sequence of calculations yields activity–composi-
tion relations that agree almost quantitatively with the
experimentally determined phase relations.

2. Empirical potentials

Rohl et al. (2003) and Austen et al. (2005) developed a
set of interatomic potentials for carbonate minerals, which
exhibit remarkable accuracy in reproducing the structures
of calcite, dolomite, magnesite, and aragonite as well as
available elastic stiffness data on calcite and magnesite.
However, a good description of the structure and elasticity
data does not guarantee accurate predictions of energy dif-
ferences between differently ordered supercells. To test the
force-field-based SSEs, we compare them to DFT–SSE for
the same set of ordered structures, that Burton and Van de
Walle (2003) considered. In Fig. 1 we plot the FF–SSE vs.
VASP–SSE. The FF–SSE calculations were done using the
program GULP (Gale, 1997; Gale and Rohl, 2003). The
plot includes all structures described by Burton and Van
de Walle (2003) except for the huntite, Ca3Mg(CO3)4 struc-
ture, for which FF–SSE = 28.72 kJ/mol and DFT–
SSE = 44.73 kJ/mol. This large difference in excess energy
is related to the difference between CO3-group orientations
in huntite vs. that in calcite and magnesite. The good cor-
relation between the FF- and DFT–SSE sets suggests that
the Austen et al. (2005) potentials essentially reproduce the
energetics of cation mixing/ordering.
3. Supercell SSE calculations

We use a 4 · 4 · 1 supercell of R�3c calcite (a = 19.952 Å,
c = 17.061 Å) that contains 96 exchangeable (Ca, Mg)
atoms. We start in the ordered dolomite structure, in which
Ca and Mg occupy alternate layers perpendicular to the c

axis, and generate several structures, with compositions be-
tween calcite and magnesite, by replacing appropriate
numbers of Ca or Mg atoms with Mg and Ca atoms,
respectively. Cation distributions in structures with compo-
sitions x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and 0.875
were varied by randomly swapping selected atoms pairs.
Swapping was repeated 100 times at each composition
and fully relaxed static FF–SSEs were calculated for each
structure. Excess energies of these 700 structures are plot-
ted in Fig. 2. The excess property is defined relative to
the weighted sum of the energies of pure calcite and mag-
nesite. This plot outlines only the general shape and mag-
nitude of the enthalpy of mixing. Calculating enthalpy
isotherms requires additional effort.
4. The cluster expansion

Constructing isotherms requires Boltzmann averaging
over many configurations at each composition in a suffi-
ciently large supercell. Accurate estimates of the average
energies can be made with a Monte Carlo algorithm, but
computational efficiency requires more rapid SSE calcula-
tions than a fully atomistic force field permits. Therefore,
the cluster expansion (CE) method (Connolly and
Williams, 1983; Sanchez et al., 1984) is used to speed up
calculations. The CE is compact set of effective interac-
tions, which in its simplest form (Dove, 1999; Becker
et al., 2000; Vinograd, 2001) maps the excess energy, Ei,
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Fig. 2. Excess static structure energies for 700 structures that were
calculated with the interatomic potentials of Austen et al., 2005. The
dashed line connects minimum energy structures at each composition;
calcite, dolomite, and magnesite are the only predicted ground states (solid
line).
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Fig. 3. Correlations between the energies of 700 structures calculated with
GULP and those calculated with the cluster expansion. The average
absolute deviation of the fitted energies from the FF–SS energies is 3.56
percent.
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Fig. 4. The cluster expansion of pair-wise effective interactions for the
calcite–magnesite system as functions of interatomic separation. The
distances have been calculated for a disordered structure with dolomite
composition (a = 19.407 Å, c = 15.795 Å).
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of structure, i, onto a set of effective pair interactions, J(n),
that are coupled to the frequencies of AB pairs, f ðnÞAB in
structure i;

Ei ¼ 1=2
X

n

f ðnÞABJ ðnÞ þ E0; ð1Þ

where n is the order of the near-neighbor pair, which
increases with interneighbor separation, and E0 is a config-
uration independent strain energy. In solid solutions with
size mismatch E0 represents the global strain that is caused
by substituting smaller ions (Mg) into larger-ion-rich (Ca-
rich) crystals, or larger ions (Ca) in smaller-ion-rich (Mg-
rich) crystals. Ferreira et al. (1988) demonstrated that this
strain energy is maximized at an intermediate composition,
typically not x = 0.5, such that it varies superquadradically
with composition. We approximate this variation with a
two-parameter polynomial:

E0 ¼ x1x2ðx1A12 þ x2A21Þ: ð2Þ

For each of the 700 structures we calculated frequencies of
AB-type (Mg–Ca) pairs at 12 distances ranging from 3.8 to
10.4 Å. The frequencies and the energies form an overde-
termined system of 700 equations, which were solved for
J(n), A12, and A21 using a least-squares minimization.

