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We show how quasiharmonic lattice dynamics, Monte Carlo, molecular dynamics and ab initio techniques are
increasingly able to provide valuable information concerning the behaviour of perfect and disordered polar
solids over a broad range of temperatures and pressures. A wide range of examples includes (i) the
thermodynamics of the pressure-induced phase transformation in between the rutile and ÑuoriteMgF2
structures, (ii) the negative thermal expansion of (iii) surface and defect free energies as a function ofZrW2O8 ,
temperature, (iv) solid solutions of oxides and silicates, (v) possible mechanisms for the B1ÈB2 phase transition
in SrO, and (vi) MnO and NiO at high pressure. Particular attention is paid to the merits and limitations of
the various methodologies and the advantages of using a combination of these techniques to obtain a broader
understanding of particular problems.

Introduction

The continuing growth in computer power has led to a tre-
mendous increase in the importance of computer simulation
to the understanding and design of complex materials and
minerals.1 In particular the behaviour of solids at elevated
temperatures and/or high pressure is a key aspect of con-
densed matter chemical physics in areas as diverse as the
modelling of explosives, ceramics processing and geophysics.
Computational techniques o†er a particularly attractive
approach in many of these Ðelds, especially where experimen-
tal data are sparse and difficult to obtain. For example, phase
changes and the associated changes in thermodynamic
properties (e.g., expansivity and compressibility) can be partic-
ularly important in geochemistry but often remain far from
straightforward to investigate experimentally.

Theoretical studies of solids have most commonly involved
Ðrst principles (ab initio) electronic structure calculations, clas-
sical molecular dynamics (MD) and Monte Carlo (MC) simu-
lations, or energy minimisation in the static limit (T \ 0 in the
absence of lattice vibrations). Somewhat less attention has
been paid to lattice dynamics in which phonon frequencies are
calculated directly. Historically, most often each particular
technique has been used in isolation. It is important to dis-
tinguish ab initio methods (here periodic HartreeÈFock (HF)
and density-functional theory (DFT)) and simulation methods
(here MD, MC, quasiharmonic lattice dynamics and energy
minimisation) which use interatomic potentials to describe the
interactions between the ions. These interatomic potentials are
increasingly derived from ab initio calculations, rather than
Ðtted empirically. The modelling of complex solids such as
crystals with large unit cells, crystals with defects, solid solu-
tions and surfaces presents severe computational demands if
high precision is required and all these techniques have their
own merits and limitations. Computational resources present-
ly available normally restrict the use of ab initio Ðrst principles
calculations, which are in principle the most accurate and gen-
erally applicable, to systems with relatively small unit cells. In

particular the calculation of thermal e†ects via ab initio
methods is sufficiently computationally demanding that much
work concerned with properties at Ðnite temperature (MC,
MD or lattice dynamics) uses potential-based approaches.

Molecular dynamics and classical Monte Carlo rely on gen-
erating a set of system states representative of the equilibrium
conÐguration and averaging over this set ; as the average is
taken over more states the accuracy of calculated properties
improves. Molecular dynamics calculations explicitly include
time as a variable and so make it possible to examine related
properties such as ion di†usion. We show below how a novel
hybrid MC approach combining both MC and MD steps can
be particularly valuable for overcoming kinetic barriers in dis-
ordered solids and sampling a large number of di†erent con-
Ðgurations.

Lattice dynamics is a relatively inexpensive technique,
which avoids the kinetic barriers and critical slowing-down
e†ects su†ered by MC and MD, and in general does not rely
on long runs for high precision. Surprisingly, it has been
somewhat neglected in recent years. The bulk of the computa-
tional e†ort is usually expended in the optimisation problem
involving the determination of the equilibrium geometry of
the crystal. After this direct calculation of the required proper-
ties such as entropy and heat capacity is generally rapid.
Several examples later include a comparison of the results of
MD and/or MC studies with those from quasiharmonic lattice
dynamics. Quasiharmonic lattice dynamics is particularly
useful at temperatures below the Debye temperature where
classical MC and MD simulations fail due to their neglect of
quantum e†ects. Lattice dynamics also provides an extremely
sensitive test for interatomic potentials, in that the presence of
imaginary frequencies may immediately indicate a given
potential set is invalid in a way that would be far from
straightforward for MC and MD. An important additional
advantage over MC and MD is that free energies can be cal-
culated directly to high accuracy and we shall see how this
provides an efficient route to the free energy of particular con-
Ðgurations of disordered solids and hence, for example, to the
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excess functions of non-ideal solid solutions. A disadvantage is
the failure of the quasiharmonic approximation at high tem-
peratures as the melting point is approached.

In this paper we concentrate on a set of illustrative exam-
ples. We start with a brief discussion of the various theoretical
methods, with some emphasis on lattice dynamics. Our
account is by no means intended to be comprehensive since
excellent reviews of these techniques are available else-
where.2h4 A major aim of this paper is to show that, in many
case studies, a broader understanding of the problem of inter-
est is best achieved by the combination of several of these
powerful techniques (cf. ref. 5). Our Ðrst example is the behav-
iour of at high temperatures and high pressures, usingMgF2interionic potentials obtained from HF calculations. Further
case studies include simulations of ceramics with negative
thermal expansion, and the calculation of the temperature
dependence of surface and defect free energies, based on a full
minimisation of all atomic coordinates. Simulations have pre-
viously been largely restricted to the study of end-member
compounds, excluding many industrially important ceramics
and naturally occurring minerals and so our next examples
are solid solutions of oxides and silicates. These systems
(MgO/MnO, MgO/CaO and show howMgSiO3/MnSiO3)novel simulation techniques recently proposed by us can be
used to investigate the inÑuence of high impurity or defect
concentrations on thermodynamic properties and phase tran-
sitions. Also presented are results relating to the mechanisms
of solid-state phase transitions as well as the thermodynamics.
Finally we turn to transition metal oxides (MnO and NiO) at
high pressures, and investigate possible phase changes and
structural distortions, using Ðrst principles calculations. We
make predictions and suggest possible experiments where
there is disagreement between the conclusions from di†erent
theoretical approaches.

Theoretical methods
Ab initio calculations

In this paper we report the results of self-consistent Ðeld (SCF)
linear-combination-of atomic orbitals periodic HF or DFT
calculations as implemented in the CRYSTAL computer code
developed by the Daresbury and Turin groups. This code has
been described in detail previously.2,6 These all-electron calcu-
lations all use extended Gaussian basis sets comprised of
localized crystal orbitals appropriate for the solid state. The
numerical values of the tolerance parameters involved in the
evaluation of the inÐnite Coulomb and exchange series were
identical to those in previous work7,8 and chosen, as before,
to ensure high numerical accuracy. The reciprocal space inte-
gration utilized the MonkhorstÈPack sampling scheme9 with
a shrinking factor of 8 and an SCF convergence criterion
based on di†erences in the energy of the unit cell of less than
10~4 mHa. In one case, SrO, we have used the Hay and Wadt
small core pseudopotential,10 as in previous work.11 SCF
DFT calculations were based on the DiracÈSlaterÈLSD
exchange potential and the VoskoÈWilkÈNusair param-
eterization of the CeperleyÈAlder free electron gas correlation
contribution.12 In one example, the magnitude of a posteriori
correlation corrections13 to the HF energy based on the
correlation-only density functional of Perdew14 has been
examined. All electronic structure calculations are in the static
limit. The results are used to extract accurate interatomic
potentials for subsequent use in MC, MD and lattice
dynamics simulations, and, more directly, to compute the
equation of state in the static limit and to investigate possible
high-pressure phase transitions.

