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Free energy of formation of defects in polar solids
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A more exact method than hitherto available, based on lattice statics and
quasi-harmonic lattice dynamics, is presented for the direct minimisation of
the free energies of periodic solids with very large unit cells. This is achieved
via the calculation of analytic derivatives of the vibrational frequencies with
respect to all external and internal variables. The method, together with
large defective supercells, is used to calculate the free energies of defects in
MgO as a function of temperature. A major advantage of the supercell
approach is that constant-volume and constant-pressure quantities are cal-
culated independently. This allows a critical appraisal of the common
approximations used for many years : (i) to convert constant-volume defect
parameters to constant-pressure and (ii) to justify the use of static calcu-
lations at constant volume in the interpretation of experimental data
obtained at constant pressure and at high temperatures. Defect enthalpies
show only a small variation with temperature and di†er by ca. 2% from the
internal energy change in the static limit. An assessment is also made of the
commonly used ZSISA approximation, in which the free energy at each tem-
perature is minimised with respect to external strains only, simultaneously
determining the internal strains by minimising the static lattice energy.

The modelling of complex solids, such as crystals with large unit cells, crystals with
defects, and surfaces, presents severe computational demands if reasonably high preci-
sion is required. Quasi-harmonic lattice dynamics, in principle, give high precision, and
in many applications have been shown to be a valid approximation up to two-thirds of
the melting temperature.1 In Bristol, we are developing a code designed for the efficient
study of periodic structures with internal strains. Following successful applications to
relatively simple systems,2 we are now ready for applications to structures with many
independent internal strains and, to illustrate the method, in this paper we present
results for defect free energies in MgO.

Point-defect energies in polar solids have been extensively studied for many years,
leading to considerable insight into complex defect phenomena in a wide range of
systems.3h5 As elsewhere in computational solid-state physics and chemistry, the major-
ity of point-defect calculations have assumed zero temperature and, for the most part,
have involved the evaluation of the static part of the internal energy change accompany-
ing defect formation only at constant volume.6 Furthermore, even though the vast
majority of experimental data has been obtained at elevated temperatures and constant
pressure, almost invariably these have been compared with static internal energies calcu-
lated at constant volume. Clearly, this procedure is questionable, other than for speciÐc
data such as the migration energy of point defects, which are most appropriately com-
pared with values calculated at 0 K. Accordingly, we employ our new computational
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378 Free energy of formation of defects in polar solids

methods to calculate free energies of defect formation, so that we can make a critical
appraisal of the approximations commonly used to justify comparisons of calculated
and experimental defect quantities.

It has been known for some time that the use of “ supercells Ï to describe a defective
lattice, together with the quasi-harmonic approximation, provides a convenient
approach to the calculation of defect free energies.7 In this method, a superlattice of
defects is introduced, extending throughout the macroscopic crystal. The periodicity is
then of the superlattice and the supercell contains many atoms whose equilibrium posi-
tions are not wholly determined by symmetry, but are described by a set of dimension-
less internal strain coordinates Defect properties, such as energies and entropies,” cane

k
.

then be computed both at constant pressure and at constant volume, e.g.

g
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(P, T ) \ MGdc(P, T ) [ Gpc(P, T )N/Nd (1)
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(V, T ) \ MFdc(V, T ) [ Gpc(V, T )N/Nd (2)

where and and are free energies of the macroscopic defect crystal andGdc Gpc , Fdc Fpcperfect crystal, respectively, and is the total number of defects introduced into theNdmacroscopic crystal.° Convergence towards properties of an isolated defect occurs as the
superlattice spacing is increased.

In the quasi-harmonic approximation, the vibrational frequencies are explicit func-
tions of the crystallographic parameters but not of the temperature. Within this scheme
the free energy is obtained by simultaneous direct minimisation with respect to both
external and internal strains. For the most part, however, previous(gj) (e

k
)

calculations8,9 have been based on a widely used approximation, ZSISA (zero static
internal stress approximation), which is computationally more tractable than the full
minimisation. In this approximation the free energy is minimised with respect to only,gjsubject to the condition that the (static) internal energy is minimised with respect to the
internal strains for each state of external strain. In this paper we present defect freee

kenergies which have been obtained without resorting to the ZSISA approximation. To
our knowledge this is the Ðrst report based on the full minimisation.