Fig. 3 is a plot of excess energies for the 700 structures
that were calculated with the CE vs. those calculated with
GULP. Each J(n) corresponds to the energy of the exchange
reaction Ca–Ca + Mg–Mg = 2Ca–Mg at the nth neighbor
distance. Negative Js indicate an ordering tendency (Ca–
Mg pairs favored) and positive values indicate a clustering
tendency (Ca–Ca and Mg–Mg pairs favored). The best fit
for E0 was A12 = 49.128 and A21 = 36.542 kJ/mol. When
only pair, or other even-order (pair=2-, 4-, 6-, . . . , 2n-body)
interactions are used, calculated phase diagrams have mir-
ror symmetry about x = 0.5; thus, the E0 term is the only
source of phase diagram asymmetry in this model. The
inequality A12 > A21 reflects the higher energy that is re-
quired to substitute larger Ca2+ ions into a Mg-rich crystal
relative to the smaller energy required to substitute a Mg2+

ion into a Ca-rich crystal. This is a well understood phe-
nomenon related to the more rapid increase in the inter-
atomic energy on contraction than on extension. The Js
are plotted in Fig. 4 as functions of interatomic separation
and listed in Table 1. The interesting feature of Fig. 4 is the
large negative value of J(4). This result has been interpreted
as reflecting the high stiffness of the structure along the 4th
neighbor pair, caused by the presence of rigid CO3 group



Table 1
Pair-wise effective interactions and their type: 1-interlayer, 2-intralayer

n Distance (Å) Type Jn (kJ/mol)

1 3.844 1 �10.200
2 4.852 2 8.563
3 5.964 2 0.931
4 6.190 1 �3.863
5 7.688 2 �0.780
6 7.865 1 1.991
7 7.897 1 �0.982
8 8.403 2 �1.655
9 9.091 2 �0.826

10 9.269 1 �0.111
11 9.703 2 �0.305
12 10.437 1 0.610
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between the exchangeable atoms (Vinograd et al., 2006a).
A similar phenomenon is observed in pyrope–grossular
garnets: the strongest Ca–Mg ordering interactions are
J(3) and J(4b), which are distinguished by the presence of
SiO4 and AlO6 groups, respectively, between the exchange-
able cations (Bosenick et al., 2000; Vinograd and Sluiter,
2006). Vinograd and Sluiter (2006) argued that the local
stiffness of the structure makes it more energetically unfa-
vorable for long Ca–Ca and short Mg–Mg pairs to accom-
modate to the average interatomic distance at an
intermediate composition. Thus, the dolomite structure
maximizes the number of Ca–Mg pairs at the first- and
fourth-neighbour distances and minimizes the numbers of
nearest neighbor Ca–Ca and Mg–Mg pairs. The Burton
and Van de Walle (2003) CE predicts opposite character
for J(4), such that it favors Ca–Ca and Mg–Mg 4th neigh-
bor pairs. The essential differences between the CE derived
here and the Burton and Van de Walle (2003) CE are that
the latter: (1) includes some three-body effective interac-
tions, which determine phase diagram asymmetry; (2) does
not include an E0 term; (3) uses a cross validation score sta-
tistical test to chose which clusters to include in the CE,
and which VASP structure energies to use for fitting the
CE. The cross validation score test is more physically and
statistically rigorous than least squares in two ways: (1)
the CE is optimized with respect to formation-energy pre-

diction rather than minimization of residuals, as in least
squares; (2) the number and order (2-, 3-, 4body, . . .) of
effective interactions in the CE is optimized rather than
arbitrarily truncated.