Lattice dynamics

We have recently developed new code15 based on quasi-
harmonic lattice dynamics (QLD) and lattice statics designed

for the efficient study of solids and slabs with periodic struc-
tures and many internal strains. QLD, in principle, gives high
precision, and in many applications has been shown to be a
valid approximation up to two-thirds of the melting tem-
peratures.16 For it has also been demonstrated pre-Li2O,
viously that for properties such as the thermal expansion there
is good agreement up to about two-thirds of the melting point
between QLD and MD calculations based on identical inter-
ionic potentials.5

To perform the structure optimisation (free energy
minimisation) it is necessary to obtain derivatives of the free
energy with respect to the geometrical coordinates. Previous
approaches to this problem17 have used the zero static inter-
nal stress approximation (ZSISA), or minor variations thereof,
in which only the external coordinates (dimensions of the unit
cell) are relaxed using fully dynamic free energy derivatives,
while the internal coordinates (positions of the ions within the
unit cell) are relaxed using static energy derivatives. This
approach is popular since static energy derivatives are easy to
calculate analytically, and quite rapidly, while only a small
number of free energy derivatives are required, and these are
obtained numerically. Even for moderately sized unit cells
numerical di†erentiation of the free energy with respect to all
internal coordinates is normally prohibitively expensive. Our
new code calculates the full set of free energy Ðrst derivatives
analytically (as described below) and for the Ðrst time a full
minimisation of the quasiharmonic free energy with respect to
all internal and external variables for large unit cells is pos-
sible. As demonstrated previously18 ZSISA gives the external
variables correctly to Ðrst order, but the internal coordinates
will be estimated incorrectly. Our code presently uses two-
body and three-body potentials to represent the non-
Coulombic interactions between the ions. Polarizability e†ects
may be readily incorporated by using the well-known DickÈ
Overhauser shell model,19 in which each ion consists of a
massless ““ shell ÏÏ and a massive core, the charge being distrib-
uted between the two and so, if the two are displaced relative
to each other, giving rise to a dipole.

In the quasiharmonic approximation20 it is assumed that
the Helmholtz free energy of a crystal, F, at a temperature T
can be written as the sum of static and vibrational contribu-
tions,

F(E, T ) \ Ustat(E) ] Fvib(E, T ) (1)

is the potential energy of the static lattice in a given stateUstatof strain E. Traditional static lattice simulations21 evaluate
and neglect which is the sum of harmonic vibrationalUstat Fvibcontributions from all the normal modes. For a periodic struc-

ture, the frequencies of modes with wavevector q arel
j
(q)

obtained by diagonalisation of the dynamical matrix D(q).22
is given byFvib
Fvib\ ;

q, j
M12hl

j
(q) ] kBT ln[1[ exp([hl

j
(q)/kBT )]N (2)

in which the Ðrst term is the zero-point energy. For a macro-
scopic crystal the sum over q becomes an integral over a cell
in reciprocal space, which can be evaluated by taking suc-
cessively Ðner uniform grids23 until convergence is achieved.
The free energy thus obtained is a function of both macro-
scopic and internal strains, and it is simplest to treat(gj) (e

k
)

the as thermodynamic variables on the same footing as thee
kcomprising a total set of strain variables24,25 denoted bygj ,
The equilibrium structure at an applied pressure, isEA . Pext ,then that which minimises the availability26 G3 \ F] Pext Vwith respect to all strains. The number of independent degrees

of freedom can often be reduced substantially by symmetry
considerations.

The derivatives of can of course be carried outF] Pext Vby brute force, from numerical values of F obtained using eqn.
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(2). However, for large unit cells with many internal strains it
is much more efficient to use analytic expressions for the
derivatives of F with respect to temperature and strain. This
not only leads to explicit expressions for thermodynamic
properties, such as the entropy S,

S \ ;
q, j

G (hl
j
(q)/T )

exp(hl
j
(q)/kBT )[ 1

[ kB ln[1[ exp([hl
j
(q)/kBT )]

H
(3)

which can be readily evaluated to a high precision ; but in
addition the strain derivatives permit a more rapid min-
imisation of The strain derivatives are given byF] PextV .

AdFvib
dEA

B
E{, T

\ ;
q, j

G h
2l

j
(q)

]
A1
2

]
1

exp(hl
j
(q)/kBT )[ 1

BAdl
j
2(q)

dEA

B
E{

H
(4)

where the subscript E@ denotes that all the E are kept constant
except for the di†erentiation variable. We thus require deriv-
atives of the frequencies. In our new code the derivatives

are obtained from the analytic expressions for(dl
j
2(q)/dEA)

E{the derivatives by Ðrst-order perturbation theory.(dD/dE)
E{Full expressions for two and three-body short-range poten-

tials and for the Ewald and Parry summations are given in
refs. 27, 28 and 29. For obtaining derivatives the perturbation
is inÐnitesimal and so the procedure is exact. Furthermore, for
thermodynamic properties no special consideration needs to
be given to degeneracies in Ðrst order perturbation theory,
since the trace of is invariant for any complete(dD/dEA)

E{normal set of eigenvectors of D.
To obtain the equilibrium structure and Gibbs energy our

new code uses a variable metric method30 for minimising F
with respect to the In the initial conÐguration] PextV EA .

the static energy Hessian, which is a good(d2Ustat/dEA dEB),approximation to is calculated from its analytic(d2F/dEA dEB),expression, and its inverse together with the is used(dF/dEA)
to obtain an improved conÐguration. In subsequent iterations
the are calculated in the new conÐgurations and the(dF/dEA)
inverse Hessian updated by the BFGS formula.31 The exact
details of the algorithm are given in ref. 15.

The quasiharmonic approximation breaks down with
increasing amplitude of vibration and hence at high tem-
peratures. This can be investigated either by computing terms
in the lattice dynamics of higher order in the anharmonicity,
or more commonly, as below, by classical MC or MD simula-
tions. A general rule of thumb we have found useful for ionic
solids is that the quasiharmonic approximation is usually
valid up to temperatures of approximately one-half to two-
thirds of the melting point. For any given temperature, higher
pressures correspond to smaller internuclear separations and
amplitudes of vibration so the breakdown of the quasi-
harmonic approximation is often less important for applica-
tions involving high pressure.

Monte Carlo

In the MC method, the properties of interest are evaluated
from averages over a large number of conÐgurations gener-
ated in phase space according to the prescribed probability
function of the ensemble. In an MD simulation, the properties
are computed through direct numerical integration of the clas-
sical Newtonian equations of motion of the particles consti-
tuting the system. In our MC work vibrational e†ects are
taken into account by allowing random moves of randomly
selected atoms. The MC calculations are carried out within

the NPT ensemble, i.e. both the atomic coordinates and cell
dimensions were allowed to vary during the simulation. We
brieÑy discuss the pertinent details of the calculation since
detailed descriptions of the MC methodology are available in
refs. 3 and 32. During one step of the MC simulation an
atomic coordinate or a lattice parameter is chosen at random
and altered by a random amount. To determine whether the
change is accepted or rejected, the usual Metropolis algorithm
is applied. The maximum changes in the atomic displacements
and the lattice parameters are governed by the variables rmaxand respectively. There are separate values of forvmax rmaxeach atom type and the magnitude of the displacements are
adjusted automatically during the equilibration part of the
simulation to maintain an acceptance/rejection ratio of
approximately 0.3. The values of for each lattice param-vmaxeter are adjusted in a similar way.

