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Abstract

Full dynamic free energy minimisation is used to study the stability of different polymorphs of MgCl2, with a new set

of interionic potentials derived from ab initio calculations using density functional theory. The calculated difference in

free energies between the a- and b-phases is extremely small: the vibrational contribution reverses the relative ordering
of these two structures obtained in the static limit. We predict the thermal expansion of both forms is highly anisotropic

and that, unusually, above � 60 K the expansion is larger parallel than perpendicular to the layers. � 2001 Elsevier

Science B.V. All rights reserved.

1. Introduction

Magnesium chloride is an important catalytic
support for titanium halides in the Ziegler–Natta
polymerisation of stereoregular polyolefins and its
behaviour depends in part on a ready intercon-
version between a range of structural forms. When
the cation–anion radius ratio is less than 0.41, as in
MgCl2, layered structures are preferred for crystals
with stoichiometry AB2 and generally these are less
ionic than the fluorite or rutile structures. The
most common crystalline form of MgCl2 is
a-MgCl2 [1], in which close-packed planes of
chlorines are stacked . . .ABCABC. . . along the c-

axis. In b-MgCl2 [2] the chlorines are hexagonally
close-packed, . . .ABABAB. . ., and in the d-form
[2] there is a random sequence of cubic- and hex-
agonal-close packed layers along the c-axis. Mg
atoms always lie in alternate layers of octahedral
sites sandwiched between layers of Cl atoms. All of
these layered structures consist of series of Cl–Mg–
Cl ‘sandwiches’ stacked along the c-axis.
We have previously carried out a periodic ab

initio study of the stability of polymorphs of
MgCl2 [3] using both Hartree–Fock (HF) and
density-functional theory (DFT). At the HF level,
the neglect of correlation leads to a large overes-
timate of the Cl–Cl interlayer separation. In con-
trast DFT optimised geometries were in good
agreement with experiment, although DFT meth-
ods do not include dispersive interactions. The
a- and b-forms are sufficiently close in energy at

28 December 2001

Chemical Physics Letters 350 (2001) 543–550

www.elsevier.com/locate/cplett

* Corresponding author. Fax: +44-117-925-1295.

E-mail address: n.l.allan@bristol.ac.uk (N.L. Allan).

0009-2614/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.

PII: S0009-2614 (01 )01332-X



the HF and DFT levels that vibrational effects are
possibly important in determining the relative
stability of the two phases. MgCl2 is the first ex-
ample in our studies [4] of the stability of the
structures of ionic and semi-ionic compounds
where vibrational contributions may play a crucial
rôole under ambient conditions.
Although temperature effects and properties

such as thermal expansion can, in principle, be
calculated from ab initio calculations, the high
computational requirements of such work makes
this currently unfeasible. A convenient alternative
is the use of lattice statics and quasiharmonic lat-
tice dynamics using pair-potentials to represent the
non-Coulombic interactions between the ions.
However, the generation of suitable potentials is
notoriously difficult for layered compounds such
as MgCl2 where polarisation appears to play an
important rôole [5]. Earlier simulations of MgCl2
have been confined to the static limit [6–9]. All the
potentials presented in those works are unsuitable
to study vibrational contribution to the free ener-
gies of a- and b-MgCl2 for different reasons. The
potential set proposed by Busing [6] predicts,
contrary to observation, that the most stable form
of MgCl2 is a distorted rutile structure which is as
much as 17:6 kJ mol�1 lower in energy than the a-
form. Vibrational contributions are unlikely to
change this relative ordering in free energies and
stabilise the a-structure further. Unfortunately we
have been unable to calculate explicitly vibrational
contributions to the free energy using this poten-
tial because full details of the potential have not
been given. The potential set in [7] performs well in
modelling bulk and surface structures of the b-
phase but it also predicts the rutile phase to be the
most stable, both in the static limit and when
vibrational contributions to the free energy are
included.
Harrison and Leslie [8] proposes two further

potential sets, generated by fitting the potentials to
reproduce energies obtained from ab initio HF
calculations. At the HF level, using the basis sets
of [8], b-MgCl2 is predicted to be unstable with
respect to interlayer separation, and so the authors
introduced an additional empirical dispersion in-
teraction between the Cl atoms of the form:
Vij ¼ Cr�6ij , with the parameter C adjusted to yield

