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Abstract

We discuss two novel methods, configurational lattice dynamics and hybrid Monte Carlo, recently proposed by us for the
calculation of the thermodynamic properties of solid solutions. Results are presented for the mixing of MnO/MgO, CaO/MgO,
RbCl/KCl, ZrO2/CaO and MgSiO3/MnSiO3. It is crucial to sample many different configurations and allow explicitly for the
relaxation of the local environment of each ion. Our methods are readily generalised to high temperatures and high pressures,
and the study of phase transitions.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solid solutions and grossly non-stoichiometric
compounds present particular challenges to the theo-
retician. Although substantial progress has been
achieved in understanding structural and thermody-
namic aspects of periodic, ordered materials and
minerals (for example, see Ref. [1]), work on disor-
dered ionic solids has most often been restricted to the
dilute limit and involved point defect calculations,
using, for example, the Mott-Littleton two-region
approach (see the special issue, Ref. [2]). Such calcu-
lations are not readily extended to solid solutions or
disordered systems containing afinite impurity or

defect content, restricting such an approach to end-
member compounds. Studies of many industrially
important ceramics and naturally occurring minerals
are thereby excluded. In particular, an understanding
of the thermodynamics of solid solutions of oxides,
which are often strongly non-ideal, is essential for
much of solid-state chemistry and mineralogy, includ-
ing inorganic geochemistry, ceramic fabrication and
design, solid-state batteries and heterogeneous cataly-
sis. In addition, thermodynamic behaviour at elevated
temperatures and also under high pressure is espe-
cially important for sustained material performance
and for the stability of minerals deep within the
mantle of the Earth.

In this paper we present results using two new tech-
niques we have recently developed to tackle such
problems. The first involves the direct minimisation
of the free energy via lattice dynamics of a large
number of possible configurations, which we refer to
as configurational lattice dynamics, and the second a
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hybrid Monte Carlo (HMC) technique allowing an
efficient sampling of a large number of different
configurations. In ionic and semi-ionic solids it is
crucial to allow for the strong coupling between the
distribution of the ions and the relaxation of the local
atomic environment around impurity ions and clusters
of impurity ions. Relaxation energies for defect pairs
and larger clusters may be of the order of several eV,
are not additive and these contributions cannot be
predicted simply from the separate relaxation around
the isolated impurities. Thermal effects are allowed
for explicitly in both techniques, which are also read-
ily extended to high pressures.

Examples considered include solid solutions where
the two cations involved are isovalent and fairly simi-
lar in size (e.g. MnO/MgO, RbCl/KCl, MgSiO3/
MnSiO3), where there is a marked difference in size,
but not in charge (CaO/MgO), and finally where there
is a substantial mismatch in both size and charge
(ZrO2/CaO). Properties examined include entropies
of mixing (CaO/MgO) and phase transitions at high
pressure (MgSiO3/MnSiO3).

Taken together this set of examples form an excel-
lent test of our approach since any proposed method
must be sufficiently robust for the extensive relaxa-
tions accompanying the interchange of ions that are
not only very different in size but which also do not
possess the same charge.

2. Theoretical methods

2.1. Lattice dynamics

We use a recently developed, efficient method [3]
which uses lattice statics and quasiharmonic lattice
dynamics (QLD) for the fully dynamic structure opti-
misation of large unit cells via the analytic calculation
of the free energy and its derivatives with respect to
all strains [4]. Numerical differentiation of the free
energy with respect to all the internal coordinates is
normally prohibitively expensive. We calculate the
full set of free energy first derivatives analyti-
cally and so, for the first time, a full minimisa-
tion of the quasiharmonic free energy with
respect to all structural variables for large unit
cells is possible.