Molecular dynamics

We have also carried out MD simulations at constant pres-
sure and temperature based on an extended system as
described in ref. 33. Constant NVE runs of 10 ps gave initial
conÐgurations, which were used as the starting point for
equilibration runs at constant NPT of 10 ps, followed by pro-
duction runs of 10 ps for each pressure and temperature con-
sidered, using a timestep of 1 fs. The temperature and pressure
were kept constant by using an extended system with ther-
mostat and barostat relaxation times of 1 and 0.5 ps respec-
tively. The reliability of the results was checked by selected
further runs with simulation times longer than 10 ps.

Hybrid methods

For solids with a high impurity content and solid solutions,
we have recently developed a hybrid Monte Carlo (HMC)
method,34 combining MC and MD steps in the same simula-
tion. The motivation for this has been the extensive use made
by related techniques in the modelling of polymers and bio-
molecules.35

A key feature is the sampling of many di†erent conÐg-
urations, allowing the exchange of ions located at crystallo-
graphically inequivalent positions. In our simulations this is
achieved by an explicit interchange of the positions of these
ions. A further major problem is the development of ways for
taking into account the complex movements (relaxation) of
large numbers of ions which accompany this exchange of ions
(e.g., Mn2` and Mg2`). Otherwise energy barriers are so large
that all trial moves are rejected.34 We do not resort to any
parameterisation scheme or approximate Hamiltonian which
averages out local e†ects due to ion clustering and association.
The use of parameterised Hamiltonians (of e.g., the Ising-type)
has proved problematic for oxides and silicates and is not
readily extended to incorporate the e†ects of high pressure or
thermal e†ects.

The HMC technique allows efficient sampling of a large
number of di†erent conÐgurations. During one HMC cycle,
one of three options is chosen at random, with equal probabil-
ity. The Ðrst is a short NVE molecular dynamics simulation
(15 steps, timestep 1.5 fs) in which the last conÐguration is
accepted or rejected by comparing its energy with the energy
of the starting conÐguration and using the standard Metropo-
lis algorithm. If the last conÐguration is rejected, the original
conÐguration is included in the statistical averaging of ther-
modynamic properties. In the second option, which is only
applicable to the solid solution, a short MD run follows a
random exchange of atoms. Again, the di†erence in energy
between the previous conÐguration and that immediately after
the MD simulation is used in the Metropolis algorithm. At
the start of each MD run, velocities are chosen anew at
random from a Maxwellian distribution. The third option is a
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random change of the volume/shape of the box36 which again
is accepted or rejected using the Metropolis algorithm.

We have also developed a conÐgurationally averaged lattice
dynamics approach to solid solutions37 which involves the
evaluation of an appropriate thermodynamic average over a
(limited) set of calculations representing di†erent arrange-
ments of the cations within a supercell. Computational
resources have normally restricted previous workers to
assume just one (usually the most regular) arrangement and
calculate its energy, with or possibly without relaxation.38
Given the free energy, for the optimised structure of eachG

k
,

possible cation arrangement k, obtained as described earlier,
we then average so that

SHT \
;

k
H

k
exp([G

k
/kBT )

;
k

exp([G
k
/kBT )

(5)

and

SST \
;

k
H

k
exp([G

k
/kBT )

T ;
k
exp([G

k
/kBT )

] kB ln ;
k

exp([G
k
/kBT ) (6)

Applications

MgF
2

We start with a straightforward example and consider selected
thermodynamic properties of the rutile phase of theMgF2 ,
most stable at low pressure, using potentials derived from a
calculated HF potential energy hypersurface, as described else-
where.39 We concentrate on the lattice parameters and
thermal expansion. We have carried out QLD calculations,
and MD and MC simulations. The last two used a simulation
cell containing 192 Mg and 384 F ions arranged initially in a
box of sides 4 ] 4.52 4] 4.52 and 6 ] 3.09 In the MCA� , A� A� .
simulations, the thermodynamic data were collected over 107
steps, prior to which a 107 step equilibration was carried out.

It is well known that the HF method generally overesti-
mates lattice parameters,2,6 and for the HF latticeMgF2parameters a and c are slightly larger than experiment.40 Fig.
1(a) and 1(b) show that the same conclusion applies to the
values predicted using the new potential obtained by Ðtting to
the HF energies. However, the variation with T of the lattice
parameters a and c, calculated from QLD, MC, and MD are
close to experiment (as shown in Fig. 1(a) and 1(b)). Below
the Debye temperature the MC values for a and c are(HD),
slightly lower than the QLD values because only the latter
takes account of quantum e†ects (largely zero-point vibration)
which expand the lattice by a small amount. The MC
and MD results are in good agreement.

The contribution of quantum e†ects in QLD can be assess-
ed by removing such e†ects from the QLD calculations. This
is readily achieved by replacing eqn. (2) with the high-
temperature limiting expansion for the vibrational contribu-
tion to the free energy, i.e., putting

Fvib\ kBT ;
q, j

ln(hl
j
(q)/kBT ). (7)

Making this change, we obtain results below which are inHDgood agreement with those obtained from the MC and MD
simulations, showing that the contribution of further anhar-
monic e†ects below is very small.HDAt temperatures higher than the Debye temperature
quantum e†ects play a less important and there is a rangeroü le
of temperatures around where the QLD and MC resultsHDare in good agreement. At high temperatures the MC results
serve as a check of the validity of the quasiharmonic approx-
imation. The QLD results show a characteristic divergence of
slope from the MC results for T P 1300 K, indicating that this

Fig. 1 Calculated temperature variation of a and c for MgF2 .
Results from quasiharmonic lattice dynamics (QLD), Monte Carlo
(MC) and molecular dynamics (MD) calculations are shown together
with experimental data from ref. 40.

approximation is beginning to break down. Below this upper
limit, it is clear that the Gibbs free energy can be calculated
efficiently and accurately from lattice statics and QLD,
without resorting to lengthy thermodynamic integration.

Simulations are a valuable means of examining critically
common approximations, made for instance in geophysics,
regarding the temperature and pressure dependence of impor-
tant physical properties. For example, one widely used quan-
tity is the isothermal function, givenAndersonÈGru� neisen d

T
,

by

d
T

\ [(d ln K
T
/d ln V )

P
\ [(d ln b/d ln V )

T
(8)

where b is the volumetric thermal expansion coefficient (\
and the isothermal bulk modulus. For the(dV /dT )

P
/V ) K

Trutile phase of over its entire pressure range, we ÐndMgF2that b is approximately proportional to V t at 300 K, where
t B 7, so giving a constant value of 7. For the Ñuorite phased

Tadopted at high pressure,39 in contrast, decreases withd
Tpressure from B5.7 at the transition to B4.7 at 80 GPa, still

higher than the value of deduced by D. L. Anderson41d
T

B 3
from seismic data for the lower mantle, but in agreement with
the observation of O. L. Anderson that decreases at highd

Tpressures. For comparison, the corresponding theoretical42
and experimental43 value for MgO is t B 6. The calculated
value of b for is larger for the Ñuorite phase than forMgF2the rutile phase. At 500 K, b increases by over a factor of 2 at
the phase transition, as shown in Fig. 2. Consequently, due to
the phase change, there is no marked decrease of b with pres-
sure for (cf. MgO where there is no phase transitionMgF2over the range of pressures considered here). Chopelas and
Boehler44 have discussed the implications of large values of d

Tfor minerals.

