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Abstract

Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using
both the traditional two-region approach and the ‘‘supercell’’ method. The traditional two-region approach has been used
to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit
and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms
are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied,
the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous
to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on
a curve, similar to those previously observed for cations with different charges, but with much lower curvature.

The ‘‘supercell’’ method has been used to investigate the pressure dependence of noble gas incorporation in the same sys-
tems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, expli-
cit simulation of incorporation at the (001) surface of MgO shows that the solubility of the heavier noble gases may be
considerably enhanced by the presence of interfaces.
� 2007 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The understanding of the partitioning of trace elements
between minerals and melts is crucial to many geochemical
processes. Incorporation and partitioning behaviour of no-
ble gases in particular is important to understand a wide
range of planetary processes from accretion to mantle
dynamics and the formation of atmosphere (Allègre et al.,
1987; Turner, 1989; Allègre et al., 1996; Harper and Jacob-
sen, 1996). The concentration of noble gases in the Earth is
about 10�9–10�1 ppm by weight. Noble gases and their iso-
topes were originally incorporated in the Earth when it
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formed, were added by subsequent cometary impacts, or
have been produced subsequently by radioactive decay
(Jambon, 1997). By virtue of the existence of both radio-
genic (e.g., 4He from U, Th decay, 40Ar from 40K decay,
129Xe from 129I) and non-radiogenic (primordial) isotopes
(e.g., 3He, 36Ar and 132Xe), noble gases can, in principle,
be used to constrain the processes of earth differentiation
and to decipher mantle structure and constrain the number
and size of terrestrial geochemical reservoirs. The inert
chemical behaviour of the noble gases makes them excellent
tracers in geochemistry. Thus it is generally considered that
noble gases behave as perfectly incompatible (mineral–melt
partition coefficient, D � 0), volatile trace elements during
mantle melting and on magma eruption or crystallisation
they are degassed extensively to atmosphere. Partition coef-
ficients and solubility of noble gases in key minerals are
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thus fundamental parameters needed for an understanding
of the early history of the Earth and its present day
degassing.