The priority in this study is to efficiently calculate activ-
ity–composition relations. This requires simulations for
both stable and metastable solid solutions, and therefore
the suppression of phase separation during simulation
runs. To achieve this we adopted a less rigorous CE ap-
proach, in which three-body terms are excluded, and the
asymmetry of the SSE set is fit with the composition depen-
dent E0 term, which also absorbs most of the repulsive
energy that drives phase separation. Because the E0 contri-
bution to the free energy is constant at each composition,
and the canonical Monte Carlo simulations are performed
at constant composition, this approach suppresses phase
separation, and allows calculations of the enthalpies and
free energies of solid solutions at all compositions. Activi-
ties are determined by fitting to the free energies of mixing,
and miscibility gaps are calculated from the free energy
curvature. Our choice of effective pair interactions includes
the first 12 near neighbors (3.8–10.4 Å) which truncates be-
low 1/2 the 4 · 4 · 1 supercell dimension along any pair-
vector. Because the best CE is not necessarily the one that
minimizes residuals, the correction algorithm of Vinograd
et al. (2006b) was used to improve the predictive quality
of the CE (see below). This procedure is less physically
and statistically rigorous than the cross validation score ap-
proach (Burton and Van de Walle, 2003), but predicted
phase boundaries are in much better agreement with exper-
iment, and activity–composition relations are easily
obtained.

5. Ground state analysis

Fig. 3 shows that Eq. (1) yields a good fit to the 700 ran-
domly generated configurations. However, this does not
ensure that the CE correctly predicts ground states. Low-
energy structures in the 4 · 4 · 1 supercell were predicted
with Monte Carlo annealing simulations, with the feedback
algorithm of Vinograd et al. (2006b): (1) the temperature is
set at a high value, then slowly decreased until exchange-
able atoms freeze into the state of lowest energy; (2) the
GULP–SSE for this structure is calculated, and often this
energy differs significantly from the CE-calculated value;
(3) the CE is updated with the new structure included
and steps (1) and (2) are repeated. The quality of the CE
improves automatically. When the energy difference be-
tween CE- and GULP-calculated energies is large, the cor-
relation coefficient is significantly reduced and the Js and
Aij change to improve the fit. The CE-predicted minima,
(including ground states at x = 0, 1/2, and 1.0) are plotted
together with the energies of randomly selected structures
in Fig. 2. Consistent with Burton and Van de Walle
(2003), calcite, dolomite, calcite + dolomite and dolo-
mite + magnesite are the only stable ground state assem-
blages. The final CE pair interactions are listed in Table
1. Final values for the E0 parameters are A12 = 46.447 kJ/
mol and A21 = 34.151 kJ/mol; similar to those calculated
from the set of randomly selected structures,
A12 = 49.128 kJ/mol and A21 = 36.542 kJ/mol.

6. Monte Carlo simulations

Rapid convergence of the CE as a function of interatom-
ic separation (Fig. 4) suggests that Eq. (1) is applicable for
calculations of excess energies in a much larger supercell.
Sufficient supercell size for thermodynamically meaningful
results can be estimated by performing Monte Carlo simu-
lations in supercells of increasing size. The thermodynamic
limit is achieved when the predicted properties such as the
temperatures of order/disorder transitions converge as
functions of supercell size. In Fig. 5 we compare the results



800 1200 1600 2000

Temperature, K

-4

-2

0

2

E
nt

ha
lp

y 
of

 d
is

or
de

r,
 k

J/
m

ol

Fig. 5. Enthalpy of disorder at the dolomite composition calculated with
the Monte Carlo method. White and shaded symbols correspond to the
results obtained with supercells of different size.
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Fig. 6. Enthalpy of mixing isotherms calculated with the Monte Carlo
method.
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for 12 · 12 · 3 and 16 · 16 · 4 supercells, which contain
2592 and 6144 exchangeable atoms, respectively. In the
both cases the order/disorder transition for dolomite was
located between 1323 and 1348 K, which demonstrates that
the 12 · 12 · 3 supercell is sufficiently large.

At each step of the Monte Carlo run a new configura-
tion is created by swapping randomly chosen pairs of cat-
ions. The acceptance probability, n, for a candidate
configuration depends on temperature, and the energy dif-
ference, DE, between the two configurations:

n ¼1; DE < 0

n ¼ expð�DE=ðkT ÞÞ; DE > 0 ð3Þ
This acceptance rule converges the set of configurations
to the Boltzmann distribution (Metropolis et al., 1953).
Canonical Monte Carlo simulations were performed on a
grid of 48 compositions between calcite and dolomite and
15 temperatures between 623 and 2023 K. Six billion Mon-
te Carlo steps were used to achieve equilibrium and anoth-
er six billion steps were used to calculate averages. (The five
lowest-energy isotherms were simulated with 40 billion MC
steps). These simulations were performed with a constant
E0 = 0 term; a procedure that necessarily yields the enthal-
py of mixing isotherms with mirror symmetry about
x = 0.5. Composition-dependent E0 values were subse-
quently added to the calculated isotherms to get the total
asymmetric enthalpy of mixing (Fig. 6).
7. Thermodynamic integration

