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Abstract. Periodic unrestricted Hartree—Fock calculations are shown to predict the correct low-
temperature magnetic phasesseMnS (AF;) and both cubic and hexagonal forms £MnS

(AF3). The high-spin insulating nature of MnS is also correctly predicted with local moments

close to those derived from neutron scattering factors. MnS in all its forms is shown to be a
largely ionic p—>d charge transfer system with a predominanfli. dirst ionized state.

1. Introduction

It has been a widely held view that the transition metal chalcoginides are strongly correlated
systems [1] with the implication that single-particle theories in general, and Hartree—
Fock theory in particular, are unlikely to give a qualitatively correct description of their
ground state electronic structures. However, recent studies of MnO and NiO [2], Li-doped
NiO [3], a-F&0s3 [4], a-Cr,03 [5], MnFe,O4 [6] and KCuR [7] have shown that spin
polarized (unrestricted) Hartree—Fock theory (UHF) is able to account for their wide-band-
gap insulating behaviour and predict the correct low-temperature magnetic states, including
spin—lattice interactions in MnO and NiO [2] and KCuF].

In this paper we extend these studies [2—6] to a wider range of systems and turn attention
to the three different polymorphs of MnS for which there are reliable magnetic data. They
are-MnS, which possesses the NaCl structure like MnO, aAdnS in both the (cubic)
zinc-blende and (hexagonal) wurtzite structures. In the first two, Mn ions form face-centred
cubic arrays and in the third a hexagonal close-packed array, so that in each case every
Mn has twelve nearest Mn neighbours. dAMnS, where S ions occupy the octahedral
interstices of the cation array, nearest Mn neighbours are bridged by $eémpandicular
Mn—S—Mn configuration, while the six next-nearest Mn neighbours are connectkdeza
Mn—-S—Mn linkages. By way of contrast, in both forms@MnS S ions occupy tetrahedral
interstices in the cation sub-lattice so that each Mn is linked tetrahedrally through S to its
twelve nearest Mn neighbours. The three structures and Mn arrangements are illustrated in
figure 1. Thus with their range of structures and diversity of possible magnetic orderings, the
«- and g-polymorphs of MnS provide a further severe test of Hartree—Fock methodology.

The occurrence of these different crystalline forms of MnS raises important questions
as to the nature of the magnetic states in each. All three appear to be antiferromagnetic
[8] with Néel temperatures in the range 75-150 K. This compares with a value [2] of 116
K for MnO, which suggests comparable magnetic coupling in the two systerridnS
possesses the same A&ntiferromagnetic structure as MnO, in which the individual atomic
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Figure 1. Crystal structures, nearest-cation-neighbour arrangment, and next-nearest-cation
arrangement in the rocksal{MnS), zinc-blende (cubi@-MnS) and wurtzite (hexagong-

MnS) forms of MnS. Lattice parameters and, where appropriate, internal degrees of freedom,
are also marked.

moments are aligned ifl11} ferromagnetic sheets, with adjacent sheets having antiparallel
spins (figure 2). The AfF spin arrangement (figure 2), in which the spin alignment of
adjacent{100} ferromagnetic sheets is antiparallel, does not appear to have been observed.
The zinc-blende form oB-MnS where the Mn atoms have the same spatial arrangement
as in the rocksalt structure, shows neither of these magnetic arrangements, but instead an
AF3-type ordering shown in figure 2. Here the alignment of sping2it0} ferromagnetic
sheets is parallel to that of one of its two neighbouring planes, and antiparallel to the
other. Following Anderson’s pioneering work in this area, antiferromagnetism in cubic
systems of this sort is most often discussed in terms of the relative number of ferromagnetic
and antiferromagnetic interactions involving nearest and next-nearest magnetic neighbours
respectively (figure 1 and table 1). In ABrdering two-thirds of nearest-neighbour pairs

are aligned antiferromagnetically, while the remaining nearest neighbours and all the next-
nearest neighbours are aligned ferromagnetically. In thg &kFangement, there are equal
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Figure 2. AF41, AF2, AF3, AF4 and AFs magnetic orderings for a fcc lattice.

numbers of ferromagnetically and antiferromagetically aligned nearest neighbours while
all next-nearest neighbours are antiferromagnetically aligned. The same nearest-neighbour
alignment is present in Afordering as in Al; but, of the next-nearest neighbours, one-
third are antiparallel and two-thirds parallel, as opposed to an all-parallel arrangement in
AF;. Figure 1 and table 1 also show the orderings in two further possible structures—AF
and AR.