Other approaches to the calculation of defect free energies have included the use of
the perfect-lattice GreenÏs function, in conjunction with changes in the lattice force con-
stant resulting from the presence of the defect.10 The difficulties associated with the
computational implementation of this approach appear to more than outweigh its
formal elegance. A “ large-crystallite Ï method has also been developed by Harding,11,12
which is an “embeddingÏ approach and the analogue of the widely used two-region
approach to static defect energies :13 in the inner region, which contains the defect, the
ions are allowed to vibrate, while in the outer region they are held Ðxed. However, in
neither of these two approaches are defect free energies calculated at constant pressure.
The principal advantage of the supercell method implemented in the present work,
therefore, is that enthalpies and entropies at elevated temperatures and constant pres-
sure can be evaluated directly.

In this paper we concentrate on point-defects in MgO and, in particular, the substi-
tution of Mg2` by Ba2`, which involves a large structural distortion of the lattice since
the Ba2` ion is so much larger than Mg2`. Our primary aim is to demonstrate the
methodology and to give a critical appraisal of various approximations and assumptions
that have been employed in earlier work. Applications to further defects and more
complex systems will be reported separately.

” We denote defect quantities by lower case letters, e.g. denotes the change in Gibbs energy at constantg
ppressure.

° This does not, of course, include the conÐgurational entropy of a dilute solution of randomly positioned
defects.
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Theoretical methods
In the quasi-harmonic approximation it is assumed that the Helmholtz energy of a
crystal, F, at a temperature T can be written as the sum of static and vibrational contri-
butions,

F(E, T ) \ Ustat(E) ] Fvib(E, T ) (3)

is the potential energy of the static lattice in a given state of strain E, and is theUstat Fvibsum of harmonic vibrational contributions from all the normal modes. For a periodic
structure, the frequencies of modes with wavevector q are obtained by diagonal-l

j
(q)

isation of the dynamical D(q) in the usual way,14 so that is given byFvib
Fvib \ ;

q, j
(12hl

j
(q) ] kB T lnM1 [ exp[[hl

j
(q)/kB T ]N) (4)

where the Ðrst term is the zero-point energy at T \ 0. For a macroscopic crystal the
sum over q becomes an integral over a cell in reciprocal space, which can be evaluated
by taking successively Ðner uniform grids15 until convergence is achieved.16 The Helm-
holtz energy thus obtained is a function of both macroscopic and internal strains(gj)and it is simplest to treat the as thermodynamic variables on the same footing as(e
k
), e

kthe comprising a total set of strain variables17,18 denoted by The equilibriumgj , EA .
structure at an applied pressure P is then that which minimises the availability19
F] PV with respect to all strains. As in the static simulation of point defects the
number of independent degrees of freedom can often be reduced substantially by sym-
metry considerations.

There are now two ways of proceeding. The minimisation of F] PV and subsequent
thermodynamic manipulation can of course be carried out by brute force, from numeri-
cal values of F obtained using eqn. (4). However, for large unit cells with many internal
strains, it can be much more efficient to use analytic expressions for the derivatives of F
with respect to temperature and strain. Not only does this give explicit expressions for
thermodynamic properties, such as

S \ ;
q, j

[hl(q)/T ]
exp[hl

j
(q)/kB T ][ 1

[ k lnM1 [ exp[[hl
j
(q)/kB T ]N (5)

which can readily be evaluated to a high precision ; also, the strain derivatives permit a
more rapid minimisation of F] PV . The strain derivatives (which give the stresses TAconjugate to the are given byEA)
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where the subscripts E@ denote that all the E are kept constant except for the di†erentia-
tion variable. We thus require derivatives of the frequencies. In our new code the deriv-
atives are obtained from the analytic expressions for the derivatives[Ll

j
2(q)/LEA]

E{by Ðrst-order perturbation theory.14,20h22 A crucial point here is that, for(LD/LEA)
E{obtaining derivatives, the perturbation is inÐnitesimal and so the procedure is exact.

Furthermore, for thermodynamic properties no special consideration need be given to
degeneracies in Ðrst-order perturbation theory, since the trace of is invariant(LD/LEA)

E{for any complete normal set of eigenvectors of D. Results obtained in this way are in
excellent agreement with those derived from numerical derivatives of F] PV using
Ðnite increments of 10~5 in EA .