Myers et al. (1998) and Dove (2001) demonstrated that
the configurational free energy can be calculated from
Monte Carlo averaged excess energies via k-integration:
F ¼ F 0 þ
Z k

0

Ekdk; ð4Þ

where F0 is the free energy of mixing of the solid solution
with zero ordering energy, which can be calculated
theoretically:

F 0 ¼ RT ðxMg lnðxMgÞ þ xCa lnðxCaÞÞ; ð5Þ

where Ek is the average energy of the system in a state with
a non-equilibrium intermediate degree of cation disorder,
k; 0 < k < 1. k should not be mixed with the equilibrium or-
der parameter, Q(T), that is a function of temperature. The
state k = 1 corresponds to an equilibrated system at a given
temperature, while the states with k < 1 correspond to an
artificial disorder that is introduced on top of the equilibri-
um disorder at the same temperature. This artificial disor-
der is simulated by scaling the Js according to the equation
J k

n=kJn. In our simulations, k was gradually increased from
0 to 1 with a step size of 0.04. The integral describes the
change in free energy of a system at a fixed temperature
from the state with zero ordering energy (k = 0) to its equi-
librium state determined with the nominal values of the Js
(k = 1). Configurational entropy isotherms were calculated
with;

S ¼ ðF � EÞ=T ð6Þ

and are plotted in Fig. 7. The remarkable features of this
plot are the minima at 0.22, 0.28, 0.32, 0.39, 0.5 and the
corresponding minima at Mg-rich compositions. The sharp
minimum at x = 0.5 is caused by dolomite-type ordering,
and the minima at x = 0.22, 0.28, and0.32 correspond to
dolomite-related structures that have different stacking
sequences for Ca- and Mg-rich layers. The Monte Carlo
simulated low-temperature cation distribution at x = 0.28
and x = 0.32 (Fig. 8a and b) are consistent with �-dolomite
and d-dolomite (Wenk et al., 1991), respectively, which are
layer structures with layer-sequences Mg–Ca–Ca–Ca–� � � and
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thermodynamic integration.

Fig. 8. Monte Carlo simulated cation distributions (Ca-white, Mg-black)
at x = 0.28 (a), x = 0.32 (b), x = 0.39 (c), and x = 0.40 (d). T = 623 K.
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Mg–Ca–Ca–. . . perpendicular to chex. The Mg–Ca–Ca–� � �
sequence is also observed locally at x = 0.28, because the
supercell with 18 layers in the z direction is incommensu-
rate with the four-layer sequence. This also explains why
the energy minimum of �-dolomite is shifted from 0.25 to
0.28. Due to the similar incommensurate relationship, the
minimum at x = 0.22 corresponds to a structure based on
five-layer sequence with the ideal x = 0.2 composition.
Metastable formation of �-dolomite is consistent with the
first principles calculations of Burton and Van de Walle
(2003), which suggested that �-dolomite has the lowest for-
mation-energy at x = 1/4 and x = 3/4. The minimum at
x = 0.39 corresponds to a structure formed by nearly regu-
larly alternating ordered and antiordered dolomite-type
domains (Fig. 8c). The anti-phase boundaries are formed
predominanly by Ca atoms which are in excess to the
50:50 ratio. The modulation vector is parallel to the bhex

axis. At a slightly more Mg-rich composition, x = 0.4,
the modulation disappears and the anti-phase boundaries
become curved (Fig. 8d).

8. The phase diagram

Free energies of mixing are plotted in Fig. 9. They were
converted to a phase diagram by comparing the free ener-
gy at each composition xi along an isotherm to the free
energy of a mechanical mixture xj + xk. If there is a pair
of compositions xj + xk, that has lower free energy, the
solution with composition xi is unstable or metastable
(white in Fig. 10) The two miscibility gaps separated by
the dolomite field are easily outlined. The calculated dia-
gram is compared to experimental data from Goldsmith
(1983), and agreement is nearly quantitative. The differ-
ence is that in the calculated diagram the miscibility gap
on the Ca-rich side is slightly shifted to more Ca-rich
compositions.



Fig. 10. The calcite–magnesite phase diagram. Gray and white areas
indicate stable and unstable (or metastable) states, respectively; predicted
by Monte Carlo simulations. Symbols and solid lines are experimental
data from Goldsmith (1983). Regions of alternating gray and white bands
above the solidus lines are interpreted as being caused by statistical noise.