Table 1. Number of parallel and antiparallel nearest neighbours (nn) and next-nearest neighbours
(nnn) for each type of antiferromagnetic ordering.

AF1  AF, AF3  AFs  AFs

nn M 8 6 8 6 4
4 6 4 6 8
nnn 1) O 6 2 4 2
6 0 4 2 4
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Figure 3. Possible magnetic orderings in hexagofaMnS consistent with the observed unit
cell size.

The observed magnetic ordering (AR the hexagonal wurtzite form ¢f-MnS, shown
in figure 3, is more complicated than in the cubic polymorphs, for neutron diffraction studies
indicate that the magnetic unit cell is four times that determined from x-ray crystallography.
There are other possible arrangements subject to the restrictions that the magnetic unit cell
is no larger than that observed and that each cation has the same distribution of parallel and
antiparallel nearest and next-nearest cation neighbours. These are also shown in figure 3 and
are labelled according to the nearest- and next-nearest-neighbour alignments, analogously
to the ccp case (table 1). The observed magnetic order is analogous toglaerafgement
observed in the ccp cation array. Both formspMnS comprise linked SMntetrahedra
and, as shown in figure 4, the spin arrangement in each close-packed Mn plane is the same
in both, although the individual stacking depends on whether the array is cubic or hexagonal
close packed.

A commonly favoured qualitative explanation for these differences in magnetic structure
invokes superexchange [9], which is particularly favoured in the NaCl-type structures where
there arelinear next-nearest-neighbour Mn—S—Mn linkages. In both form@-dfinS the
bond angle in the nearest-neighbour Mn—S—Mn linkages is tetrahedral. If superexchange
is also operative here, some antiferromagnetic alignment between nearest neighbours might
be expected. This is indeed the case for thg ARd AFR; arrangements which contain the
largest number of nearest-neighbour antiferromagnetic interactions.
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Figure 4. Stacking of close-packed cation planes for (a) cubiMnS (AFs only) and (b)
hexagonal3-MnS (AF,—AF4) arrangements. For comparison, in the cubic,Astructure,
adopted byx-MnS, the spins in adjacent close-packed (111) planes are antiparallel (figure 2).
Filled and empty circles denote cations of opposite spin.

2. Theoretical methods

The calculations reported here were carried out using the all-eleetboimitio LCAO
periodic Hartree—Fock method as described in detail previously [10] and implemented in the
CRYSTAL95 computer code [11]. As before [2-6], an essential feature of the calculations
is the use of the UHF procedure of Pople and Nesbet [12] to describe the high2spin d
configuration of Mn and different crystalline spin arrangements. The practical solution of
the Hartree—Fock equations for periodic systems introduces numerical approximations which
originate in the integration over reciprocal space to reconstruct the electronic distribution
and in the evaluation of the Coulomb and exchange series. In these series the Gaussian
integrals are classified according to overlap or penetration criteria. Integrals of sufficiently
low overlap are neglected or approximated, the cutoffs being controlled by five parameters,
discussed in detail elsewhere [13]. In this paper calculations were performed with tolerances
set to 107, 1077, 1077, 10~ and 104, which provide high numerical accuracy, as in
several recent studies [14]. The reciprocal space integration was performed by sampling
the Brillouin zone at a regular set of points defined by a shrinking factor of 8 and 3 for the
cubic and wurtzite structures respectively and the criterion for self-consistency taken as a
change in the total unit-cell energy of T0mHa for consecutive SCF cycles.

The localized crystal orbitals consisted of 25 atomic orbitals for Mn and 21 for S of the

type

Mn: 1s(8)2sp(6)3sp(4)4sp(1)5sp(1)3d(4)4d(1)

S: 1s(8)2sp(6)3sp(4)4sp(1)5sp(1)3d(2)
where the numbers in brackets are the numbers of Gaussian functions used to describe the
corresponding shell, e.g. 1s, 2sp, 3d etc. The core basis set for Mn—1s(8)2sp(6)3sp(4)—

was the same as that used previously [2] for MNO and the initial sulphur basis set that
reported for MgS in [15], with a fourth function added to the 3sp shell. The exponents
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and contraction coefficients for the 4sp, 5sp, 3d and 4d shells of Mn and 3sp, 4sp, 5sp
and 3d shells on S were then re-optimized by minimizing the ground-state energy of the
fcc rock-salt structure for a primitive ferromagnetic unit cell at the experimental lattice
parameter. The final basis sets for both Mn and S are listed in table 2. Calculations for the
various magnetic states reported here were performed on supercells obtained by appropriate
expansion of the primitive unit-cell vectors.

Table 2. Core and valence basis sets for MnS.