In the quasi-harmonic approximation it is assumed

that the Helmholtz free energy of a crystalF, at a
temperatureT can be written as the sum of static
and vibrational contributions,

F�E;T� � Fstat�E�1 Fvib�E;T� �1�

Fstat is the potential energy of the static lattice in a
given state of strainE, andFvib is the sum of harmonic
vibrational contributions from all the normal modes.
For a periodic structure, the frequenciesnj�q � of
modes with wavevectorq are obtained by diagonali-
sation of the dynamical matrixD(q) (For example,
Ref. [5]). Fvib is given by

Fvib �
X
q; j

1
2

hnj�q �1 kBT ln�1 2 exp�2hnj�q �=kBT��
� �

�2�

in which the first term is the zero-point energy. The
associated vibrational entropyS, is

S�
X
q; j

( �hnj�q �=T�
exp�hnj�q �=kBT�2 1

2 kB ln�1 2 exp�2hnj�q �=kBT��
)
: �3�

For a macroscopic crystal the sum overq becomes an
integral over a cell in reciprocal space, which can be
evaluated by taking successively finer uniform grids
(For example, Ref. [6]) until convergence is achieved.
The free energy thus obtained is a function of both
macroscopic (hl) and internal strains (e k), and it is
simplest to treat thee k as thermodynamic variables on
the same footing as thehl; comprising a total set of
strain variables [7] denoted byEA. The equilibrium
structure at an applied pressurePext; is then that which
minimises the availability [8] ~G� F 1 PextV with
respect to all strains.

The minimisation ofF 1 PextV and subsequent
thermodynamic manipulation can of course in princi-
ple be carried out by brute force, from numerical
values of F obtained using Eq. (2). However, for
large unit cells with many internal coordinates that
are not determined by symmetry constraints it is
much more efficient to use analytic expressions for
the derivatives ofF with respect to strain. The strain
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derivatives are given by

2Fvib

2EA

� �
E 0;T
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exp�hnj�q �=kBT�2 1

 !
2n 2

j �q�
2EA

 !
E 0

( )
�4�

where the subscriptE 0 denote that all theE are kept
constant except for the differentiation variable. Deri-
vatives of the frequencies are thus required. In our
new code SHELL [3] the derivatives�2n2

j �q �=2EA�E 0
are obtained from the analytic expressions for the
derivatives �2D=2EA�E 0 by first-order perturbation
theory. Full expressions for two- and three-body
short-range potentials and for the Ewald summation
are given in Refs. [4,9]. For obtaining derivatives the
perturbation is infinitesimal and so the procedure is
exact. No special consideration needs to be given to
degeneracies in first order perturbation theory for
thermodynamic properties, because the trace of
�2D=2EA�E 0 is invariant for any complete normal set
of eigenvectors ofD.

To obtain the equilibrium structure and Gibbs
energy our new code uses a modified variable metric
method [10] for minimisingF 1 PextV with respect to
the EA: In the initial configuration the static energy
Hessian,�22Fstat=2EA2EB�; which is a good approx-
imation to �2 2F=2EA2EB�; is calculated from its
analytic expression, and its inverse together with the
�2F=2EA� is used to obtain an improved approxima-
tion to the minimum. In subsequent iterations the
�2F=2EA� are calculated and the inverse Hessian is
updated by the BFGS formula [11]. An optimisation
therefore requires one static Hessian calculation, and a
small number of dynamic gradient calculations.

The quasi-harmonic approximation breaks down
with increasing amplitude of vibration and hence at
high temperatures. In general the quasi-harmonic
approximation is usually valid up to temperatures
of approximately one-half to two-thirds of the
melting point. For any given temperature, higher
pressures correspond to smaller internuclear
separations and thus amplitudes of vibration and
so the breakdown of the quasiharmonic approxim-
ation is often less important for applications invol-
ving high pressure.

The accurate calculation of the free energy via

QLD is fast and computationally efficient [3] and
does not resort to lengthy thermodynamic integration.
It is also an attractive strategy for temperatures below
the Debye temperature where classical Monte Carlo
fails due to the neglect of quantum effects. Our config-
urational lattice dynamics approach to solid solutions
thus involves thermodynamic averaging over the
results of a (limited) set of free-energy minimisations
of different arrangements of the cations within a
supercell. Previous work has often assumed justone
(the most regular) arrangement and calculated its
energy, with or possibly without relaxation, either
by using lattice statics or by an ab initio method
(For example, Ref. [12]).