Negative thermal expansionÈZrW
2
O

8

A somewhat more complex example is that of ThisZrW2O8 .
is of particular current interest45,46 since it exhibits large
negative thermal expansion from 0.3 to 1050 K. At 428 K this
material undergoes a phase transition to a disordered phase,
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Fig. 2 Calculated variation of the thermal expansion coefficient b at
500 K with pressure for the rutile and Ñuorite phases of MgF2 .

but below this temperature the well-ordered structure pro-
vides an excellent test of our methodology. Fig. 3 shows that
the unit cell of is cubic and composed of tetra-ZrW2O8 WO4hedra sharing corners and octahedra linked in such aZrO6way that each octahedron shares corners with six di†erent

tetrahedra. Each tetrahedron shares only three ofWO4 WO4its four oxygens with adjacent octahedra.ZrO6We have carried out lattice statics and QLD calculations
for analogous to those for For the intraocta-ZrW2O8 MgF2 .
hedron OÈZrÈO and intratetrahedron OÈWÈO interactions,
we have chosen to use a UreyÈBradley term of the form,

E\ 12k(rOhO[ re)2 (9)

where is the oxygenÈoxygen distance and a constant,rOhO rerather than a standard harmonic angle term. A similar type of
forceÐeld has been used recently for silicates with success by
Gale.17 Our calculated value for the linear thermal expansion
coefficient a (\ b/3) over the range 50È300 K is [3.5] 10~6
which compares with the observed value46 of B[8.3] 10~6.

To understand why negative thermal expansion is associ-
ated with this type of cubic structure, it is useful to express the
volumetric expansion coefficient, using a Maxwell relation, in
terms of (dS/dV )

T
:

b \ s
T
(dS/dV )

T
(10)

where is the isothermal compressibility. Since is alwayss
T

s
Tpositive, then b and have the same sign. is(dS/dV )

T
(dS/dV )

Tnegative for largely due to the ZrÈOÈW transverseZrW2O8vibrations, which increase in frequency with increasing ZrÈW

Fig. 3 Room temperature structure of Zr atoms are lightZrW2O8 .
blue, W are green and O are red.

internuclear separation (cf. the transverse vibrations of a
stretched violin string). This tension e†ect47 dominates, in
general, only in open, framework structures. A useful and
related treatment of the negative thermal expansion in this
system in terms of ““ rigid unit modes ÏÏ, i.e., low-frequency
phonon modes which propagate with no distortion of the

octahedra or tetrahedra, has been given by PrydeZrO6 WO4et al.48 Negative thermal expansion is reviewed more exten-
sively in ref. 49.

At pressures over 0.2 GPa, cubic undergoes aZrW2O8phase transition to an orthorhombic phase,50 with a B5%
reduction in cell volume. In this less open structure the
average W and O coordination numbers are increased due to
enhanced interactions between adjacent groups. TheWO4decreased Ñexibility is reÑected in calculated and observed
expansion coefficients an order of magnitude smaller than for
the cubic phase.

In this context it is also worth noting the work of Parker et
al. who, using numerical derivatives of the free energy, pre-
dicted negative thermal expansion coefficients for certain
crystalline zeolite framework structures.51 These have subse-
quently been conÐrmed experimentally.52

Surface free energies

Though there have been many simulations of surfaces which
have considered only the static contribution to the total
energy of the relaxed surface,53h55 few studies have included
dynamic e†ects, including temperature. Molecular dynamics
has been used to study the M001N surfaces of KCl56 and
NiO,57 and Mulheran and co-workers have used a localised
Einstein-like approximation58,59 for the phonon spectrum to
estimate the temperature dependence of surface energies.

Here we present results based on the full minimisation of
the free energy for the M001N and M110N surfaces of MgO.
Irregularities such as ledges, kinks, steps, and electronic
defects, present on real surfaces, are ignored. The well-
established set of shell-model interionic potentials for MgO
due to Stoneham and Sangster60 is used. Our strategy di†ers
substantially from the two-region strategy commonly used for
static calculations,53,55 where only the positions and polariza-
tions of the ions in the vicinity of the surface are relaxed
explicitly while the remainder are constrained to their bulk
lattice positions. We consider a slab in which the crystal is
inÐnite in two directions and Ðnite in the other. If the slab is
sufficiently thick to provide e†ectively a bulklike region in the
interior of the slab, then the two surfaces, essentially noninter-
acting, can be taken as free surfaces.

Fig. 4 shows the calculated temperature dependence of the
M001N surface energy of MgO. Approximately 10 layers are
sufficient to achieve convergence to 0.001 J m~2. This is more
then twice the number of layers necessary for the convergence
of the static energy. The M001N surface energy decreases with
temperature, less markedly than predicted for the M001N

Fig. 4 Calculated temperature variation of the surface energies of the
M001N and M110N surfaces of MgO.
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surface of NiO by Mulheran.59 The variation with tem-
perature is consistent with that noted for rocksalt (100) sur-
faces by Benson and Yun.61

The M110N surface shows a rather more marked decrease
with temperature than the M001N, as is clear from Fig. 4. For
this surface, at B1600 K the quasiharmonic approximation
breaks down when imaginary frequencies appear. The analo-
gous temperatures for the appearance of imaginary fre-
quencies in the bulk and the M001N surface are B2900 K and
B2600 K respectively ; indicating that the quasiharmonic
approximation fails at somewhat lower temperatures for the
surfaces than for the bulk modes, due to modes with large
amplitude of vibration. It is tempting to suggest that surface
melting occurs at temperatures below that of the bulk
(3100 K).

Fig. 5 shows calculated bulk, surface and surface-excess
phonon densities of states for these two surfaces of MgO at
700 K. The surface calculations were carried out on slabs fully
relaxed at this temperature. Also plotted is the excess DOS
(surface minus bulk) which is responsible for the dynamic con-
tribution to the surface free energies. The appearance of
surface-localized modes is clear and the intensity of some
important bulk modes decreases. The excess DOS for the
M100N surface is in good agreement with experiment62 up to
B18 THz. The calculations do not show the peak reported
above 18 THz and so do not support an earlier suggestion63
that surface relaxation at elevated temperature is responsible
for this feature. One possible explanation29 for the peak at
high frequencies is the presence of steps on the M100N surface,
which can alternatively be described as the formation of a
microfaceted M110N surface. Refs. 29 and 64 contain results for
a wider range of oxide surfaces.