Mn S
Shell
No type Exponent Coefficients Exponent Coefficients
Core bases
1 S 292601.0 0.000227 109211.0 0.0002520
42265.0 0.0019 16 235.206 0.0019934
8947.29 0.0111 3573.0286 0.0111177
2330.32 0.0501 943.23811 0.0498945
702.047 0.1705 287.26179 0.166 1455
242.907 0.3691 99.914 226 0.3627018
94.955 0.4035 38.602137 0.4108787
39.5777 0.1437 15.531224 0.1457875
2 sp 732.14 —-0.0053 0.0086 281.22171 -0.0057780 0.0081427
175.551 —-0.0673 0.0612 67.106575 —0.0665855 0.0565570
58.5093 —0.1293 0.2135 21.794135 —-0.1203552 0.2039582
23.129 0.2535 0.4018 8.209764 6 0.2741310 0.3973328
9.7536  0.6345 0.4012 3.4178289 0.6463829 0.3946313
3.4545 0.2714 0.2222 1.5452225 0.2925792 0.1544345
3 sp 38.389 0.0157 -0.0311 4.2790 -0.1900 —-0.0611
15.4367 —0.2535 —0.0969 1.7528 —0.6040 0.1330
6.1781 —0.8648 0.256 3 0.6884 0.8246 1.1428
2.8235 0.9337 1.6552 0.2165 0.7864 0.5014
Valence bases
4 sp 1.1922 1.0 1.0 0.2899 1.0 1.0
5 sp 0.4819 1.0 1.0 0.1059 1.0 1.0
6 d 22,9337 0.0700 0.3452 1.0
6.2605 0.3038 — —
2.1052 0.5472 — —
0.7610 0.5160 — —
7 d 0.2672 1.0 — —

The main source of error in the Hartree—Fock method is the neglect of electron
correlation which originates directly from the use of a single determinant to represent
the many-body wavefunction. As a result, binding energies tend to be underestimated by
about 30% and lattice constants generally~826. These can be improved by introducing
a posteriori correlation corrections based on a range of correlation functionals and the
Hartree—Fock electron densities [16].

3. Results

Previous UHF calculations for MnO and NiO found energy-minimized (optimized) lattice
structures to be very nearly independent of the magnetic state [2]. Accordingly, we based our
structural optimizations of the three polymorphs reported here on the primitive ferromagnetic
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(FM) unit cell which in every case we found to be high-spin insulating. The calculated
UHF lattice parameters are listed in table 3 together with the corresponding experimental
values. These lattice parameters are around 5% greater than the experimental values for
the antiferromagnetic materials, which is consistent with earlier work [2] on MnO and
NiO, even though the percentage error is somewhat larger. aTjpesteriori inclusion of
correlation corrections to the Hartree—Fock energy based on the correlation-only functional
of either Perdew [17] or Becke [18] reduces this discrepancy, which in the case of the
Perdew functional, is less than 0.5% for the rocksalt and zinc-blende structures and less
than 3% for the wurtzite structure as shown in table 3.

Table 3. Calculated and experimental structures for MnS.

Structure Lattice parameter  Experiment HF HF + corr. [17]
Rocksalt a (/f\) 5.224 [22] 5.4232 5.2407
Zinc blende a (,&) 5.600 [23] 5.9030 5.6138
a (1&) 3.976 42039 4.0832
Wurtzite ¢ (A) 6.432 [23] 6.7388 6.5851
u — 0.3812 0.3812

Table 4 shows that the energies of the Hartree—Fock optimized rock-salt, zinc-blende
and wurtzite structures of MnS for all six spin arrangements are in the order

Eyr(wurtzite) < Eyr(zinc blende < Ey r(rock salj

which is contrary to experiment, whereas the corresponding order aéxperimental
geometries is

Eyr(rock saly < Exrp(wurtzite) < Egr(zinc blende.

The inclusion ofa posteriori correlation corrections, based again on the correlation-only
functionals due to either Perdew [17] or to Becke [18] reduces the optimized lattice
parameters and the rock-salt structure is lower in energy at both the experimental and
Hartree—Fock geometries. Total energies based on the Perdew functional are tabulated in
table 4.

The order of the Hartree—Fock energies of the different magnetic states is also given in
table 4. This lists the energy differences between the FM and the possible antiferromagnetic
states at (i) the experimental geometry and (ii) the optimized Hartree—Fock geometry for
the FM arrangement. The cost of the calculations precluded an exhaustive study of these
energies as a function of geometry. However, for the rocksalt structure where such a study
was feasible, the difference between the optimizeg ARd FM lattice parameters at the
Hartree—Fock level was found to be negligible, which confirmed that the extra cost of such
calculations is not justified.