Much effort has been devoted over the last few decades
to investigate the behaviour of noble gases dissolved in var-
ious minerals and melts of geochemical interest (Hayatsu
and Waboso, 1985; Jambon et al., 1986; Lux, 1987; Carroll,
1991; Carroll et al., 1993). However, quantitative experi-
mental data are sparse, despite many advanced techniques
used for experimental investigations. The understanding
of the behaviour of noble gases in natural samples remains
incomplete and many results are conflicting. Geochemists
have traditionally considered the ‘inert’ noble gases as ex-
tremely incompatible elements with almost 100% extraction
efficiency from the solid phase during melting processes.
However some published experimental data on partitioning
between crystalline silicates and melts has suggested that
noble gases approach compatible behaviour and a signifi-
cant proportion should remain in the residual solid mantle
during extraction of silicate melts (Hiyagon and Ozima,
1986; Broadhurst et al., 1990, 1992; Carroll and Draper,
1994; Shibata et al., 1994). Hiyagon and Ozima (1986) con-
cluded from their noble gas partitioning experiments on
olivine/melt and diopside/melt systems that noble gases
were somewhat incompatible (0.01 6 D 6 0.3) and min-
eral–melt partition coefficients increased with increasing
atomic number of noble gas. Broadhurst et al. (1992) re-
ported an extensive series of partitioning experiments on
anorthite, diopside, forsterite, spinel and synthetic basaltic.
They also found that partition coefficients of noble gases in-
crease with increasing atomic number but observed surpris-
ingly high partition coefficients (0.01 6 D 6 47). More
recently, Brooker et al. (2003) and Heber et al. (2007) pre-
sented experimental data showing that noble gases are more
incompatible than previously demonstrated, but not neces-
sarily to the extent assumed or required by geochemical
models. The models derived from limited noble gas data
have often been at odds with available theories (O’Nions
and Oxburgh, 1983; Van der Hilst et al., 1997; Van Keken
and Ballentine, 1999). Virtually all earth evolution models
have assumed that all noble gases are equally incompatible
during melting/crystallization. However, there is evidence
for differences between the different gases in terms of their
geochemical behaviour. For instance, Honda and Patterson
(1999) and Ozima and Igarashi (2000) show that the abun-
dances of the primordial isotopes of Ar, Kr and Xe covary
with one another in MORB and OIB, but Ne behaves
slightly different and 3He abundances are not correlated
at all with those of the other noble gases. Evidently, the
ability to model noble gases during mantle melting is se-
verely compromised by the ignorance of the mechanisms
by which noble gas atoms are incorporated into crystals.
There is a widespread view that, unlike trace cations which
can clearly enter lattice sites, the ‘inert’ noble gases reside at
extended defects, intrinsic defects or grain boundaries and
are therefore not subject to the same thermodynamic con-
trols on crystal–melt partitioning. There is so far no consis-
tent view of how noble gases are incorporated into minerals
and how noble gases partition between coexisting crystals
and melts.
With the increase in computer power and developments
in computational methodology, the problem of trace ele-
ment and defect incorporation can now be tackled using a
variety of modern computational techniques. Many theo-
retical studies of the incorporation of trace elements in a
range of complex oxides and minerals have been carried
out (Catlow and Mackrodt, 1982; Allan and Mackrodt,
1993; Purton et al., 1996, 1997). Purton et al. (1996) have
successfully used calculated point-defect energies to esti-
mate solution energies of homovalent cation substitution
in a range of minerals (CaO, diopside, forsterite and ensta-
tite). These calculations were later extended to heterovalent
substituents (Purton et al., 1997). For heterovalent substit-
uents, there are several additional complications due to the
charge difference between the host cation and substituent
trace element cation. Firstly, the polarization of the lattice
resulting from a charged defect has to be taken into ac-
count. Secondly, the charged defect must be accompanied
by a charge-compensating defect (or defects) to maintain
charge balance. In the study of Purton et al. (1997) both
substituent and possible compensating defects and their
spatial arrangement were considered. In this paper, we fur-
ther extend these ideas to the investigation of the incorpo-
ration of noble gases in minerals and their partitioning
behaviour. In this paper, we do not attempt to calculate
mineral–melt partitioning coefficients directly but focus on
possible mechanisms of noble gas incorporation in minerals
by means of classical atomistic simulations. Our methods
are similar to those of Purton et al. (1996, 1997). The tradi-
tional two-region approach as well as the ‘‘supercell’’ ap-
proach have been used to calculate both defect energies
and solution energies for noble gases occupying a lattice site
as well as located at interstitial positions. A set of key min-
erals has been selected, including MgO, CaO, diopside
(CaMgSi2O6) and forsterite (Mg2SiO4). Unlike zeolites,
which have been subject to several previous studies (Smit
and Siepmann, 1994; Watanabe et al., 1995; Vlugt et al.,
1999), our chosen minerals are dense materials, which do
not contain cavities where large atoms, such as noble gases,
may accumulate. For such dense minerals, the powerful
Grand Canonical Monte-Carlo simulation technique,
which works well for calculating solubilities of gases in zeo-
lites, become inefficient. The problem is that due to the high
density of the minerals, the probability of successful inser-
tion steps, which is a key step of the GCMC movement, be-
comes very small. In most cases, the insertion becomes
impossible due to the constant overlap between the gas
molecule and the atoms in the mineral. Some Monte-Carlo
simulations in zeolites (Pellenq and Nicholson, 1995) have
shown that the solubility of the noble gases increases in
these materials with increasing atomic number. But is this
still true for noble gas incorporation in other minerals?

Previous simulations of noble gases in minerals other
than zeolites are almost non-existent. Tsuchiyama and
Kawamura (1994) have performed molecular dynamics
simulations of noble gases in MgO. These authors did not
consider charge-compensating defects, which we discuss in
detail below. Instead they explicitly introduced cation and
anion vacancies into the crystal. Such defects are high in en-
ergy for MgO (e.g., Allan and Cooper (1987)). Nevertheless
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they observed a rich variety of behaviour. Smaller noble gas
atoms occupied interstitial sites, while larger atoms (Ar and
Kr) occupied the vacancy positions.