To obtain the equilibrium structure and Gibbs energy our new code uses a variable
metric method23 for minimising F] PV with respect to In the initial conÐguration theEA .
static energy Hessian, which is a good approximation to(L2Ustat/LEA LEB),(L2F/LEALEB),
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is calculated from its analytic expression, and its inverse, together with is used(LF/LEA),
to obtain an improved conÐguration. In subsequent iterations are calculated in(LF/LEA)
the new conÐgurations and the inverse Hessian updated by the BFGS formula.24

There remains the question of the validity of the quasi-harmonic approximation,
which breaks down with increasing internuclear separations and, hence, at high tem-
peratures. This can be investigated either by computing terms in the lattice dynamics of
higher order in the anharmonicity, or more commonly by classical Monte Carlo or
molecular dynamics simulations. Previous work25 on the bulk properties of MgO has
shown that, using the same potential as here, the quasi-harmonic approximation is valid
up to temperatures of approximately two-thirds of the melting point (3100 K). Accord-
ingly, here we consider a range of temperatures 0È1500 K.

Defect thermodynamics
The chief quantities of interest are the free energy changes accompanying defect forma-
tion at constant volume and at constant pressure deÐned in eqn. (1) and (2). To( f

v
) (g

p
),

calculate the external strain is kept constant while the internal degrees of freedom aref
v
,

varied to give the equilibrium conÐguration. Similarly, for both external and internalg
p
,

strains are varied, to be consistent with the speciÐed pressure. It is also straightforward
to determine the defect enthalpy, and the entropy change at constant pressure,h

p
s
p
,

from the various terms that contribute to the free energy of these cells. The volume of
formation of the defect, follows immediately from the minimisation of F] PV .v

p
,

Several relations between defect properties evaluated at constant pressure and at con-
stant volume have been given by Catlow et al.26 These are strictly valid only in the limit
when i.e. when a single defect is added to a macroscopic crystal. In this limit,(v

p
/V )] 0,

constant pressure quantities can be derived from those obtained at constant volume:
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where b is the volumetric thermal expansion coefficient, the isothermal compress-i
Tibility and is itself given byv
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In some studies27,28 has been used as an approximation to(Lu
v
/LV )

T
(L f

v
/LV )

T
.

A major advantage of our supercell approach is that we are able to calculate all these
quantities independently, notably those at constant pressure. This is important because,
in supercell computations, the relative change of volume is which is Ðnite(v

p
/vsupercell),for the superlattices used. Our results can, therefore, be used to investigate not only the

validity of approximations such as but also departures from relationshipsh
p
(T ) B u

v
(0),

such as The Ðrst-order correction to eqn. (7) is given byg
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The physical reason for this correction is that, whereas an isolated defect introduced at
constant volume into a macroscopic crystal is embedded in surroundings e†ectively at
zero pressure, the defect in the supercell is embedded in surroundings at pressure p

v
\

We may, therefore, expect to be a better estimate(v
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)vsupercell . f
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The traditional identiÐcation of the measured defect enthalpy at temperature T , h
p
(T ),

with the internal energy change at T \ 0, has been justiÐed12 by expandingu
v
(0), h

p
(T )

as a power series in T about T \ 0, with a vanishing term in T and non-vanishing term
in T 2. Since, for a real non-metallic quantum crystal, varies as T 4 at low tem-h

pperatures, this is clearly a classical argument, and so valid only for and thenT [ HDonly when higher anharmonic terms are small ; moreover, classically the defect internal
energy at T \ 0 is Thus while is a better approximation for atu

v
(static). u

v
(0) h

p
(T )

sufficiently low temperatures, may be better foru
v
(static) T [ HD .

Results and Discussion
In this section we report results for the barium substitutional defect in MgO, ThisBaMgx .
gives rise to a greater elastic relaxation than does any other simple point defect, thus
posing an extremely stringent test of the supercell approach and the methodology we
have developed. All the calculations are based on the consistent set of interatomic Buck-
ingham potentials reported by Sangster and Stoneham.29 In the present application,
cubic symmetry is preserved if the Ba2` superlattice is itself cubic : face-centred cubic
(fcc), body-centred cubic (bcc) or simple cubic (sc). The possibilities for Ba mole fractions
down to ca. 0.3% are listed in Table 1. Of these, we might expect results obtained from
fcc supercells to converge most rapidly, both because for a given mole fraction the
defects are further away from each other and because the nearest neighbour shell of 12
defects gives an environment more like the isotropic environment of an isolated defect.

