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Evaluation of Thermodynamic Properties of Solids by
Quasiharmonic Lattice Dynamics1

N. L. Allan,2 G. D. Barrera,3 T. H. K. Barron,2, 4 and M. B. Taylor2

Quasiharmonic lattice dynamics is a simulation technique complementary to
Monte Carlo and molecular dynamics. Quantum effects are readily taken into
account, and high precision does not normally require long runs. Vibrational
stability is a sensitive test of interatomic potentials, and details of the vibrational
motion reveal mechanisms for phase transitions or for thermal expansion. The
major computational task is usually to find the equilibrium geometry at a given
T, P; this done, calculating free energy, heat capacity, thermal expansion, etc.,
is rapid and accurate. For three-dimensional ionic crystals and slabs, our code
SHELL calculates analytically first derivatives of the free energy with respect
to all strains, internal as well as external; this gives a full minimization of the
free energy so efficient that large unit cells can be used, allowing applications
to defects and disordered systems. Various applications are discussed: MgF2 ,
including the rutile�fluorite transition; negative thermal expansion in ZrW2O8 ;
anisotropic expansion of polyethylene at very low temperatures; surface free
energies for MgO; defect energies and volumes in MgO; and a new method for
obtaining free energies and phase diagrams of disordered solids and solid solu-
tions, applied to MnO�MgO and CaO�MgO.

KEY WORDS: defects; free energy minimisation; lattice dynamics; low tem-
peratures; solid solutions; thermal expansion.

1. INTRODUCTION

Quasiharmonic lattice dynamics (QLD) is a relatively inexpensive techni-
que, which avoids the kinetic barriers and critical slowing-down effects
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suffered by Monte Carlo (MC) and molecular dynamics (MD) and has the
advantage that free energies and derived properties such as entropy and
heat capacity can be calculated directly with a high precision. QLD also
gives a sensitive test for interatomic potentials, in that imaginary phonon
frequencies may indicate at once that a trial potential is invalid. The main
disadvantage is that QLD is valid only when vibrational amplitudes are
fairly small, and so other techniques must be used at high temperatures as
melting is approached. We first outline the technique, as applied by our
recent code SHELL [1], and then present the set of illustrative examples
listed in the abstract.

2. THEORETICAL METHODS

Our new code SHELL [1] uses both lattice statics and QLD, and is
designed for the efficient study of solids and slabs with periodic structures
and many internal strains. In its present form, two- and three-body poten-
tials represent short-range forces. Ionic and polarizability effects are taken
into account by using the well-known shell model, in which each ion
consists of a massive ``core'' and a massless ``shell''; both core and shell are
charged, and so their relative displacement produces an electric dipole.

For structure optimization, we minimize the free energy using its
strain derivatives. Most previous work has used the zero s tatic internal
stress approximation (ZSISA), or minor variations thereof, in which only
external coordinates (dimensions of the unit cell) are relaxed using fully
dynamic free energy derivatives, while internal coordinates (positions of the
ions in the unit cell) are relaxed using static energy derivatives. The static
energy derivatives are easy to calculate analytically and the small number
of external free energy derivatives are obtained numerically. ZSISA gives
optimized external coordinates correctly to first order [2], but to get
correct internal coordinates requires a full minimization of the free energy
with respect to all coordinates; and even for moderately sized unit cells, to
do this by numerical differentiation is normally prohibitively expensive.
SHELL therefore adopts a method suggested for complex ionic crystals by
Kantorovich [3] and calculates the full set of free energy first derivatives
analytically; this makes possible a valid treatment of the atomic positions
within the unit cell.

For optimization at an applied pressure Pext , we minimize the
``availability'' [4] G� =F+PextV with respect to all strains. In QLD the
Helmholtz free energy, F, at temperature T is the sum of static and vibra-
tional contributions:

F(E, T )=8stat(E)+Fvib(E, T ) (1)
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where E denotes the full set of strain variables, comprising both external
('*) and internal (=k) strains. 8stat is thus the potential energy of the static
lattice in a given state of strain E. Traditional static lattice simulations
evaluate only 8stat and its strain derivatives.