2. THEORY, METHODS AND MODELS

Trace element incorporation into crystals involves inter-
action between these elements and the surrounding atoms.
We use both the two-region approach and a ‘‘supercell’’
method for calculating defect energies. The two-region
embedded defect(s) technique (Catlow and Mackrodt,
1982) has been widely used for study of doped systems of
complex oxides and a variety of silicate minerals. One or
more defects are introduced into the crystal. Initially, unre-
laxed defect energies are calculated without allowing any
atoms to move and then the total energy of the defective
system is minimised by a relaxation of the positions of
the atoms surrounding the defect to accommodate the mis-
fit cations. The crystal is divided into an inner region, I, and
an outer region, II (Fig. 1(a)). In the inner region, which
immediately surrounds the point defect, the relaxation is as-
sumed to be greatest and the elastic force equations solved
explicitly. In the outer region, lattice relaxation is assumed
to be much smaller and estimated using the Mott–Littleton
approximation (Mott and Littleton, 1938). In the calcula-
tions reported here region I contains about 500 atoms for
all the minerals studied, which is sufficient to ensure conver-
gence of defect energy with the size of inner region. Final
relaxed defect energies are obtained at minimisation. This
technique is computationally cheaper but not readily gener-
alized to finite temperatures and high pressures. The major-
ity of point-defect calculations have assumed zero
temperature and, for the most part, have involved the eval-
uation of the static part of the internal energy change
accompanying defect information only at constant volume.
Hence only the potential energy of the static lattice is eval-
uated and the vibrational contribution is neglected. The
dependence of defect enthalpies on temperature is often
small. Catlow et al. (1981), Allan et al. (1987) and Taylor
et al. (1997) have given theoretical justification for this
and some examples as well. It is therefore usually assumed
that defect enthalpies (hp) at elevated temperatures are
equal to the change in internal energy (uv) at 0 K
(hp(T) � uv(0)). This appears to be why calculated energies
so often agree well with measured enthalpies.
Defect
      I 

IIa
IIb

a b

Fig. 1. Strategy of (a) the two-region and (b) the ‘‘supercell’’
method for defect energies.
At high pressure we have used the ‘‘supercell’’ method
(Allan et al., 1987; Taylor et al., 1997) since embedding
methods such as the Mott–Littleton approximation are
not readily extended to such conditions (region I cannot
be maintained at high pressure in the minimisation). The
‘‘supercell’’ approach is based on the direct minimisation,
at a given external pressure, of the static or free energy of
periodic solids with respect to the geometrical coordinates,
possibly using very large unit cells. In this method, a
‘‘supercell’’ is constructed, which usually contains more
than one primitive unit cell. One or more defects are then
introduced into the ‘supercell’ such that it remains charge
neutral. A superlattice of defects is thus produced which ex-
tends throughout the macroscopic crystal. The periodicity
is that of the superlattice itself. The larger the supercell,
the lower the defect concentration (Fig. 1(b)); there is con-
vergence towards the properties of the isolated point-defect
as the supercell size increases. The choice of size is a com-
promise between choosing a very large supercell so that
the defects are far away from each other, minimising the
interaction between defects, and the large amount of com-
puter time needed for optimisations of the structures of
large supercells. This technique is particularly useful for
the direct evaluation of the defect enthalpies and entropies
at elevated temperatures and/or high pressures.

For all defect energy calculations in this study, integer
ionic charges are assigned to all ions based on accepted
chemical valence and electron counting rules, i.e. 2+ for
Ca and Mg, 4+ for Si, 2� for O and so on. A harmonic
three-body bond-bending term is used for the O–Si–O inter-
action. The shell model of Dick and Overhauser (1958) is
used to take the polarisation of O2� into account. The
O2� ion consists of a massive core linked to a massless shell
by a harmonic spring. The ionic charge is divided between
the core and the shell such that the sum of their charge is
the total ion charge (2�). All defect energy calculations
conducted in this work are performed using the General
Utility Lattice Program (Gale, 1997).

The success of any simulation relies on the accuracy of
the interaction parameters. In our studies there are three
different sets of interaction involved: gas–gas interaction,
solid–solid interaction and gas–solid interaction. For so-
lid–solid interaction, the cation–cation interaction is as-
sumed to be purely Coulombic. Non-Coulombic cation–
oxygen and oxygen–oxygen interactions are described by
two-body potential functions of the Buckingham form.
Thus for any pair,

UðrijÞ ¼
qiqj

4pe0rij
þ Aij exp � rij

qij

 !
� Cij

r6
ij

ð1Þ

where the first term on the right-hand side (RHS) is the
Coulombic term handled by an Ewald sum (1921), and
the second and the third RHS terms the short-range Buck-
ingham potential, for which there is a well-established po-
tential set available for a wide of range of silicate
minerals (Sanders et al., 1984; Lewis and Catlow, 1985).
The traditional way to test the accuracy of set of potentials
is to compare the calculated structure with that from exper-
iment. Purton et al. (1996) showed that, for example, the
same potential set reproduced well the structures of CaO,



Table 1
Interatomic potential models used in this work

Inter-molecular A (eV) q (Å) C (eV Å6)

Buckingham potential (Eq. (1))

Si4+–O2� 1283.91 0.32052 10.66
O2�–O2� 22764.00 0.14900 27.88
Al3+–O2� 1114.90 0.3118 0.00
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diopside and forsterite. We use this potential set in the cur-
rent study, supplemented by a new set of potentials for the
interactions between the noble gases and the silicate min-
eral. The derivation of the potentials involving the noble
gases is not straightforward and is described in detail in
Appendix A. The complete set of interaction parameters
used in this work is listed in Table 1.
Na+–O2� 1266.84 0.3065 0.00
Ca2+–O2� 1090.39 0.3437 0.00
Mg2+–O2� 1428.50 0.2945 0.00
Sc3+–O2� 1299.39 0.3312 0.00
Zr4+–O2� 1453.80 0.3500 0.00