Table 2 lists the results in the static limit for the defect volumes, internal energies,v
p
,

and enthalpies, as a function of unit cell size, from which it appears that theu
v
, h

p
,

convergence with unit cell size is somewhat irregular. For example, the 54-ion supercells
(fcc) give a value closer to that in the dilute limit than 64-ion supercells (cub). However,
the convergence is consistent for the same type of supercell, and as expected the fastest
convergence is obtained for the fcc supercells. This is true also of the temperature-
dependent properties calculated (Table 3 and Fig. 1).

For a correct calculation at T \ 0 we must include the zero-point energy, which
expands the lattice and changes the defect parameters. For this reason, Table 2 also
contains 0 K values of and For supercells of the same size, the values ofv

p
, u

v
, h

p
. h

pand are lower than the static value by ca. 0.2 eV from the static value, while isu
v

v
phigher by ca. 1%.

We have carried out full minimisations of F and F] PV for each of the supercells at
three temperatures in the range 500È1500 K. The resulting defect constant-pressure and
constant-volume parameters are listed in Table 3. Over the temperature range 500È
1500 K, and increase by ca. 20%, ca. 2% and 30%, respectively ; and allv

p
, h

p
s
p

g
p
, f

v
u
vdecrease by ca. 6% and by ca. 30%.s

vAs might have been expected, the defect entropies, and particularly show as
v

s
p
, s

p
,

slower convergence with supercell size than defect energies, since the rate of convergence

Table 1 Shape of the supercells used in this paper

number mole fraction supercell number mole fraction supercell
of ions Ba shape of ions Ba shape

8 0.25 cub 216 0.0093 cub
16 0.125 fcc 250 0.0080 fcc
32 0.0625 bcc 256 0.0078 bcc
54 0.0370 fcc 432 0.0046 fcc
64 0.0313 cub 512 0.0039 cub

128 0.0156 fcc 686 0.0029 fcc
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Table 2 Defect parameters for a barium substitutional defect in MgO: (i) in the static
limit (ii) at 0 K including the e†ect of zero-point energy

static limit 0 K

xa v
p
/Ó3 g

p
(\h

p
)/eV f

v
(\u

v
)/eV v

p
/Ó3 g

p
(\h

p
)/eV f

v
(\u

v
)/eV

32 20.9 15.559 16.520 21.1 15.354 16.304
54 20.3 16.002 16.545 20.5 15.798 16.335
64 21.4 15.819 16.326 21.6 15.609 16.113

128 20.1 15.980 16.193 20.4 15.787 15.997
216 20.3 15.898 16.030 20.6 15.733 15.839
250 20.1 15.957 16.069 20.4 15.807 15.874
256 20.0 15.920 16.028 20.3 15.772 15.835
432 20.0 15.956 16.020
512 20.1 15.939 15.994
686 20.0 15.960 15.999

a x denotes the total number of ions in the unit cell BaMg
x@2~1Ox@2 .

is determined by changes in the second derivative of the interatomic potential, which are
more sensitive to small structural changes, such as the lattice relaxation around a defect,
than the potential energy itself. is small, because the entropy depends solely on thes

vvibrational frequencies [eqn. (5)] and there are two opposite e†ects competing. Inserting
the larger Ba2` ions into the Mg2` cavity at constant volume causes a small increase in
pressure over the whole crystal, so that the force constants become stronger and thep

vvibrational frequencies are increased ; however, the heavier mass of the Ba2` ion tends
to decrease frequencies. For however, the pressure is relaxed to zero and the masss

p
,

e†ect is dominant. The absolute change in with temperature is also larger than that ofs
pand opposite in sign.s

v We consider next the behaviour of and and the validity of the approx-h
p
(T ) u

v
(T )

imations or Fig. 2 shows the variation of and with tem-h
p
(T )B u

v
(0) u

v
(static). h

p
u
vperature. Above T \ 0, is always greater than in the isolated defect limit, ith

p
(T ) u

v
(T ) ;

Fig. 1 Variation of with unit cell size for a barium substitutional defect in MgO over a range ofs
ptemperatures. At each temperature lines connect values obtained using the same shape of super-

cell. 500 K 1000 K (]) ; 1500 K()) ; (K).
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Table 3 Defect volumes, energies and entropies of formation for a barium substitut-
ional defect in MgO at 500, 1000 and 1500 K, obtained by full minimisation of the