Fvib is the sum of harmonic vibrational contributions from all the
normal modes of vibration and, for a periodic structure, is given by

Fvib= :
q , j

[ 1
2h& j (q)+kBT ln[1&exp(&h& j (q)�kBT )]] (2)

in which the first term is the zero-point energy. The frequencies &j (q) of
modes with wavevector q are obtained by diagonalizing the dynamical
matrix D(q) [5], which is a function of the strain E. The strain derivatives
are given by

\�Fvib

�EA +E$, T

= :
q , j {

h
2& j (q) \

1
2

+
1

exp(h& j (q)�kBT )&1+\
�&2

j (q)

�EA +
E$= (3)

where E$ denotes that all the E are kept constant except for the differentia-
tion variable EA . SHELL uses first-order perturbation theory to derive
(�&2

j (q)��EA)E$ from analytic expressions for (�D��EA)E$ . Details and full
expressions are given in Refs. 6�8. A variable metric method [9] is used
to minimize F+Pext V with respect to the EA . The static energy Hessian,
(�28stat��EA �EB), is used as an approximation to (�2F��EA �EB) in the first
step; in subsequent iterations the (�F��EA) are calculated in the new con-
figuration and the inverse Hessian updated.

The reliability of QLD at high temperatures can be investigated by
comparison with classical MC or MD simulations. For ionic solids we have
found that QLD is usually valid up to about one-half to two-thirds of the
melting point.

3. APPLICATIONS

3.1. MgF2

Our simplest example is the rutile phase of MgF2 , which has a small
unit cell with only one internal degree of freedom. The potentials are
derived from a calculated Hartree�Fock (HF) potential energy hypersur-
face [10]. We have carried out not only QLD, but also MD and MC
simulations for comparison. The latter two used a simulation cell contain-
ing 192 Mg and 384 F ions arranged initially in a box of sides 4_4.52,
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4_4.52, and 6_3.09 A1 . In the MC simulations, the thermodynamic data
were collected over 107 steps after a 107-step equilibration.

HF theory generally overestimates lattice parameters, and for MgF2

the HF lattice parameters a and c are slightly larger than experiment [11].
For the new potential obtained by fitting to HF energies, a is too small by
about 0.30 and c too large by about 40 (Fig. 1). However, the variation
with T of a and c is close to experiment. Below the Debye temperature
(3D) the MC values for a and c are slightly lower than the QLD values,
because only QLD takes account of quantum effects (largely zero-point
vibration) which expand the lattice by a small amount. The MC and MD
results are in good agreement. Around 3D the QLD results are in good
agreement with MC and MD, but for T �1300 K they diverge, a charac-
teristic indication that the quasiharmonic approximation is starting to fail.

Simulations are a valuable means of examining widely used quantities
for which data are sparse. For example, one key quantity in geophysics
is the isothermal Anderson�Gru� neisen function, $T , and its variation with
pressure,

$T=&(� ln BT�� ln V )P=&(� ln ;�� ln V )T (4)

where ; is the volumetric thermal expansion coefficient [=(�V��T )P�V ]
and BT the isothermal bulk modulus. For the rutile phase of MgF2 over
its entire pressure range, we find that ; is approximately proportional to
V t at 300 K, where tr7, so giving $T a constant value of 7. For the
fluorite phase adopted at high pressures [10], in contrast, $T decreases
with pressure, from r5.7 at the transition to r4.7 at 80 GPa.

3.2. Negative Thermal Expansion��ZrW2O8

ZrW2 O8 exhibits large negative thermal expansion [12, 13] from 0.3
to 1050 K; at 428 K there is a transition to a disordered phase, but the
ordered phase provides an excellent test of our methods. The unit cell is
cubic and comprised of WO4 tetrahedra sharing corners and ZrO6

octahedra linked in such a way that each octahedron shares corners with
six different WO4 tetrahedra. Each WO4 tetrahedron shares only three of
its four oxygens with adjacent ZrO6 octahedra.

Our QLD calculations for ZrW2O8 are analogous to those for MgF2 .
For the intraoctahedron O�Zr�O and intratetrahedron O�W�O inter-
actions, we used a Urey-energy term, E= 1

2k(rO�O&re)2, where rO�O is the
O�O distance and re a constant, rather than an angle term. The calculated
linear thermal expansion coefficient : (=;�3) over the range 50 to 300 K
is &3.5_10&6 K&1 (experiment r&8.3_10&6 K&1 [13]).
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Fig. 1. Calculated values of a and c for MgF2, with experimental data from Ref. 11.
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To understand why this type of cubic structure has negative thermal
expansion, we recall the thermodynamic relation ;=(�S��V )T�BT . Since
BT is always positive, ; and (�S��V )T have the same sign. (�S��V )T is
negative for ZrW2O8 , due largely to the Zr�O�W transverse vibrations,
which increase in frequency with increasing Zr�W internuclear separation
(cf. the transverse vibrations of a stretched violin string). This tension effect
[14] predominates, in general, only in open structures. A useful and
related treatment in terms of ``rigid unit modes'' has been given by Pryde
et al. [15].