Defect energies and defect volumes

Our next example is the substitution of Mg2` in MgO by
Ba2`, which involves a large structural distortion of the lattice
since the Ba2` ion is so much larger than Mg2`. A detailed
study of the defect free energies, enthalpies and volumes over
the range 0È1500 K, which to our knowledge is the Ðrst report

Fig. 5 Calculated bulk, and M001N and M110N surface-excess (surface-
bulk) phonon densities of states at 700 K for MgO.

based on the full minimisation of all internal and external
strains, has been given previously.65

The approach we use here is based on the well-established
use of ““ supercells ÏÏ to describe the defective lattice. A super-
lattice of defects is introduced extending throughout the
macroscopic crystal. The periodicity is then of the superlattice
and the supercell contains many atoms whose equilibrium
positions are not wholly determined by symmetry, but are
described by a set of dimensionless internal strain coordinates

Defect properties such as energies and entropies, which aree
k
.

denoted by lower case letters (e.g., denotes the change ingpGibbs free energy at constant pressure) can then be computed
both at constant pressure and at constant volume, e.g.,

fv \ fv(V , T ) \ MFdc(V , T ) [ Fpc(V , T )N/Nd (11)

gp\ gp(P, T ) \ MGdc(P, T ) [ Gpc(P, T )N/Nd (12)

uv \ uv(V , T ) \ MUdc(V , T ) [ Upc(V , T )N/Nd (13)

hp \ hp(P, T ) \ MHdc(P, T ) [ Hpc(P, T )N/Nd (14)

where the subscripts dc and pc refer to the defect crystal and
perfect crystal respectively and quantities in capital letters are
free energies (F, G), internal energies (U) or enthalpies (H) of
the macroscopic crystal. is the total number of defectsNdintroduced into the macroscopic crystal. No account therefore
is taken here of the conÐgurational entropy of randomly posi-
tional defects in the lattice, which is of course asymptotically
correct for a single isolated defect. Convergence towards
properties of an isolated defect occurs as the superlattice
spacing is increased.

We calculate directly the free energy changes accompanying
defect formation at constant pressure and constant(gp)volume To calculate the external strain is kept con-( fv). fv ,
stant while the internal degrees of freedom are varied to give
the equilibrium conÐguration at temperature T . Similarly, for

both external and internal strains are varied to be consis-gp ,
tent with the speciÐed pressure. It is straightforward to deter-
mine and from the terms that contribute to anduv hp fv gp .
The volume of formation of the defect, follows immediatelyvp ,
from the minimisation of F] PextV .

We show in Fig. 6 the variation of and with tem-hp uvperature, calculated using lattice dynamics, for a supercell of
216 ions, containing one Ba ion. is always greater thanhp(T )

above T \ 0 ; in the isolated defect limit, it is possible touv(T )
show66 that

hp[ uv \ (bT /s
T
)vp (15)

Here both b and are positive. Fig. 6 shows that the tem-vpperature dependence of is much larger than that of anduv hpopposite in sign. The results conÐrm the traditional
assumption66,67 that and are fair approx-uv(0) uv(static)

Fig. 6 Temperature variation of and (]) for a supercellhp ()) uvcontaining 216 ions. For comparison and are alsouv(0) uv(static)
shown.
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imations to is a better approximation whenhp(T ). uv(static)
While the high temperature values of clearlyT [HD . uvextrapolate back towards the same is not true ofuv(static), hp .

In Fig. 7 we compare the results for and calculatedhp vpusing lattice statics and QLD with those obtained from sub-
tracting the results of (NPT) MC simulations on the defective
and the perfect crystals. The MC simulations are at least two
orders of magnitude more expensive than the lattice dynamics
calculations. The uncertainties in the MC calculation are such
that the precision of the MC results is much less than those
from lattice dynamics. Nevertheless the two sets of results in
Figs. 6 and 7 are entirely consistent. Where, as here, the ther-
modynamic quantity of interest is determined by the relatively
small di†erence between two large quantities eV(h

p
B 16

which compares with an enthalpy of B4400 eV for a supercell
of 216 ions), the high precision of the lattice dynamics
approach is particularly valuable.

Solid solutions

Disorder in polar solids has largely been investigated theoreti-
cally via point defect calculations, which refer only to the
dilute limit, or as in the previous section via supercells. These
methods are not readily extended to mixtures or disordered
systems containing a Ðnite impurity or defect content. Model-
ling studies have thus focused on problems involving low con-
centrations of defects. This is particularly unfortunate due to
the evident experimental importance of disordered and grossly
non-stoichiometric systems.

In Fig. 8 we show the values of for MnO/MgO deter-*Hmixmined using our HMC technique and a box-size of 216 ions at
1300 K, with a set of interionic potentials taken from ref. 68,

Fig. 7 Temperature variation of and for a substitutional Bahp vpdefect in MgO calculated from Monte Carlo (MC) and quasiharmonic
lattice dynamics (QLD) simulations. The error bars show the root
mean square deviations in the calculated quantities.

Fig. 8 Calculated values of at 1300 K for MnO/MgO using*Hmixhybrid Monte Carlo (HMC), mean Ðeld theory (MF) and quasi-
harmonic lattice dynamics (QLD). Two sets of experimental data are
also shown (RG from ref. 71, GP from ref. 70).

20 000 equilibration cycles and 20 000 data collection steps.
We also show values calculated using a mean Ðeld (MF) treat-
ment. Here, instead of distinct Mg2` and Mn2` ions, a
““hybrid ÏÏ ion is introduced, for which the non-Coulombic
potentials are a linear combination of the potentials for Mn2`
and Mg2`, weighted appropriately by the site occupancies. If
local relaxation or clustering is important, then mean-Ðeld
results will be poor. Fig. 8 shows that this is the case even in
our relatively straightforward example with two cations not
too dissimilar in size (sixfold coordinate radii are 0.83 andA�
0.72 for Mn2` and Mg2` respectively69). It is worth stress-A�
ing that here traditional Monte Carlo and traditional molecu-
lar dynamics, excluding explicit interchange of cations, failed
completely as a negligible number of Mn and Mg inter-
changes took place, highlighting the need for methods in
which di†erent conÐgurations are sampled efficiently. A com-
parison of methods for achieving this sampling in a range of
di†erent systems is given in ref. 34.

In Fig. 8 we also show the values of for MnO/MgO*Hmixdetermined using conÐgurationally averaged lattice dynamics
and eqn. (5), with a unit cell of 64 atoms and 32 randomly-
chosen cation arrangements. In this case the cell size and the
number of cation arrangements is sufficient to ensure con-
vergence in to 0.1 kJ mol~1. It is clear from Fig. 8 that*Hmixthere is excellent agreement between the QLD and HMC
methods. The enthalpy of mixing at 1300 K is symmetric with
a maximum of approximately 5.4 kJ mol~1 (50% MgO, 50%
MnO). Agreement with the data of Gripenberg et al.70 is
good ; we see none of the asymmetry reported by Raghavan.71
The calculated value of varies only slightly with tem-*Hmixperature.

The lattice dynamics approach is particularly useful for
quantities such as entropies of mixing since free energies are
calculated so readily. Fig. 9 shows entropies of mixing for
CaO/MgO (for mole fractions of CaO less than 0.15), calcu-
lated using eqn. (6). The size mismatch69 between the two dif-
ferent cations is greater (1.00 and 0.72 than for MnO/MgO.A� )
Results are for cell sizes of 54, 64, 72 or 96 atoms and 95
randomly chosen conÐgurations. The corresponding Ðgure for
120 conÐgurations is indistinguishable by eye. includes*Smixboth conÐgurational and vibrational contributions ; no
assumptions are made regarding the ideality or otherwise of
the solid solution. As with the isolated barium substitutional
defect in MgO discussed earlier the vibrational contribution is
positive since it is dominated by the heavier mass of the
impurity ion which tends to decrease frequencies and the
overall is larger than the ““ ideal ÏÏ value.*SmixA valuable feature of hybrid MC is that it can be readily
used to examine the inÑuence of high impurity or defect con-
centrations on phase transitions. Alternative methods such as
the use of an Ising-type Hamiltonian can not only average out
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Fig. 9 Calculated values of at 1800 K for CaO/MgO calcu-*Smixlated using lattice dynamics.

local e†ects such as ion association but are not readily
extended to include the e†ects of lattice vibrations and high
pressure. Since MnÈMg mixing in silicates is expected to be
quite non-ideal,72 we have chosen to examine (Mg, Mn)SiO3perovskite.73 Parameterisation of approximate Hamiltonians
becomes increasingly difficult for such compounds beyond
binary or pseudobinary mixtures.