Table 2
Coefficients of the Redlich–Kister polynomial (Ah

i in kJ/mol, As
i in

J/K/mol)

i Ah
i As

i

1 11.8948 �3.2801
2 6.0778 �0.0866
3 5.6420 �8.5177
4 0.5705 0.5624
5 10.5240 12.4392
6 �0.6759 �0.6519
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Fig. 9. Free energy of mixing isotherms calculated by thermodynamic
integration (solid lines) and fit to this energies using Eq. (7) (dashed lines).
The fit applies only to the temperature range 623–1323 K.
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9. Activity–composition relations

Redlich–Kister polynomials (Redlich and Kister, 1948)
are convenient for describing excess free energies of mixing,
but these equations fail in systems with strong ordering at
intermediate compositions. The rapid decrease in free ener-
gy from dolomite-ordering at x = 0.5 can be parameterized
with negatively shaped Gaussians. The combination of
Redlich–Kister polynomials and Gaussians is very effective
for fitting free energies of mixing in systems with intense
ordering at intermediate compositions (e.g. Vinograd,
2002; Vinograd and Sluiter, 2006). The total excess free
energy of mixing can be described with the equation;
Gexcess ¼ x1x2

Xn

i¼1

Aiðx1 � x2Þði�1Þ þ x1x2

Xm

j¼1

Bj

� expðCjðx1 � xjÞ2Þ; ð7Þ

where Ai, Bj, and Cj are further expanded as functions of
temperature Ai ¼ Ah

i � TAs
i , Bj ¼ Bh

j � TBs
j, Cj ¼ Ch

j � TCs
j;

x1, and x2 are the mole fractions of end-members and xj

is the mole fraction, of ordered compound j. Fig. 9 illus-
trates the accuracy of Eq. (7)-fit to Monte Carlo simulated
free energies of mixing. The Ai, Bj, and Cj coefficients are
listed in Tables 2 and 3. The fit has been performed only
in the temperature range of 623–1323 K. Fig. 11 is a plot
of activity–composition relations, which were derived from
fitted free energies of mixing using the Equations

RT ln ci ¼ Gexcess þ ð1� xiÞ
dðGexcessÞ

dxi
ð8Þ

and

ai ¼ xici; ð9Þ

where ci is the activity coefficient.
10. Discussion and conclusions

Good agreement between predicted and experimentally
determined phase relations indicates that the simulations
reproduce the main thermodynamic effects of mixing and
cation order/disorder in the rhombohedral carbonates.
The main difference between experiment and calculation
is that the Ca-rich calcite + dolomite field is slightly shifted
to more Ca-rich compositions. This might be the result of
performing the simulations in the static limit. Burton and
van de Walle (2006) demonstrated that including excess
vibrational entropy in a first principles phase diagram cal-
culation for the system NaCl–KCl leads to a dramatic
improvement in the calculated consolute temperature.
However, the Burton and Van de Walle (2003) calcula-
tions, which ignored excess vibrational entropy, yielded a
critical temperature for cation order-disorder that is about
1.2 times the experimental value, which suggests a modest
excess vibrational entropy contribution in this system.
Vinograd and Sluiter (2006) have shown that excess vibra-
tional entropy plays a significant role in the subsolidus
phase relations of pyrope–grossular, Mg3Al2Si3O12–
Ca3Al2Si3O12, garnets. It has been argued that the positive
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Table 3
Coefficients of the gaussians (Bh

j and Ch
j in kJ/mol, Bs

j and Cs
j in J/K/mol)

j x Bh
j Bs

j Ch
j Cs

j

1 0.5 �16.7374 �10.6106 10.1136 38.8
2 0.5 �5.9028 �4.3690 8.5369 205.1
3 0.5 �3.7182 �2.5465 �447.3994 1276.8
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excess entropy in the pyrope–grossular system appears as a
consequence of the size-mismatch between end-members.
Their results also suggested that the maximum of the excess
effect is shifted in the direction of the end-member with the
largest volume. If the same trend holds for carbonates, the
excess entropy would make Ca-rich compositions more sta-
ble, and this would improve agreement between calcula-
tions and experiment. This assumption should be tested
in future simulation studies.