agreement with the experimental lattice parameter
c. This procedure is not fully self-consistent. For
this reason we have calculated the elastic moduli
Ca ¼ o2E=oðln aÞ2 and Cc ¼ o2E=oðln cÞ2 which
give a measure of the curvature of the crystal en-
ergy as a function of the lattice parameters a and c.
Using the potential set from [8] obtained by fitting
energies of different configurations of b-MgCl2
and including the empirical dispersion term, Ca

and Cc are 85 and 11 GPa, respectively for b-
MgCl2. For the potential set generated by fitting
energies of a- and b-MgCl2 simultaneously, the
corresponding values are 128 and 9.9 GPa, re-
spectively. Using potentials generated from the ab
initio DFT calculations in [3] (as described later),
we obtain Ca ¼ 216 and Cc ¼ 63 GPa. The elastic
moduli predicted from the two potential sets in [8]
therefore do not agree even qualitatively with
those obtained from our ab initio DFT calcula-
tions, which, in turn, are expected to reproduce
fairly well the elastic behaviour of these solids. As
is well known (see, for instance [10, p. 80]) there is
a strong dependence between elastic moduli and
thermodynamic properties, particularly at low
temperatures. Anisotropic thermal expansion, for
instance, can be calculated at low temperatures
solely from elastic data. Consequently we do not
consider further the potentials of [8].
Colbourn et al. [9] have used electron-gas the-

ory [11] to generate two-body potentials. In order
to reproduce the experimental lattice parameters it
was necessary to ‘shift’ the potential parallel to the
distance axis by different amounts for the a- and b-
structures. The resulting potentials are not trans-
ferable and consequently not suitable for the study
of other polymorphs of MgCl2. Accordingly in this
Letter we show how to obtain suitable shell-model
[12] potentials for simulations of MgCl2 by ex-
tracting them directly from periodic ab initio DFT
calculations. The proposed methodology is general
and similar to that used previously for MgF2 [13]
(for related work, see also [14] and [15]). As before,
there is no empirical input into the potentials,
which are constructed by sampling relevant parts
of the (DFT) energy hypersurface. They lead to
dynamically stable structures and hence can be
used, as in later sections of this Letter, to investi-
gate properties of MgCl2 such as the relative
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stability of the possible polymorphs and behaviour
at high temperatures.

2. Theoretical methods

As in our previous work we have performed
self-consistent field calculations with the DFT
package implemented in the CRYSTAL 98 com-
puter code [16]. We have not carried out any fur-
ther HF calculations due to the poor optimised
geometries at the HF level [3,17]. We use the basis
set and polarisation functions derived in our ear-
lier work (basis set 3). For the correlation contri-
bution we use the Vosko–Wilk–Nusair [18]
parameterisation of the Ceperley–Alder free elec-
tron-gas correlation results and for the exchange
the LSD potential of Dirac–Slater [19].
For the lattice statics and quasiharmonic lattice

dynamics we use the fully dynamic free energy
minimisation code SHELL [20]. In the quasihar-
monic approximation it is assumed that the
Helmholtz free energy of a crystal, F, at a tem-
perature T can be written as the sum of static and
vibrational contributions,

F ðE; T Þ ¼ UstatðEÞ þ FvibðE; T Þ; ð1Þ

where Ustat is the potential energy of the static
lattice in a given state of strain E, and Fvib the sum
of harmonic vibrational contributions from all the
normal modes. For periodic structures the fre-
quencies mjðqÞ of modes with wavevector q are
obtained by diagonalisation of the dynamical
matrix DðqÞ. Fvib is given by