We used the same set of interionic potentials for asMgSiO3for in ref. 34. The HMC runs are for a simulationMg2SiO4cell of 540 ions (3] 3 ] 3 unit cells), with an equilibration
period of 50 000 cycles and averaging enthalpy and structural
data over a further 50 000 cycles. Matsui and Price74 have
used constant-pressure molecular dynamics to show that
above 10 GPa, orthorhombic undergoes a tem-MgSiO3perature induced phase transition to a cubic phase prior to
melting, whereas at lower pressures the orthorhombic phase
melts without any change of solid phase. For itself,MgSiO3HMC results are very similar. The calculated transition tem-
perature from the orthorhombic to the cubic phase is 3900 K
at 20 GPa. Fig. 10(a) shows the variation of the lattice param-
eters of with temperature, which shows thisMg0.6Mn0.4SiO3

Fig. 10 (a) Lattice parameters vs. T (K) at 20 GPa for(A� )
(b) Calculated orthorhombicÈcubic transition tem-Mg0.6Mn0.4SiO3 .

perature (K) at 20 GPa vs. Mn content.

compound also undergoes such a phase transition at this tem-
perature. The transition temperature (2500 ^ 50 K) is lower
than for in keeping with simple radius ratio argu-MgSiO3 ,
ments. The calculated transition temperature at 20 GPa as a
function of Mn composition is displayed in Fig. 10(b), and it is
evident that a linear interpolation between the end members is
a very poor approximation. The orthorhombicÈcubic phase
transition for is 500 K lower than the valueMg0.6Mn0.4SiO3of B3000 K predicted by such an interpolation. In passing, it
is worth noting that, unlike the transition temperature, the
calculated volume as a function of Mn composition shows
only a small positive deviation from VegardÏs law, since the a
lattice parameter has a positive deviation and the other two
negative deviations. We have not been able to Ðnd experimen-
tal data for comparison ; data are particularly sparse where a
combination of high temperatures and high pressures is
required. If the analogous compound (Mg, were toFe)SiO3exhibit such a phase transition75 there would be important
implications for the thermodynamic and compositional mod-
elling of the EarthÏs mantle.

Mechanisms

Most of this feature article has been devoted to thermodyna-
mic properties. Somewhat surprisingly, little attention appears
to have been paid in the literature to calculations related to
kinetic and mechanistic aspects. Accordingly we present here a
study of the activation energies of possible mechanisms for the
B1ÈB2 transition at high pressure. This is of considerable
interest as a model for other structural phase transformations,
including those of geophysical importance, as it is one of the
simplest Ðrst-order non-displacive transitions (see, e.g., refs. 76,
77).

Experimentally there appear to be large energy barriers to
the B1ÈB2 transformation. In large, pure crystals the trans-
formation occurs suddenly and simultaneously over the entire
crystal volume.78 The B1 crystal must be subjected to a pres-
sure larger than the thermodynamic transition pressure Ptransin order to obtain the B2 phase. In the reverse direction a
pressure lower than is required. The B2 ] B1 transitionPtransin CsCl at 718 K and zero pressure has also been investigated
by X-ray studies of single crystals and optical microscopy of
single crystals.79

A structural phase transition of a macroscopic crystal
involves the movement of a number of atoms of the order of
AvogadroÏs constant, and, in principle, a potential energyNA ,
hypersurface of dimensions. For the purposes both ofD3NAdeÐning possible mechanisms, i.e. speciÐc atomic pathways,
and their practical calculation, the number of dimensions
must clearly be reduced to only a few. This is achieved most
simply by assuming that some degree of periodicity is retained
in the course of the transition and hence that the mechanism
of the transition can be deÐned in terms of the size and sym-
metry of the repeat unit connecting the two phases. Retention
of periodicity implies that the phase transition is a cooperative
process involving a concerted movement of atoms with no
account taken of the possible played by defects.roü le

Since the repeat unit can be constructed from multiple unit
cells ranging from single unit to cells, all possibleDNA-unit
mechanisms can be deÐned in terms of the size of the repeat
unit and one of the common sub-groups which deÐne its sym-
metry. Thus all mechanisms can be indexed as M(n, S), where
n corresponds to the number of atoms in the repeat unit and S
the symmetry. It follows that the dimensions of the corre-
sponding potential energy hypersurfaces also depend on the
size and symmetry of the repeat unit.

The B1ÈB2 transformation has been discussed chieÑy in the
context of two possible mechanisms. The Ðrst, often the only
model presented in standard texts,80 was proposed initially by
Shoji81 and subsequently modiÐed by Buerger.82 We refer to
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this as the Buerger mechanism; it involves a simultaneous
increase of the rhombohedral angle of the primitive B1 crys-
tallographic cell and a change in the lattice parameter. Thus
for a two ion repeat unit, writing the transition in terms of the
unit cell variables (a, b, c, a, b, c) and irreducible atomic posi-
tions (0 0 0 ; x y z) :

B1(Fm3m)

(a0 , a0 , a0 , n/3, n/3, n/3)

(0 0 0 ; 12 12 12)
]

(a, b, c, a, b, c)
(0 0 0 ; x y z)

]

B2(Pm3m)

(b0 , b0 , b0 , n/2, n/2, n/2)

(0 0 0 ; 12 12 12)

In our notation the Buerger mechanism corresponds to M(2,
Fig. 11 (also see ref. 83¤) shows the deformation of theR3m).

B1 cell towards B2 in this mechanism. Lower symmetry
variants which retain a two-atom unit cell are discussed by
Gufan and Ternovskii84 and Sims et al.85

A second possibility was introduced by Watanabe, Tokon-
ami and Morimoto79 (WTM) in their study of the B2] B1
transition in CsCl. It involves a concerted translation of adja-
cent planes relative to one another with simultaneous
rearrangements of the ions within each plane. It corresponds
to a four-atom orthorhombic repeat unit which transforms as
Pmm2 (25), i.e. M(4, Pmm2). The transition can be repres-
ented as

B1(Fm3m)

(a0/J2, a0/J2, a0 , n/2, n/2, n/2)

(0 0 0 ; 12 12 12)

(12 12 0 ; 0 0 12)

]
(a, b, c, n/2, n/2, n/2)

(0 0 0 ; 12 ] x 12 12)
(12 12 0 ; x 0 12)

]

B2(Pm3m)

(b0/J2, b0 , b0 , n/2, n/2, n/2)

(0 0 0 ; 12 12)

(12 12 0 ; 12 0 12)

The WTM mechanism is somewhat more difficult to visualise
since it involves both the intralayer rearrangement of ions and
the translation of these layers relative to one another. The
details are shown in Fig. 12. Referring to the lattice vectors
marked in this Ðgure, the B2 structure is generated from the
B1 structure by increasing the b/a ratio from b \ a to b \

Fig. 11 Buerger mechanism for the conversion of the B1 into the B2
phase. The Ðgure shows primitive unit cells. See also ref. 83.

¤ Available as electronic supplementary information. See http : //
www.rsc.org/suppdata/cp/a9/a908622f

Fig. 12 WTM mechanism for the conversion of the B1 into the B2
phase. For the B1 phase the a- and b-lattice vectors marked lie in the
M100N plane of the conventional unit cell.