For a-MnS the Hartree—Fock energy ordering for both geometries, i.e. (i) and (ii), is

AF2 < AF4 < AF3 < AF5 < AF]_ < FM

and so the predicted low-temperature spin arrangemeny, agrees with that observed.
Furthermore, the inclusion of correlation energy corrections does not change this order.

We turn now toS-MnS in the zinc-blende structure, for which table 4 contains the
corresponding energies to those for the rocksalt structure. The Hartree—Fock energy
ordering, at both geometries, is

AF3 < AF]_ < AF2 < AF4 < AF5 < FM.
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Table 4. Energies (au) per formula unit of the different structures and magnetic orderings for
MnS. Results are for (i) the experimental structure (ii) the optimized geometry predicted for
the ferromagnetic ordering at the Hartree—Fock level. Both Hartree—Fock energies and energies
incorporatinga posteriori correlation correction [17] are listed. The energies for each set of
antiferromagnetic arrangments are relative to that of the corresponding ferromagnetic state.

(i) Experimental geometry (ii) Optimized HF geometry
Crystal Magnetic
structure structure Epr (au) Eprp +corr (au) Egrp (au) Epp + corr (au)
Ferromagnetic —1547.485493 —1549.362220  —1547.493028 —1549.358996
Rocksalt AR —0.058x 103 —0.149x 1073 —0.005x 103 —0.048x 1073
AF, —0.429x 103 —0.887x 1073 —0.187x10% -0518x 1073
AF3 —0.209x 103 —0.440x 1073 —0.080x 103 —0.253x 1073
AF, —0.326x 103 —0.666x 1073 —0.140x 103 —-0.380x 1073
AFs —0.188x 103 —0.377x 1073 —0.079x 103 —0.209x 1073
Ferromagnetic —1547.482917 —1549.349553  —1547.493367 —1549.345373
Zinc-blende AR —1.291x 108 -2353x 1073 —0596x 103 —-0.827x 1073
AF» —0981x10°% -—1.731x10°3 —0452x 103 —0.624x 1073
AF3 —1.304x 108 —-2.399x 1073 —0.600x 103 —-0.838x 1073
AF4 —0.980x 103 —1.750x 1073 —0.450x 103 —0.630x 1073
AFs —0.648x 103 —1.165x 1073 —0.296x 103 —0.418x 1073
Ferromagnetic —1547.483386 —1549.348272  —1547.494373 —1549.346 387
AF, —1986x 103 —2227x 1073 —1.030x 103 —-1.099x 1073
Wurtzite ARy, —1.715x 103 —1.862x 1073 —0.897x 103 —0915x 1073
AF2, —0.815x 103 —-1.073x 1073 —0.397x 103 —0542x 1073
AF3 —2.390x 103 —2631x 103 — —
AF4 —2116x 10° —2262x 1073 — —

For both geometries, therefore, the A$tate is predicted to be lowest in energy, as found

experimentally, which is a particularly encouraging result for periodic UHF calculations.

The differences between the ABnd AR energies, and between the A&nd AF, energies

are small—the nearest-neighbour coupling is the same for the two sets of spin arrangements.
For 8-MnS in the wurtzite structure the calculated energy ordering at the experimental

geometry is

AF3 < AF4 < AF1 < AR, < ARy, < FM

where the lowest-energy structure is, again, that observed. Here the expense of the
calculations for the largest unit cells (AFAF;) precluded the investigation of any other
geometries. An inspection of the crystal structures suggests that there is a correlation
between the relative energies and the number of (unfavourable) collinear FM Mn—-Mn—
Mn linkages in the close-packed planes. For example, the possible stacking sequences for
B-MnS (figure 4) show that all the close-packed planes in the, Affructure, which is
predicted to be the highest-energy antiferromagnetic phase, have only collinear FM Mn—
Mn-Mn arrangements. The difference in energy between thg, ARd AF,, structures
gives an estimate of this effect and can be used to rationalize the relative energy.of AF
Similar considerations apply to the relative ordering of the spin arrangements within the
wurtzite phase compared to the zinc-blende phase, e.g., the relative position of ghe AF
structure in the two series.