Fvib ¼
X
q;j

1

2
hmjðqÞ

�

þ kBT ln 1
�

� exp
�
� hmjðqÞ=kBT

���
ð2Þ

in which the first term is the zero-point energy. For
a macroscopic crystal the sum over q becomes an
integral over a cell in reciprocal space, which can
be evaluated by taking successively finer uniform
grids [21] until convergence in Fvib is achieved. The
free energy thus obtained is a function of both
macroscopic (gk) and internal strains (ek), and it is
simplest to treat the ek as thermodynamic variables

on the same footing as the gk, comprising a total
set of strain variables [22] denoted by EA. The
equilibrium structure at an applied pressure P0 is
then that which minimises the availability F þ P0V
with respect to all strains.
For large unit cells with many internal strains,

the minimisation of F þ P0V can be carried out
much more efficiently by using analytic expressions
for the derivatives of F with respect to strain.
These are given by

oFvib
oEA

� 	
E0 ;T

¼
X
q;j

h
2mjðqÞ

(

� 1

2
þ 1

exp hmjðqÞ=kBT
� �

� 1

 !

�
om2j ðqÞ
oEA

 !
E0

)
; ð3Þ

where the subscript E0 denotes that all the E are
kept constant except for the differentiation vari-
able. We thus require derivatives of the frequen-
cies. The derivatives ðom2j ðqÞ=oEAÞE0 are obtained
from the analytic expressions for the derivatives
ðoD=oEAÞE0 by first-order perturbation theory [23].

3. Results

3.1. Potentials

All the potential parameters were fitted simul-
taneously to the energies of a set of 180 different
configurations. DFT energies were calculated so-
lely for the b-structure (space group P�33m1), the
hexagonal cell of which can be described by the
structural parameters að¼ bÞ; c, and one internal
degree of freedom u ð� 0:25Þ such that in frac-
tional coordinates a Mg atom lies at the origin and
Cl atoms are at 	ð1

3
; �1
3
; uÞ. Configurations were

generated as follows: (i) the lattice parameter a was
varied from 3.25 to 4.5 �AA in steps of 0.25 �AA,
keeping c and the internal degree of freedom u
constant at their equilibrium values, c0 and u0; (ii)
next, the lattice parameter c was varied from
4.21 to 6.71 �AA in steps of 0.5 �AA, keeping a ¼ a0
and u ¼ u0; (iii) lastly, u varied from 0.20 to 0.28
in steps of 0.02, keeping a ¼ a0 and c ¼ c0. The
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short-range interionic potentials fitted simulta-
neously to all these energies were assumed to be of
the Buckingham form, giving total pair potentials

ZaZb=r þ VabðrÞ ¼ ZaZb=r þ Aab expð�r=qabÞ
� Cabr�6: ð4Þ

Here a and b refer to the ion type and r is the
interionic distance. ZMg ð¼ 2 ZClÞ was included in
the fitting procedure as an adjustable parameter,
though the optimised value of 1.204e is very
similar to the Mulliken charge of 1.186e. The Mg
ions were treated as unpolarisable. For the Cl
atoms the shell charge and spring constant were
included as further variables in the fitting pro-
cedure. The potential parameters were then
obtained by fitting VMgMg, VMgCl and VClCl simul-
taneously with a cut-off of 10 �AA for each. The final
potential parameters are collected together in
Table 1. VMgMg is not included in this table
since the fitted values indicated the interaction
between the ions was entirely Coulombic. Figs.
1a–c shows a selection of ab initio DFT energies
as a function of a, c and u compared with those

Table 1

The potential parameter set for MgCl2 derived in this work

Interaction A q C

(eV) (�AA) (eV �AA
6
)

Mg2þ=Cl� 398476 0.15810 –

Cl�=Cl� 2287.76 0.37568 399.9

For each pairwise interaction V ðrÞ ¼ A expð�r=qÞ � Cr�6,
with a cut-off of 10 �AA. The charge on Mg is 1.2042e, the Mg
ions are unpolarisable, the shell charge of Cl is )3.4937e and the
associated spring constant 108.5 eV �AA

�2
.
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Fig. 1. Ab initio DFT energies for b-MgCl2 as a function of a (a), c (b) and u (c) compared with those obtained using the set of

potentials derived in this work (Table 1).
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obtained using our new potentials. Agreement is
excellent.
We also investigated the use of the formal

charges for Mg (+2) and Cl ()1) rather than
treating them as adjustable parameters (or using
the Mulliken charges). Calculations using the re-
sulting set of fitted potentials revealed imaginary
frequencies at many q-vectors and so we did not
pursue this avenue further.
Table 2 lists the ab initio DFT optimised lattice

parameters for b-MgCl2 together, for comparison,
with those calculated in the static limit using the
fitted potentials and the experimental values at 300
K. The accuracy of the potentials away from
equilibrium can be assessed from Fig. 1 where we
compare the ab initio DFT energies as a function
of a, c and u with those obtained using the final set
of potentials.