At pressures over 0.2 GPa, cubic ZrW2 O8 undergoes a phase transi-
tion to a denser orthorhombic phase [16]. In this less open structure, both
calculated and observed expansion coefficients are negative and an order of
magnitude smaller than for the cubic phase.

3.3. Very Low Temperatures��Polyethylene

At low temperatures, CP and expansion coefficients :* are very small,
tending to zero as T � 0; but they can be measured down to r1 K or
lower by sensitive techniques [17, 18]. Such measurements give informa-
tion about low energy levels and their strain dependence. At these tem-
peratures MC and MD cannot simulate CP and :* , but the analytical
methods of QLD obtain them to a high precision if increasingly fine grids
are used for integrating over q as q=0 is approached [19].

We have applied QLD to short-range models of orthorhombic poly-
ethylene [20]. The unit cell has 3 external and 6 internal degrees of
freedom. Zigzag polymer chains run in the c-direction, interacting weakly
with neighboring chains, so that c33 is much larger than c11 or c22 ; :c is
therefore small and negative because of the tension effect in the C�C bonds.
Above 100 K, X-ray diffraction shows that :a and :b are positive, with :a

about double :b . At low temperatures dilatometric measurements on
drawn samples show that the mean of :a and :b remains positive but do
not give separate values. All our models indicate that below about 10 K the
anisotropy between :a and :b is greatly reduced or even reversed, due
largely to a ``rotational tension'' effect [14] that rotates bonds in crystals
of low symmetry.

3.4. Surface Free Energies

We have used full minimization of the free energy to study the [001]
and [110] surfaces of MgO, using a well-established set of shell-model
potentials [21]. Our strategy differs from the two-region strategy com-
monly used for static calculations [22, 23]. We consider a slab, infinite in
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Fig. 2. Calculated surface energies for MgO.

two directions and finite in the other. For a thick enough slab the two faces
are essentially noninteracting and can be taken as free surfaces.

Figure 2 shows the calculated temperature dependence of the surface
energies. About 10 layers give convergence to 0.001 J } m&2, more than
twice the number of layers needed for the static energy to converge. Both
surface energies decrease with temperature, the [110] rather more
markedly. Imaginary frequencies appear at r1600 K for the [110] surface,
r2600 K for the [001] surface, and r2900 K for the bulk, indicating that
QLD fails at lower T for the surfaces than for the bulk, due possibly to sur-
face modes with a high amplitude of vibration. It is tempting to suggest
that surface melting occurs at temperatures below the bulk melting tem-
perature (3100 K). Reference 8 contains results for a wider range of oxide
surfaces.

3.5. Defect Energies and Defect Volumes��Ba2+ in MgO

A large Ba2+ substituted for Mg2+ in MgO distorts the lattice greatly.
Our detailed study of the defect free energies, enthalpies, and volumes over
the range 0�1500 K, based on the full minimization of all strains, has been
given previously [24].

A superlattice of defects is introduced throughout the macroscopic
crystal. The periodicity is then of the superlattice; the supercell contains
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many atoms whose equilibrium positions are not wholly determined by
symmetry but are described by a set of dimensionless internal strain coor-
dinates =k . Defect properties, denoted by lowercase letters (e.g., gp denotes
the change in Gibbs free energy at constant pressure) can then be com-
puted both at constant pressure and at constant volume; e.g.,

fv= fv(V, T )=[Fdc(V, T )&Fpc(V, T )]�Nd ;
(5)

gp=gp(P, T )=[Gdc(P, T )&Gpc(P, T )]�Nd

Subscripts dc and pc denote ``defect crystal'' and ``perfect crystal,'' respec-
tively, and quantities in capital letters are free energies (F, G ) of the macro-
scopic crystal; Nd is the total number of defects in the macroscopic crystal.
No account therefore is taken here of the configurational entropy of ran-
domly positional defects in the lattice; this is asymptotically correct for a
single isolated defect and convergence toward properties of an isolated
defect occurs as the superlattice spacing is increased.

To calculate fv , the external strain is kept constant while the internal
degrees of freedom are varied to give the equilibrium configuration at tem-
perature T. Similarly, for gp , both external and internal strains are varied
to be consistent with the specified pressure. uv and hp are determined
from the terms that contribute to fv and gp . The volume of formation of
the defect, vp , follows immediately from the minimization of F+PextV.