Simultaneously every alternate (001) plane (the labelaJ2 .
(001) refers to the B1 structure throughout) is displaced by an
amount x in the a-direction, as illustrated also in Fig. 12 ; x is
in units of a. The magnitude of the spacing of the (001) planes,
c, also changes. The (001) and planes of the B1 structure(110)
become the (011) and planes, respectively, of the B2(011)
structure. We have a four parameter space, denoted here by
the magnitudes of the three lattice vectors a, b, c and x where
x is the magnitude of the slip of the (001) planes. Although

for both B1 and B2 structures this is not necessarilyaJ2 \ c
so for every point on the minimum energy pathway. Clearly,
calculations involving the WTM mechanism are more costly
than those for the Buerger mechanism.

Here we present results for SrO, calculated using
CRYSTAL956 with the Hay and Wadt small core pseudo-
potential,10 as used previously.11 To our knowledge this is the
Ðrst report where the two mechanisms have been compared
using ab initio, rather than pair-potential, methods.

We start by calculating the variation of G with P for both
the B1 and B2 phases. The electronic energy was deter-Ustatmined for a range of volumes, V , and the corresponding pres-
sure, evaluated numerically from In the static[(dUstat/dV ).
limit the Gibbs energy, G, equals the enthalpy, H, and so

G\ H \ Ustat] PV

\ Ustat[ V (dUstat/dV ) (16)

The thermodynamic transition pressure between any two
phases is the pressure at which the Gibbs energies of the two
phases are equal, i.e.,

GB1(p, VB1) \ GB2(p, VB2) (17)

For SrO the calculated B1ÈB2 transition pressure is 31.7 GPa,
which compares with an experimental value86 of 36^ 4 GPa.

Turning to the possible pathways between the B1 and B2
structures, we have determined the surface in the staticG3
limit, where for both Buerger and WTMG3 \ Ustat] PextVmechanisms. Fig. 13 shows, for the Buerger mechanism, a plot
of the calculated surface as a function of a and a for SrOG3
with (i.e., with the external pressure equal to thePext \ Ptransthermodynamic transition pressure). This shows two minima
at the points corresponding to the B1 and B2 phases. Using
standard procedures,31 it is straightforward to determine the
minimum energy pathway between the two phases, and this is
shown in Fig. 13(b), as a function of reaction coordinate s,
which we label using the corresponding value of a. There is a
clear activation energy barrier of B29 kJ mol~1 at this
applied pressure Fig. 13(c) indicates the variation of a(Ptrans).and a corresponding to the minimum energy pathway of Fig.
13(b) ; a decreases as the rhombohedral angle a increases and
the cell opens out.

Visualisation is more complicated for the WTM pathway
for SrO because more variables must be considered and we
simply quote the Ðnal results. Just as for the Buerger mecha-
nism, at the WTM mechanism is also an activatedPext \ Ptrans
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Fig. 13 (a) Calculated free energy surface in the static limit, for(G3 ),
the Buerger mechanism in SrO. Energy (MJ mol~1) isPext\ Ptrans .plotted as a function of a and a (degrees). (b) Calculated minimum(A� )
energy pathway for the Buerger mechanism in SrO, as a function of
reaction coordinate s, which we label using the corresponding value of
a. (c) Variation in a and a (degrees) along thePext\ Ptrans . (A� )
pathway in part (b).

process, with a lower barrier of D20 kJ mol~1. Although
at the end points of the transition, this ratio doesc/a \J2

not remain constant during the transition. The activation
energies for the two mechanisms are similar in magnitude to
those found in ref. 85 using a two-body potential model (17 kJ
mol~1 and 20 kJ mol~1 for Buerger and WTM mechanisms
respectively) but the relative order is reversed. The ab initio
results presented here suggest the transition takes place via the
WTM mechanism. The calculated ab initio activation
volumes, deÐned as the di†erence between the volume (per
formula unit) of the transition state and that of the equi-
librium B1 structure, at the transition pressure, is
[9.08] 10~7 m3 mol~1 and [8.92] 10~7 m3 mol~1 for
Buerger and Watanabe mechanisms respectively.

In view of the experimental observations of hysteresis in the
applied pressure, we have calculated surfaces at appliedG3
pressures both higher than and lower than The activa-Ptrans .tion energies for B1] B2 and B2] B1 are di†erent at all
pressures except At room temperature thermal contri-Ptrans .butions to the free energy are not large enough to overcome
the energy barrier at Pressures with thermally acces-Ptrans .sible barriers for the B1] B2 transition are larger than the
thermodynamic transition pressures. For B2 ] B1, pressures
with accessible barriers are smaller than Ptrans .Ref. 85 presents activation energies for a wider range of
compounds calculated for the Buerger and WTM mechanisms
using two-body potentials and discusses periodic trends. This
area is clearly ripe for further investigation and a particularly
interesting challenge will be the use of calculated activation
energies and volumes together with nucleation theory to esti-
mate the rates of solid state reactions more widely.

Transition metal oxides at high pressure

Our Ðnal example is the behaviour of MnO and NiO at high
pressure. HF theory has been shown to give an accurate
description of the zero-pressure ground-state electronic and
magnetic structures of these compounds.7,87 Close agreement
has been obtained between HF and experimental B1ÈB2 tran-
sition pressures for a wide range of alkali halides,85,88,89
alkaline-earth oxides,11,85 and the rutile to Ñuorite tran-
sition.39,90 It is of obvious interest to extend our studies of
MnO and NiO to high pressure in order to address a number
of unresolved issues for both compounds, which in several
ways appear to behave unlike their isostructural s-block
counterparts.

Shock wave experiments on MnO reported by Noguchi et
al.91 indicate a pressure-induced phase transition from the
NaCl-(B1) phase at B90 GPa. However, it is not clear
whether this transition is simply to the CsCl-(B2) structure by
analogy with CaO92 and SrO,86 distorted CsCl as possibly in
BaO,93 or NiAs as in FeO,94 and whether the new phase is
metallic as with FeO95 and NiO.96 There appears to be no
evidence of metallisation of the NaCl-phase up to 50 GPa.97
To address these issues, calculations have been carried out98
using the spin-unrestricted UHF procedure99 to describe
open-shell electronic conÐgurations, and the same extended
Gaussian basis sets for the di†erent phases as in previous
work.7

Optimised undistorted structural parameters at zero pres-
sure and corresponding total energies for MnO in the NaCl,
CsCl, zinc blende, wurtzite and NiAs structures were
obtained98 by direct minimisation of the HartreeÈFock
energy. It is possible to calculate the lowest energy spin
arrangements of each of these phases. For example, MnO is
antiferromagnetic with the spin arrangement in which theAF2individual atomic moments are aligned in ferromagnetic (111)
sheets, and adjacent sheets have antiparallel spinÈbut such
calculations involve the use of larger unit cells and so are
computationally more expensive. Previous studies7,100 indi-
cate that the energy di†erences between the magnetic states
and distortions associated with spinÈlattice interactions are
small compared with energy di†erences between di†erent
phases, and so it is unlikely that energy comparisons, based
on the ferromagnetic ordering could lead to an incorrect order
of stability. Energies and volumes at zero pressure for the Ðve
possible structures considered here, all of which were found to
be insulating, are listed in Table 1. The NaCl structure is the
predicted low temperature/low pressure phase, as observed.
To a Ðrst approximation, the transition pressure between the
B1 and B2 phases can be estimated from zero pressure data as