Given the free energyGk, for the relaxed structure
of each possible cation arrangementk we then average
using

kHl �

X
k

Hk exp�2bGk�X
k

exp�2bGk�
�5�

kSl �

X
k

Hk exp�2bGk�

T
X

k

exp�2bGk�
1 kB ln

X
k

exp�2bGk�: �6�

2.2. Hybrid Monte Carlo

The hybrid Monte Carlo approach [13,14] we have
developed is related to that used in the modelling of
polymers and biomolecules (see for example, Ref.
[15]). During one HMC cycle, one of three options
is chosen at random, with equal probability. The first
of these is a short NVE molecular dynamics (MD)
simulation (15 steps, timestep 1.5 fs) in which the
last configuration is accepted or rejected by compar-
ing its energy with the energy of the starting config-
uration and using the standard Metropolis algorithm
[16]. If the last configuration is rejected, the original
configuration is included in the statistical averaging of
thermodynamic properties. In the second, a short MD
run follows a random exchange of atoms. Again, the
difference in energy between the previous configura-
tion and that immediately after the MD simulation is
used in the Metropolis algorithm. At the start of each
MD run, velocities are chosen anew at random from a
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Maxwellian distribution. The third option is a random
change of the volume of the box [17] which again is
accepted or rejected using the Metropolis algorithm.
We have discussed previously [14] the importance of
the MD run in the second option; without this, ion
exchanges are almost completely rejected and differ-
ent configurations are not sampled.

Our lattice dynamics and HMC programs currently
use conventional two- and three-body, rigid-ion and
shell-model [18] potentials.

3. Results and discussion

3.1. MnO/MgO

We show values ofDHmix for MnO/MgO in Fig. 1.
These were determined using (a) QLD and a unit cell
of 64 atoms and 32 randomly-chosen cation arrange-
ments, and (b) HMC and a box-size of 216 ions at
1300 K. All potentials are from Ref. [19]. The cell
size and the number of cation arrangements in the
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Fig. 1. Calculated values ofDHmix at 1300 K for MnO/MgO using hybrid Monte Carlo (HMC) (triangles), mean field theory (MF) (squares),
and configurational quasiharmonic lattice dynamics (QLD) (circles). Two sets of experimental data (GP from Ref. [21] (······), RG from Ref. [20]
(–·–·–·)) are also shown.

Fig. 2. Calculated values ofDHmix at 1800 K for CaO/MgO calculated using HMC and QLD simulations.



configurational lattice dynamics calculations is suffi-
cient to ensure convergence inDHmix to 0.1 kJ mol21.
The enthalpies of mixing for 32-ion cells (averaging
again over 32 configurations) and 64-ion cells are
almost identical and substantially smaller than those
from a 16-ion cell (all possible cation arrangements).
It is particularly satisfying that there is excellent
agreement between the QLD and HMC methods.

The calculated enthalpy of mixing at 1300 K is
symmetric with a maximum of approximately
5.4 kJ mol21 (50% MgO, 50% MnO). Agreement
with the data of Gripenberg et al. [20] is good,
but the results show none of the asymmetry
reported by Raghavan [21]; no constraints as to
this symmetry have of course been imposed in
the calculations.

For comparison values calculated using a mean
field approach are also plotted in Fig. 1. Instead of
separate, distinct Mn21 and Mg21 ions, a “hybrid”
ion is introduced, for which the non-Coulombic
potentials are a linear combination of the potentials
for Mn21 and Mg21, weighted by the site occupan-
cies appropriate to the particular overall composi-
tion considered. When local relaxation or
clustering is important, these mean-field results
are expected to be poor. Fig. 1 shows that this
occurs even here, where the Mn21 and Mg21 ions
are not too dissimilar in size (0.83 and 0.72 A˚ ,
respectively).

3.2. CaO/MgO

We now turn to CaxMg12xO �0 , x , 0:15�; where
the size mismatch between the two different cations is
much greater (1.00 and 0.72 A˚ ) than in the previous
example. Fig. 2 shows enthalpies of mixing calculated
using both QLD and HMC at 1800 K, and the set of
potentials from Ref. [19]. The QLD results are for a
cell of 54 atoms and 50 randomly chosen configura-
tions. With this number of atoms we obtain conver-
gence to 0.1 kJ mol21 with respect to increasing cell
size; for this size of cell, 70 configurations gives typi-
cally the same convergence with respect to the
number of configurations. There is good agreement
between the QLD and HMC values, with the differ-
ences possibly due to anharmonic terms not taken into
account in the QLD calculation.