Figure 3 shows hp(T ) and uv(T ) vs T, for a supercell of 216 ions
containing one Ba2+. hp is always greater than uv above T=0; in the
isolated defect limit [25] hp&uv=(;T�/T ) vp , where vp is the defect
volume. Here both ; and vp are positive. The T dependence of uv is much
larger than that of hp and opposite in sign. The results confirm the tradi-
tional assumption [25, 26] that uv(0) and uv(static) are fair approxima-
tions to hp(T ). uv(static) is a better approximation when T>3D . While the
high-temperature values of uv extrapolate back toward uv(static), this is not
true of hp . Where, as here, the thermodynamic quantity of interest is deter-
mined by the relatively small difference between two large quantities
(hpr16 eV; cf. an enthalpy of r4400 eV for a supercell of 216 ions), the
high precision of the lattice dynamics approach is particularly valuable.

3.6. Solid Solutions

Disorder in polar solids has been investigated theoretically largely via
point defect calculations (the dilute limit) or, as in the previous section,
via supercells. These methods are not readily extended to mixtures or dis-
ordered systems with a finite impurity or defect content. Instead, we have
developed a configurationally averaged lattice dynamics approach to solid
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Fig. 3. Temperature variation of hp (h) and uv (+) for a supercell of
MgO containing 216 ions, with one Mg2+ replaced by Ba2+. uv(0) and
uv(static) are also shown.

solutions [27], which evaluates an appropriate thermodynamic average
over a (limited) set of calculations for different configurations of cations
within a supercell. If Gk is the optimized free energy of configuration k, the
enthalpy and entropy of the solid solution are approximated by

(H ) =
�k Hk exp(&Gk�kBT )

�k exp(&Gk�kBT )
, (S)=

(H )
T

+kB ln :
k

exp(&Gk�kBT )

(6)

Figure 4 shows values of 2Hmix for MnO�MgO obtained in this way
with a unit cell of 64 atoms and 32 randomly chosen cation arrangements.
The interionic potentials were taken from Ref. 28. The cell size and the
number of cation arrangements are sufficient to give convergence in 2Hmix

to 0.1 kJ } mol&1. There is excellent agreement (Fig. 4) between QLD and
a novel Monte Carlo exchange (MCX) technique also developed by us for
solid solutions [29]. The enthalpy of mixing at 1300 K is symmetric, with
a maximum r5.4 kJ } mol&1 (500 MgO, 500 MnO). Agreement with the
experimental data of Gripenberg et al. [30] is good; we do not see the
asymmetry reported by Raghavan [31]. The calculated value of 2Hmix

varies only slightly with temperature. The failure of the mean field (MF)

543Properties of Solids by Quasiharmonic Lattice Dynamics



File: 840J 788810 . By:SD . Date:13:02:01 . Time:12:52 LOP8M. V8.B. Page 01:01
Codes: 1741 Signs: 1261 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Calculated values of 2Hmix at 1000 K for MnO�MgO given by
configurational lattice dynamics (QLD), exchange Monte Carlo (MCX), and
mean field theory (MF). Two sets of experimental data are also shown (RG from
Ref. 30, GP from Ref. 31).

approximation shows that local structural relaxation or clustering is
important.

QLD is particularly useful for quantities such as entropies of mixing
since free energies are obtained so readily. 2Smix includes both configura-
tional and vibrational contributions; no assumptions are made about the
ideality of the solid solution. Thus calculated entropies of mixing for
CaO�MgO (for mole fractions of CaO less than 0.15) show that 2Smix is
larger than the ``ideal'' value; as with the isolated Ba defect in MgO, the
vibrational contribution is positive. This work is currently being extended
to 2Gmix and so to phase diagrams.

4. CONCLUSIONS

QLD is an economical and precise tool for not only the bulk, but also
surfaces, defects, and solid solutions. New methods, such as explicit free
energy minimization of a large number of configurations, can deal with
high defect levels and increase considerably the contact between experiment
and theory in many areas of materials and solid-state research. Future
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applications include calculating ceramic and minerological data (e.g., phase
diagrams), possibly at high pressures, and kinetic and mechanistic aspects
of solid-state reactions. Codes for ionic solids and metals (using the embedded
atom model) are available from the authors [32].

Many properties are highly sensitive to the interionic potentials. In
recent years improved potentials have been obtained by fitting to ab initio
calculations, but in the long run, with increasing computer power, it may
be better to develop direct ab initio MD and QLD techniques.
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