The volumes show that, of these ÐvePtB [(*E/*V )
P/0 .

structures, the CsCl structure is the only possibility for the
high-pressure phase, with GPa.Pt B 140

Equations of state and free energies in the static limit were
calculated as for SrO in the previous section. Calculations
using interatomic potentials and QLD indicate that at 300 K
the change in transition pressure due to the inclusion of vibra-
tional e†ects is negligible.85,101 Turning to consider the actual

Table 1 HartreeÈFock optimised structures and corresponding ener-
gies for MnO

Structure *EHF/eV a/A� c/A� V /A� 3

NaCl 0.0 4.524a È 23.149
Wurtzite 0.13 3.477 5.550 29.058
Zinc blende 0.21 4.877 È 29.003
NiAs 0.38 3.140 5.520 23.570
CsCl 1.59 2.774 È 21.349

a The experimental value of a is 4.445^ 0.001 A� .
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Fig. 14 Calculated and experimental Hugoniots for MnO. (L)
experimental data from ref. 91, data from ref. 102.())

high pressure structures, the NaCl-phase is high-spin insulat-
ing in both the FM and spin arrangements up to a pres-AF2sure of 210 GPa. Fig. 14 shows the full HF Hugoniot for the
NaCl structure compared with the diamond-anvil data102 and
the reduced shock compression results.91 The evident agree-
ment between calculated and static compression data is strong
evidence that MnO stays in the B1 phase, at least up to the
limit of the static compression (B60 GPa).

The CsCl structure is high-spin insulating up to 120 GPa,
above which the UHF solutions are conducting. Since HF
theory in the form used here gives an inadequate description
of conducting phases, the properties of the metallic B2 phase
were not considered further. As shown in Fig. 15, even at 120
GPa the NaCl-structure is still lower in free energy, so that a
transition from insulating undistorted NaCl to undistorted
insulating CsCl is not predicted by the UHF calculations. A
value around 160 GPa for the hypothetical transition pressure
is obtained by extrapolating the G vs. P plots of Fig. 15. This
value is close to that obtained by extrapolation of a plot of
transition pressure vs. cation radius for the alkaline-earth
oxides.98

SpinÈlattice interaction in the spin arrangement of theAF2NaCl-phase leads to a small rhombohedral distortion of the
lattice,103 which earlier UHF calculations have predicted cor-
rectly.7 This rhombohedral distortion increases with pressure,
lowering the energy of the NaCl-phase at all pressures con-

Fig. 15 Calculated free energies, in the static limit, as a function of
pressure for the B1 and B2 phases of MnO. The dotted line denotes
the extrapolation of the cubic B2 results, as described in the text.

sidered.98 It leads to a small increase in the stability of the B1
phase at these pressures and so cannot account for the
observed phase transition as involving insulating NaCl- and
CsCl-phases.

In summary, MnO remains insulating with the NaCl struc-
ture up to the reported transition pressure of B90 GPa; this
observed transition is incompatible with a non-metallisation
transition to an undistorted CsCl-phase, but compatible with
either a transition to a distorted CsCl-phase or a metallisation
transition to a CsCl-phase. Explicit inclusion of a posteriori
correlation corrections to the total HartreeÈFock energy
based on the Perdew functional14 leaves these conclusions
unchanged.98

As with MnO, spinÈlattice interaction in the arrange-AF2ment of NiO leads to a small rhombohedral distortion,104
Sasaki has reported a density-functional study105 of the
rhombohedral distortion of the B1 phase of NiO at high pres-
sure, and Ðnds a much larger distortion at pressures above 60
GPa, predicting a hexagonal c/a ratio as low as B2.18 at 100
GPa. The magnitude of this distortion is such that we have
found it worthwhile to extend our earlier zero-pressure
studies7 in order to compare SasakiÏs results with those from
periodic unrestricted HF theory. Calculated and
experimental106,107 Hugoniots are in good agreement as is
clear from Fig. 16, and this has encouraged us to investigate
possible rhombohedral distortions in the arrangement inAF2more detail. The results for this distortion as a function of
pressure are shown in Fig. 17. We predict only a small
decrease in the hexagonal c/a ratio with pressure, correspond-
ing to an increase in the rhombohedral angle from D60.08¡ at
zero pressure to D60.18¡ at 100 GPa. In marked contrast to

Fig. 16 Calculated and experimental Hugoniots for NiO (·)
Denotes experimental data points from ref. 106. experimental(K)
data from ref. 107.

Fig. 17 Calculated variation with pressure of anda/a0 c/c0(expressed in the hexagonal system) for NiO.
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the DFT study of Sasaki,105 we Ðnd no evidence of a change
in behaviour with pressure associated with a sharp decrease in
the c/a ratio at 60 GPa. It is clear from this discrepancy
between HF and DFT that further work, both theoretical and
experimental,108 is essential to resolve this issue. These results
for NiO also serve to illustrate the important point that high
pressures, which can sample internuclear separations very dif-
ferent from those adopted under ambient conditions, serve as
a stringent test of any theoretical method.

Final remarks
We have outlined, with the aid of a wide-ranging set of exam-
ples, how ab initio, QLD, MC and MD techniques, employed
together in a powerful combination, provide valuable insight
into the behaviour of perfect and defective polar solids at ele-
vated temperatures and/or high pressures. Properties exam-
ined include thermal expansion coefficients, the isothermal

function, free energies of defect andAndersonÈGru� neisen
surface formation, excess quantities of mixing and thermody-
namic and mechanistic aspects of phase transitions. We have
been able to assess critically common approximations used for
many years, and have even made some predictions. Calcu-
lations at Ðnite temperatures and/or high pressures are a sen-
sitive test of any theoretical method, in large part due to the
need to represent accurately the ionic interactions over a
range of interatomic distances that may be far from those
adopted at T \ 0 and zero pressure.

Increasingly attention is moving from bulk properties to
defect and surface properties at Ðnite temperature and to solid
solutions. In particular, new methods, such as HMC or
explicit free energy minimisation of a large number of conÐgu-
rations, that are capable of dealing with high defect levels will
increase considerably the contact between experiment and
theory in many areas of materials and solid-state research.
Although QLD usually fails above two-thirds of the melting
point, it is an attractive strategy for the rapid evaluation of the
free energy below this temperature and remains valid at low
temperatures at which classical MC and MD fail. There is
much scope for future applications ranging from the calcu-
lation of important ceramic and minerological data such as
phase diagrams to new methods for kinetic and mechanistic
aspects of solid state reactions. For example, our knowledge
of the accretion and subsequent chemical di†erentiation of the
Earth derives largely from chemical analyses of trace elements
and their isotopes in rocks, and modelling and interpretation
of these data require a detailed understanding of how trace
elements are partitioned between coexisting phases,109 often
at high T and P.

Many of the dynamic properties examined here can be
highly sensitive to the interionic potentials employed. Increas-
ingly, too, attention is being paid to situations involving
mechanisms and phase transitions where the energy di†er-
ences involved may be very small indeed and highly potential
dependent. Despite substantial developments in recent years
in obtaining potentials directly from ab initio calculations,
improved representations of the interionic interactions are
urgently required. In the long run, as computer power con-
tinues to increase, it may well prove preferable to develop
directly ab initio molecular dynamics and ab initio lattice
dynamics techniques.
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