The agreement between the HMC enthalpy of
mixing and that obtained from the QLD, using only
50 configurations is such that we have extended the
QLD approach and evaluated entropies of mixing for
this system using Eq. (6). Entropies of mixing, calcu-
lated using QLD, for CaxMg12xO at 1800 K, using cell
sizes of 54, 64, 72 or 96 atoms and 95 randomly
chosen configurations, are shown in Fig. 3. The corre-
sponding figure for 120 configurations is indistin-
guishable by eye. The QLD approach produces
adequate convergence even forDSmix with relatively
small cells.DSmix includesboth configurationaland
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Fig. 3. Calculated values ofDSmix at 1800 K for CaO/MgO calculated using QLD. For comparison the ideal entropy of mixing is also shown
(dotted line).



vibrational contributions. Here the vibrational contri-
bution is positive since it is dominated by the heavier
mass of the Ca ion and the expansion of the lattice it
produces, both of which tend to decrease frequencies
and overallDSmix is larger than the “ideal” value. Overall
the total entropy of mixing for CaxMg12xO is larger than
the “ideal” entropy of mixing, also plotted in Fig. 3.

3.3. RbCl/KCl

For comparison we have also studied the mixed
halide system RbCl/KCl. The difference in size
between the two different cations is somewhat larger

(ionic radii 1.48 and 1.33 A˚ ) than between Mn21 and
Mg21. Figs. 4 and 5 show enthalpies and entropies of
mixing calculated using QLD at 300 K, and interionic
potentials from Ref. [22], for a cell size of 64 atoms
and 20 configurations. The enthalpies of mixing are
small and it is possible the calculated values could
show a marked dependence on the potential
model employed. The total entropy of mixing at
300 K, again the sum of vibrational and configura-
tional contributions, is slightly smaller than the
ideal value, in contrast to CaO/MgO at 1800 K.
There appear to be no experimental data for
comparison.
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Fig. 4. Calculated values ofDHmix at 300 K for RbCl/KCl calculated using QLD.

Fig. 5. Calculated values ofDSmix at 300 K for RbCl/KCl calculated using QLD. For comparison the ideal entropy of mixing is also shown
(dotted line).



3.4. ZrO2 /CaO

The system ZrO2/CaO, which exhibits high oxygen
ion conductivity, presents a particular challenge for
our methods since it is the first example we have
studied involving heterovalent doping, and hence
disorder on both cation and anion sublattices. It is
also well established, from both theory (e.g. Refs.
[23–25]) and EXAFS studies [26,27], that defect
clustering is particularly important in doped zirconia.
For every Ca21 incorporated into ZrO2, an oxygen
vacancy is also introduced as a charge-compensating
defect according to

CaO!ZrO2 Ca00Zr 1 O×
o 1 V zz

o

The configurational lattice dynamics calculations thus

have to include configurations generated from both
randomly chosen cation and anion arrangements. At
this stage we have confined ourselves to a study of the
enthalpy of mixing of the (hypothetical) reaction
involving the formation of Zr12XCaXO22X from CaO
and (hypothetical)cubic-ZrO2 (fluorite structure). We
use potentials taken from a consistent set of electron-
gas potentials derived for heterovalent dopants in
high-temperature superconducting oxides [28].1

Fig. 6 shows that satisfactory convergence inDHmix

is obtained even for Zr12XCaXO22X �0 , x , 0:2�;
where lattice relaxation is extensive, with relatively
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Fig. 7.DHmix vs. T for ZrO2/CaO, calculated using QLD and a 16-unit cell, over the temperature range 200–1500 K.

Fig. 6. Calculated values ofDHmix at 200 K for ZrO2/CaO calculated using QLD.