Gibbs energy

T /K xa v
p
/Ó3 g

p
/eV f

v
/eV h

p
/eV u

v
/eV s

p
/kB s

v
/kB

500 32 22.4 15.034 16.026 15.506 16.080 10.95 1.27
54 21.5 15.496 16.064 15.925 16.107 9.96 0.99
64 22.7 15.285 15.813 15.746 15.864 10.71 1.20

128 21.2 15.466 15.700 15.892 15.744 9.89 1.02
216 21.5 15.391 15.523 15.819 15.569 9.92 1.08
250 21.2 15.457 15.572 15.876 15.617 9.74 1.05
256 21.1 15.417 15.530 15.835 15.578 9.71 1.10
432 21.0 15.456 15.870 9.60
512 21.2 15.443 15.852 9.48

1000 32 25.5 14.508 15.560 15.682 15.647 13.62 1.01
54 23.3 15.028 15.622 16.028 15.683 11.61 0.71
64 24.8 14.782 15.342 15.861 15.417 12.51 0.88

128 22.9 15.009 15.265 15.987 15.329 11.36 0.74
216 23.2 14.932 15.082 15.920 15.151 11.47 0.80
250 22.8 15.008 15.135 15.976 15.202 11.24 0.78
256 22.7 14.972 15.094 15.937 15.166 11.20 0.83
432 22.6 15.017 15.972 11.08
512 22.8 15.010 15.959 11.01

1500 32 È È 15.036 È 15.155 È 0.92
54 26.4 14.496 15.123 16.255 15.198 13.61 0.59
64 28.7 14.195 14.811 16.143 14.907 15.07 0.74

128 25.5 14.476 14.762 16.176 14.844 13.15 0.64
216 26.0 14.403 14.569 16.118 14.663 13.27 0.73
250 25.4 14.491 14.629 16.158 14.718 12.90 0.69
256 25.3 14.457 14.591 16.117 14.690 12.84 0.76
432 25.2 14.503 16.154 12.77
512 25.5 14.498 16.147 12.76

a x denotes the total number of ions in the unit cell BaMg
x@2~1O

x@2 .

follows from eqn. (7) and (9) that

h
p
[ u

v
\ T (s

p
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) \ (bT /i

T
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p
and, in the present application, both and b are positive. The temperature dependencev

pof is much greater than that of and opposite in sign. This is a similar trend to thatu
v

h
pshown by the defect entropies, but the percentage di†erences are less marked because h

pand are dominated by the static contributions. The results conÐrm that andu
v

u
v
(0)

are fair approximations to with a better approximation whenu
v
(static) h

p
(T ), u

v
(static)

While the high-temperature values of clearly extrapolate back towardsT [HD . u
vthe same is not true ofu

v
(static), h

p
.

The convergence of and hence of and towards their values in thef
v
, u

v
(0) u

v
(static)

dilute limit, is improved using eqn. (11). Detailed examination shows that the computed
di†erences in are approximately proportional to and that the expres-f

v
[ g

p
(v

p
/vsupercell)sion for given in eqn. (11) is accurate to within ca. 10%. The slow convergence off

v
[ g

pwith increasing supercell size is thus seen to be largely due to the term whichf
v

12pv
v
p
,

could be subtracted from the values for obtained for each supercell size. It also callsf
vinto question the uncritical use of eqn. (7) when comparing experimental results with

data calculated even with quite large supercells.
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Fig. 2 Variation of and (]) with temperature for a supercell containing 216 ions. Forh
p

()) u
vcomparison (È È È) and (ÈÈ) are also shown.u
v
(0) u

v
(static)

While eqn. (8) and (9) are also exact in the dilute limit, they too are often used
uncritically. To investigate the potential inaccuracy that might result from such usage,
we have used eqn. (9) to estimate values of at 1500 K for a range of supercells, froms

p
,

the corresponding values of Eqn. (9) also requires b, and and calculated valuess
v
. i

T
v
p
,

of these for MgO based on the same set of potentials are given in Table 4. Table 5 lists
the resulting values of together with those determined from the direct minimisations

p
,

of G. As the supercell size increases, the di†erences between the values in the two
columns of Table 5 decrease as expected. For the 54 and 128 atom supercells (3.7% and

Table 4 Calculated bulk properties of MgO needed
for eqn. (8) and (9)

temperature/K

property 500 1000 1500

V /Ó3 19.1593 19.4433 19.7835
b/10~5 K~1 2.621 3.207 3.765
i
T
/10~3 GPa~1 4.649 5.084 5.711

The volume given is that for a primitive unit cell.