The predicted excess enthalpy for ordered dolomite,
�4.0 kJ/mol, is in good agreement with the experimental
value, �5.74 ± 0.25 kJ/mol (Navrotsky and Capobianco,
1987) and with the ab initio VASP result, �3.66 kJ/mol,
(Burton and Van de Walle, 2003). The predicted equilibri-
um excess enthalpy of dolomite, �0.5 kJ/mol at 1523 K
(Fig. 6), is in reasonable agreement with the value of
1.23 ± 0.32 kJ/mol measured by Navrotsky and Capobi-
anco (1987) for a sample of Eugui dolomite that was
heat-treated at 1523 K. The value of 16.5 ± 2.5 kJ/mol
measured by Navrotsky et al. (1999) for a synthetic disor-
dered dolomite cannot be explained by the present model.
According to our simulations (Fig. 2), a random Ca/Mg
configuration contributes only 6–8 kJ/mol to the excess
enthalpy of dolomite. The present model also contradicts
calorimetric measurements of Chai et al. (1995), which sug-
gested that the enthalpies of formation of diagenetic Ca-
rich dolomites are significantly higher than those of iso-
chemical calcite + magnesite mechanical mixtures. Note
that our model only includes the effects of the cation or-
der-disorder, and ignores orientational order-disorder of
the CO3 groups. The CO3-group orientational order-disor-
der (R�3c/ R�3m) transition in calcite occurs at about 1260 K
(Dove and Powell, 1989; Dove et al., 2005). It is possible
that some CO3-group disordering could be quenched dur-
ing the heat treatments of natural dolomite samples. This
effect might explain the difference of 1.72 kJ/mol between
the excess energy of the heat-treated dolomite measured
by Navrotsky and Capobianco (1987) and our value of
�0.5 kJ/mol at 1523 K. The very large value of the excess
energy of 16.5 ± 2.5 kJ/mol measured by Navrotsky et al.
(1999) for a synthetic dolomite might be caused by orienta-
tional disorder. The low temperature of the synthesis
(70 �C) might not be sufficient for CO3 groups to reorder
themselves into to the lowest energy configuration. The
same argument might apply to the high excess enthalpies
of diagenetic Ca-rich dolomites measured by Chai et al.
(1995). Density functional calculations of Burton and
Van de Walle (2003) have shown the very high energy of
formation for huntite-structure Ca3Mg(CO3)4 (a structure,
in which CO3-group orientation differs from that of calcite
and dolomite). This structure was derived from the natural-
ly occurring Mg3Ca(CO3)4 huntite (Dollase and Reeder,
1986) by substituting Ca for Mg and Mg for Ca. The very
high formation energy of this structure (44.73 kJ/mol
(VASP), 28.72 kJ/mol (GULP)) suggests that even a small
concentration of huntite-like domains could significantly
increase enthalpies of formation in Ca-rich dolomites.
Transmission electron microscopy studies of Ca-rich dol-
omites in pre-Holocene rocks often reveal modulation with
a lamellar spacing of 100–200 Å (Wenk et al., 1983). Crys-
tal structure refinements of two such samples within the R�3
space group of dolomite have shown poor fits and indicat-
ed that one of the components of the modulated structure
should have mixed occupancy in cation layers (Reeder,
2000). Huntite, Ca3Mg(CO3)4, having a mixed (ordered)
arrangement of Ca and Mg in dolomite-like cation layers
satisfies this criterion. An increase in the fraction of hun-
tite-like domains within the modulated structure could ex-
plain the correlation of the excess enthalpies of Ca-rich
dolomites with mole fraction of calcite (Chai et al., 1995).
This hypothesis should be tested in future simulation stud-
ies, and by electron microscopy studies of natural samples.
However, the success of the present model in reproducing
the phase diagram without accounting for phases with
CO3-group orientational disorder suggests that the miss-
orientation of the CO3-groups plays a minor role in deter-
mining equilibrium subsolidus phase relations. The very
high formation energy of these structural defects is consis-
tent with the observation of Reeder and Nakajima (1982)
that thermal disorder of dolomite produces twin domains
boundaries (TDB) rather than anti-phase boundaries
(APB). The difference is that an APB implies misaligned
CO3-groups as well as misaligned cation layers, whereas
the TDB only has a cation mismatch, without CO3-group
orientational mismatch.
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We show that a well-parameterised set of empirical
interatomic potentials is sufficient to predict realistic activ-
ity–composition relations for the calcite–magnesite system.
These simulation tools permit investigation of the system at
relatively low temperatures and in highly ordered states,
which are not easily accessible by experiment.
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