1 The potentials for ZrO2 in Ref. [24] give rise to imaginary
frequencies at 200 K, thus rendering them invalid for use at this
and higher temperatures.



small cell sizes. In this figure we denote a cell
originally comprisingy ZrO2 formula units before
the introduction of Ca21 ions (and an equal number
of oxygen vacancies) as ay-unit cell. Results from
QLD at 200 K using various cell sizes (300, 450 and
600 configurations for 16-, 27- and 32-unit cells
respectively) are plotted. Fig. 7 shows the calculated
temperature dependence ofDHmix over the tempera-
ture range 200–1500 K calculated using a 48-atom
cell and 300 configurations.DHmix does not vary
significantly with temperature, which supports the
common assumption thatDHmix is largely temperature
independent. Preliminary results indicate thatDSmix is
larger than the ideal value, as for CaO-MgO.

3.5. MgSiO3/MnSiO3—phase transitions

A valuable feature of the HMC technique is that it
can be readily used to examine the influence of high
impurity or defect concentrations on phase transitions.
Alternative methods such as the use of an Ising-type
Hamiltonian cannot only average out local effects
such as ion association but are not readily extended
to include the effects of lattice vibrations and high
pressure. Since Mn–Mg mixing in silicates is
expected to be quite non-ideal (see for example,
Ref. [29]), as in the binary oxides we have already
considered, we have chosen to examine (Mg,
Mn)SiO3 perovskite [30]. Parameterisation of approx-
imate Hamiltonians becomes increasingly complex
for such compounds beyond binary and pseudobinary
mixtures.

We used the same set of interionic potentials for
MgSiO3 as for Mg2SiO4 in Ref. [31]2. The HMC runs
are for a simulation cell of 540 ions�3 × 3 × 3 unit
cells), with an equilibration period of 50,000 cycles
and averaging enthalpy and structural data over a
further 50,000 cycles. Matsui and Price [31] have
used constant-pressure MD to show that above
10 GPa, orthorhombic MgSiO3 undergoes a tempera-
ture induced phase transition to a cubic phase prior to
melting, whereas at lower pressures the orthorhombic
phase melts without any change of solid phase. For
MgSiO3 itself, HMC results are very similar. The
calculated transition temperature from the orthorhom-
bic to the cubic phase is 3900 K at 20 GPa. Fig. 8
shows the variation of the lattice parameters of
Mg0.6Mn0.4SiO3 with temperature, which shows this
compound also undergoes such a phase transition at
this temperature. The transition temperature�2500^
50 K� is lower than for MgSiO3, in keeping with
simple radius ratio arguments. The calculated transi-
tion temperature at 20 GPa as a function of Mn
composition is displayed in Fig. 9. It is evident that
a linear interpolation between the end members is a
very poor approximation since the orthorhombic-
cubic phase transition for Mg0.6Mn0.4SiO3 is 500 K
lower than the value of< 3000 K predicted by such
an interpolation. It is worth noting that, unlike the
transition temperature, the calculated volume as a
function of Mn composition shows only a small
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Fig. 8. Lattice parameters (A˚ ) vs. T(K) at 20 GPa for
Mg0.6Mn0.4SiO3.

Fig. 9. Calculated orthorhombic–cubic transition temperature (K) at
20 GPa vs. Mn content. 2 The experimental evidence is contradictory [32,33].



positive deviation from Vegard’s Law, since thea
lattice parameter has a positive deviation and the
other two negative deviations. We have not been
able to find experimental data for comparison; data
are particularly sparse at high temperaturesand high
pressures. If the analogous compound (Mg,Fe)SiO3

were to exhibit such a phase transition [32,33] there
would be important implications for the thermody-
namic and compositional modelling of the Earth’s
mantle.

4. Conclusions

We have shown how the configurational lattice
dynamics and HMC methods provide an attractive
route to an accurate description of the thermody-
namics of mixing of ionic solids. It is essential to
take explicit account of the (optimised) local environ-
ment around each cation and anion in the solid solu-
tion, i.e. ionic relaxation without any averaging out of
such local effects. Unlike existing techniques, such as
the use of a parameterised Ising Hamiltonian, our
methodologies are generally applicable to a wide
range of materials and minerals, high pressures and
elevated temperatures and lattice dynamics can also
be used under conditions where classical simulations
fail. Considerable work, both methodological and
computational, remains in order to make these two
techniques generally applicable and this is currently
underway in our laboratories.
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