The calculated magnetic moment @fMnS is 4.92up (4.89 up at the experimental
geometry) which compares with an experimental value [19] of 4.54 Correlation effects
would tend to decrease the predicted moment while spin—orbit coupling, which is not
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Figure 5. Electron density difference maps (bulk minus free ion superposition): (a) basal
(001) plane of the Af structure ofx-MnS; (b) (011) plane of cubig-MnS structure (AB); (c)

(1210) plane of hexagon#-MnS (AFs). All these maps were calculated using the experimental
geometry. Continuous, dashed and dot—dashed lines correspond to positive, negative and zero
values respectively. The separation between adjacent isodensity curves iz G.OOHL 3.
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Figure 6. Spin density map in the basal (001) plane of the AFucture ofx-MnS. Continuous,
dashed and dot—dashed lines correspond to positive, negative and zero values respectively. The
separation between adjacent isodensity curves is 0.00shr 3.
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Figure 7. Band-projected density of states for @MnS (AR,) (b) cubic 8-MnS (ARs) (c)
hexagonalB-MnS (AFs). All these were calculated at the experimental geometry.
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Figure 7. Continued.

included in the calculations reported here, would tend to increase it. Since the experimental
value is not measured directly, a more useful comparison would be between the experimental
and theoretical neutron-scattering factors.

In a-MnS the observed ground-state spin arrangement of successively antiparallel
ferromagnetic (111) planes gives rise to a magnetostriction (spin—lattice interaction) in
which there is a rhombohedral contraction normal to the ferromagnetic planes. At low
temperature the crystal axes are inclined-@t09 from the ideal cubic directions [20]. We
have calculated the variation of the total energy of both the FM ang ddRfigurations
as a function of a volume-conserving rhombohedral distortion based on the experimental
lattice constant. As expected no distortion from cubic symmetry was found for the FM spin
arrangement, whereas the calculated equilibrium deviation from the ideal cubic angle for
the AF, arrangement is 0.05

Table 5. Mulliken charges;(e), 3d populations:z;, and net atomic spin&:s(Mn) andéng(S)
for the three forms of MnS considered in this study.

Experimental geometry Optimized HF geometry
Structure q nzg  dng(Mn) dng(S) g nzg  dnsg(Mn) Sng(S)
a-MnS (AR) 1.828 5.126 4.892 0.000 1.854 5.101 4.919 0.000

Cubic g-MnS (ARs) 1.799 5.123 4.875 0.000 1.830 5.100 4.915 0.000
Hexagonal-MnS (AFs) 1.803 5.121 4.877 0.003 — — — —

Turning now to the electronic structure of MnS, Mulliken population analyses indicate
atomic charges of arountt1.8 ¢ for all the structures which suggests substantial ionicity.
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This is supported by the 3d and net spin populations given in table 5, which are roughly
the same, and the magnitude and sign of the MnS overlap population. Further insight into
the electronic structure is contained in the charge and spin density distributions, which are
obtaineddirectly from the wavefunction, and also from difference density distributions,
which are obtained by subtracting tlaomic charge distributions (derived from the free
ion wave functions) from those of the bulk crystal. Figure 5(a), which shows the difference
density distribution in a basal (001) plane of the Aftructure ofe-MnS, indicates that
there is a significant contraction of the atomic orbitals of both the anion and cation relative
to the free ion due to the Madelung field and Pauli repulsion, as in the case of MnO [2].
Figure 5(b) shows a similar difference density in a (011) plane of cabinS for the AR
structure, in which the strong polarization of the S valence orbitals can be clearly seen.
This is also evident in the P110) plane of hexagong-MnS (figure 5(c)). There is also
very small spin polarization on S evident in the spin density differen¢e— Ng) for the
AF; structure (figure 6), showing a shift of theelectron density towards the Mn ion with
B polarization and vice versa.

Atom-projected valence band densities of states (DOS) provide further evidence of the
ionicity of MnS. Figure 7 shows these for the Agtructure ofx-MnS and the Ak structures
of cubic and hexagong$-MnS, wherea and 8 spin denote majority and minority spins
respectively. As is well known the band gap [21] is overestimated in Hartree—Fock theory.
Unlike MnO [2] the majority weight of the Mn(d) states lies well below the upper valence
bands which consist of essentially unpolarized S(p) states with negligible Mn(d) density
in this region. Thus UHF calculations predict MnS to be a charge transfer insulator and
its first ionized state predominantly’ld Finally we note that like MnO the insulating
characteristics of MnS derive from the large on-site Coulomb energy which separates the
filled and unfilled d states.

4. Conclusions

The principal conclusions of this study are (i) that UHF calculations predict the correct
low-temperature magnetic phasesceMnS (AFR,) and both forms of8-MnS (ARs); (i)

that they also predict correctly the high-spin insulating nature of MnS with local moments
which are close to those derived from neutron scattering factors; (iii) that MnS in all its
forms is predicted to be a largely ionicpd charge transfer system with a predominantly
d®L first ionized state.
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