3.2. Phase stability

We turn to consider the relative stability of
possible structures for MgCl2 using our potentials,
assuming that these potentials are transferable
from one polymorph to another. We note first that
calculated lattice parameters for a-MgCl2 at 300 K
(a ¼ 3:625 �AA and c ¼ 17:286 �AA) are in reasonable
agreement with experiment (a ¼ 3:596 �AA and
c ¼ 17:590 �AA) [6]. Our potential set is transferable
at least from the b- to the a-phase. The calculated
difference in free energy in the static limit between
the a- and b-forms is extremely small (� 0:065 kJ
mol�1), as also found in the static limit in ab initio
calculations [3]. With such small energy differ-
ences, vibrational contributions can play an im-
portant rôole. In the static limit, both periodic DFT

and the potentials derived from these ab initio
calculations (Table 3) indicate that the b-phase is
lower in energy. Fig. 2 shows the difference in free
energies between a- and b-MgCl2 as a function of
temperature calculated by using quasiharmonic
lattice dynamics and therefore taking vibrational
contributions into account. It is clear from Fig. 2
and also the values of the free energies collected
together in Table 3 that the inclusion of these

Table 2

Ab initio DFT optimised lattice parameters for b-MgCl2 together, for comparison, with those calculated at 300 K, in the static limit
and in the limit T ! 0, using the fitted potentials

Parameter a c u

(�AA) (�AA)

Ab initio DFT 3.590 5.707 0.240

Experiment (300 K) 3.641 5.927 0.23

Calculated (300 K) 3.622 5.770 0.226

Calculated (static limit) 3.565 5.711 0.227

Calculated (T ! 0) 3.590 5.742 0.227

Experimental values at 300 K [6] are also listed.

Table 3

Free energies of the a- and b-phases of MgCl2 (kJ mol
�1) cal-

culated in the static limit and at 300 K, using the set of po-

tentials derived in this work (Table 1)

Static limit 300 K

a-MgCl2 )1008.335 )1012.441
b-MgCl2 )1008.400 )1012.321

Fig. 2. Difference in Gibbs energy between b- and a-MgCl2 as a
function of temperature calculated using lattice statics and

dynamics and the potential derived in this work (Table 1). A

grid of 125 k-points was used in the Brillouin zone summation.
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terms reverses the relative energy ordering of the a-
and b-phases for temperatures above � 100 K.
The a-phase is then predicted to be the most stable
at room temperature, in agreement with experi-
ment, though at low temperatures the b-phase is
the preferred polymorph. The rutile and fluorite
structures are both predicted to be much higher in
energy, consistent with our ab initio results [3].
We cannot simulate directly the disordered d-

phase but we have explicitly considered all possible
stackings of the close-packed Cl planes consistent
with the unit cell comprising up to 12 Cl layers.
There are eight possible stackings for a unit cell of
eight layers, 16 for 10 layers and 48 for 12. At 300K,
the free energies of all of these structures lie in a very
narrow band, confirming the ready-interconversion
between these structures due to the weak interac-
tions between the ‘sandwiches’.