Table 5 Comparison of methods for
calculating at 1500 K as a functions

pof supercell size

s
p
/kB

x eqn. (9) full minimisation

54 11.36 13.61
128 12.81 13.15
216 13.14 13.27
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Table 6 A comparison of defect volumes, and constant pres-
sure energies and entropies of formation for a barium substi-
tutional defect in MgO at 1500 K, obtained by full
minimisation of the Gibbs energy, and the ZSISA and

CISPA approximations with a supercell of 216 ions

method v
p
/Ó3 g

p
/eV h

p
/eV s

p
/kB

full minimisation 26.0 14.403 16.118 13.27
ZSISA 25.6 14.408 16.088 12.99
CISPA 24.8 14.433 16.056 12.55

1.6% Ba, respectively) there are substantial di†erences between the approximate value in
the Ðrst column of Table 5, and that found directly by the full minimisation of the Gibbs
energy.

Finally, in this section, we comment on a common approximation used in lattice
dynamics at elevated temperatures, namely, the ZSISA.30 In determinations of equi-
librium structures, this approximation can reduce the computational e†ort considerably.
The Gibbs energy at each temperature is minimised with respect to external strains only.
Simultaneously the internal strains are determined by minimising the static lattice
energy, and so

ALG
Lg

i

B
g{, e

\
ALUstat

Le
i

B
g, e{

\ 0

Although this may give an incorrect internal strain, it gives, to Ðrst order, the correct
external strain at each temperature. An even less rigorous approximation is the constant
internal strain parameter approximation (CISPA), which Ðxes the internal strains at
those calculated in the static limit ; with our choice of internal strain coordinates, CISPA
thus requires that the fractional coordinates of the basis atoms do not vary with tem-
perature.

The use of ZSISA or CISPA makes no qualitative di†erence to any of the trends
discussed in this paper. Small quantitative di†erences, however, are found at elevated
temperatures, as shown for T \ 1500 K in Table 6. As expected, the ZSISA results are
closer to those from the full minimisation than CISPA. However, even the CISPA values
for and di†er by less than ca. 0.5% from the full minimisation results. In contrast,g

p
h
pthe di†erences between CISPA and the full minimisation results for and are some-v

p
s
pwhat greater at ca. 4 and ca. 5%, respectively. This calls for some caution in the use of

the ZSISA and CISPA results for these quantities.

Final remarks
We have presented a more exact method than hitherto available for the direct mini-
misation of the free energies of periodic solids with very large unit cells, with respect to
both external and internal strains. In common with previous methods,7 it is based on
lattice statics and quasi-harmonic lattice dynamics, but derives its extra rigour and Ñex-
ibility from its use of analytic derivatives of the vibrational frequencies with respect to
all external and internal variables. We have used it to calculate constant-pressure free
energies and entropies of the barium substitutional defect in MgO, from 500ÈBaMgx ,
1500 K at defect concentrations an order of magnitude less than any previous calcu-
lations. It has also allowed us to assess the validity of two widely-used approximations
in computational defect thermodynamics, ZSISA and CISPA. The proven Ñexibility of
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this new approach will enable us to examine more complicated defects such as the 4 : 1
complex in and to calculate important ceramic data such as phase diagrams.Fe1hxOWe conclude with a few remarks concerning the use of lattice dynamics, which has
been somewhat neglected in recent years. It has been shown previously1,2,31 that there is
good agreement up to about two-thirds of the melting point between lattice dynamics
and molecular dynamics calculations based on identical potentials for properties such as
the thermal expansion. It is clear from these studies and the present paper that quasi-
harmonic lattice dynamics can be a useful technique for studying systems, even at quite
elevated temperatures, particularly bearing in mind that to obtain comparable precision
from molecular dynamics and Monte Carlo simulations can be orders of magnitude
more expensive. Reasons for the utility of lattice dynamics for problems such as that
considered here are that the results are often simpler to interpret than those from molec-
ular dynamics simulations and that high precision is readily achieved ; that quasi-
harmonic lattice dynamics is particularly useful at temperatures below the classical
region where molecular dynamics simulations are invalid ; that lattice dynamics can also
be remarkably robust at elevated temperatures ; and that, as discussed elsewhere,21 it
provides an extremely sensitive test for interatomic potentials, in a way that would be
very difficult for molecular dynamics.
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