3.3. Thermal behaviour

Finally we examine the thermal expansion of
the two layered structures, again using fully dy-
namic free energy minimisation and our new po-
tentials. The calculated thermal expansion
coefficients for the a- and b-phase are shown in
Fig. 3. We have been unable to find any experi-
mental data for comparison. The expansion is
highly anisotropic for both polymorphs. It is small
and negative at very low temperatures for dilations
perpendicular to the main crystal axis (c) and
larger and always positive for dilations parallel to
the main crystal axis. At � 60 K there is a cross-
over above which the expansion is considerably
larger along the a- (and b-) axis, parallel to the
layers, than along the c-axis and perpendicular to
the layers. Such thermal behaviour is highly un-
usual [10] (cf. the layered compound InBi [10]).
The general ‘rule’ is that anisotropic crystals ex-
pand more along the ‘softer’ axes and less in the
‘harder’ directions, with graphite the classic ex-
ample of such a layered crystal.
As discussed in detail by Barron and White [10],

thermal expansion in anisotropic systems is deter-
mined by a complex interplay of the elasticity and
the Gr€uuneisen functions. For a hexagonal system
such as b-MgCl2, the thermal expansion coefficients
along the a- and c-axes, aa and ac, are given by

aa ¼
C
V

ðs11f þ s12Þca þ s13ccg;

ac ¼
C
V

2s13caf þ s33ccg;
ð5Þ

where C is the heat capacity at constant strain, V
the volume, the sij elastic compliances and ca and
cc dimensionless anisotropic Gr€uuneisen functions.
In graphite low frequency modes are polarised
roughly perpendicular to the layers and the high
frequency modes roughly parallel to the axis; this
is not the case in MgCl2 due to the strong ionic
interactions between each Mg and the top and
bottom layers of its ‘sandwich’.
In graphite the Gr€uuneisen functions and elas-

ticity combine to yield large positive expansion
perpendicular to the planes and small negative

Fig. 3. Calculated thermal expansion coefficients along direc-

tions perpendicular (aa) and parallel (ac) to the main crystal axis

as a function of temperature for a- and b-MgCl2.
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expansion in the planes. MgCl2 is broadly similar
only at low temperatures < 60 K when only low
frequency modes are excited. The low intersand-
wich frequencies are weakened by stretching along
the c-axis (which reduces the restoring forces for
motion in this direction) and are strengthened by
stretching perpendicular to this axis (increasing the
restoring force perpendicular to the layers because
of the tension between neighbours) so that for
these modes ca is negative and cc positive. The
calculated cross-compliance s13 is small for MgCl2.
Thus at low temperatures there is a relatively large
expansion along the c-axis and negative or small
positive expansion within the layers. At high
temperatures the excitation of high frequency
modes with large positive ca, reverses the relative
magnitudes of aa and ac.
Comparison of the values of a and c obtained in

the static limit with those obtained by using
quasiharmonic lattice dynamics and extrapolated
to T ¼ 0 (Table 2) shows the effect of zero-point
energy contributions; estimated dilations as
T ! 0 are da ¼ 0:025 �AA and dc ¼ 0:031 �AA. Plots
of the lattice parameters a and c as a function of
temperature indicate a characteristic divergence of
slope at T P 600 K, indicating that the quasihar-
monic approximation is beginning to break down,
at � 2=3 of the melting point (� 990 K). As we
found for MgF2 [13], lattice dynamics and the
quasiharmonic approximation can be remarkably
robust at elevated temperatures.

4. Conclusions

We have derived a set of two-body potentials
for MgCl2 from ab initio DFT calculations that is
transferable from one polymorph to another. As
also observed previously [13] quasiharmonic lattice
dynamics appears to be remarkably robust at ele-
vated temperatures. Fully dynamic free energy
minimisation shows that at low temperatures the
vibrational contributions to the free energy dif-
ferences between the structures are comparable to
differences in the static contribution to the energy
and can thus determine the relative thermody-
namic stability of the phases. a-MgCl2 is predicted
to be the most stable polymorph at temperatures

greater than 100 K, in agreement with experiment.
At lower temperatures b-MgCl2 is predicted to be
the most stable form, though no experimental in-
formation to confirm this has been found. We
predict unusual thermal expansion behaviour at
room temperature – highly anisotropic and larger
within than perpendicular to the layers. Correct
reproduction or prediction of thermal expansion is
a severe test of any computational method and we
hope this study may prompt an experimental study
of this and other layered materials.
In conclusion we believe that the simple ap-

proach to potential generation for ionic and lay-
ered compounds outlined here is sufficiently robust
to justify its wider use, and in particular its ex-
tension to more complex systems.
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