A (eV Å12) B (eV Å6)

Lennard-Jones potential (Eq. (10))

Ne–Ne 2736.1740 5.8012
Ar–Ar 100166.9860 64.2720
Kr–Kr 640600.9453 184.8800
Xe–Xe 2633133.2634 440.5703
Ne–Si4+ 4.6767 0.1723
Ne–Al3+ 14.3029 0.3013
Ne–O2� 3857.3231 8.9350
Ne–Mg2+ 231.2189 3.0225
Ne–Ca2+ 767.5165 5.5069
Ne–Sc3+ 264.3189 3.2316
Ne–Na+ 1045.8390 7.6833
Ne–Zr4+ 231.2189 3.0225
Ar–Si4+ 60.7666 0.8405
Ar–Al3+ 158.0652 1.3556
Ar–O2� 25209.6201 30.9095
Ar–Mg2+ 2247.4736 12.7517
Ar–Ca2+ 6426.3266 21.5627
Ar–Sc3+ 2525.1680 13.5165
Ar–Na+ 8806.1512 30.1693
Ar–Zr4+ 2247.4736 12.7517
Kr–Si4+ 265.879283 1.875086
Kr–Al3+ 627.0524 2.8795
Kr–O2� 71676.8747 55.5861
Kr–Mg2+ 8236.9387 26.0359
Kr–Ca2+ 21443.2511 42.0083
Kr–Sc3+ 9155.4955 27.4493
Kr–Na+ 29489.4873 58.8809
Kr–Zr4+ 8236.9387 26.0359
Xe–Si4+ 795.8733 3.5171
Xe–Al3+ 1763.7751 5.2359
Xe–O2� 162143.3321 90.6396
Xe–Mg2+ 22019.0150 46.1509
Xe–Ca2+ 53929.1016 72.2259
Xe–Sc3+ 24304.5504 48.4870
Xe–Na+ 74338.9278 101.3540
Xe–Zr4+ 22019.0150 46.1509

k (eV rad�2) H0

Three-body potential

O2�–Si–O2� 2.09724 109.470000

Integral ionic charges are assigned to all ions based on accepted
chemical valence and electron counting rules, i.e., 2+ for Ca and
Mg, 4+ for Si, 2� for O and so on. A shell model was used for the
oxygen ions, with core charge 0.86902e, shell charge �2.86902e,
and spring constant 74.9235 eV Å�2. For the Lennard-Jones
potential, parameters A and B stand for 4er12 and 4er6, respec-
tively, where e and r are the Lennard-Jones interaction parameters
indicated in Appendix A (Eq. (10)).
3. RESULTS AND DISCUSSION

3.1. The mechanisms of noble gas incorporation in minerals

Unlike trace cations, for which incorporation behaviour
in crystals as well as their partitioning behaviour is rela-
tively well-understood, there is no consensus as to how no-
ble gases are incorporated into crystal lattices, nor their
partitioning behaviour. Do the noble gases enter a crystal
lattice in just the same way as trace cation elements? Do
they cause lattice strain due to their atomic size mismatch?
To verify this, we have extended the methods described for
trace element cations (Purton et al., 1996, 1997) to noble
gases. Firstly the traditional two-region approach is used
to obtain the defect energies as well as solution energies
of noble gas incorporation in minerals in the static limit.
The possibility of noble gas incorporation via both substi-
tution and interstitial mechanisms is considered. Like het-
erovalent cations, the incorporation of a noble gas atom
into a crystal is more complex than that of an isovalent cat-
ion. Substitution of a noble gas for a Ca2+ or Mg2+ ion
gives rise to a charged defect. To ensure overall charge bal-
ance, charge-compensating defects must also be incorpo-
rated. Charge compensation produces overall two or
more defects. These may either be isolated, i.e., so remote
from each other that the total defect energy is the sum of
energies of the isolated defects, i.e., E(M0) + E(M4+), or
they may be situated close to one another. If the latter,
there is then an association energy between defects with
effective opposite charges. The energy for the defect com-
plex, denoted as E(M0 + M4+), will be lower than
E(M0) + E(M4+) (Purton et al., 1997). A simple calculation
of the interaction between two point charges separated by
�3 Å (the M1–M1 distance in diopside and forsterite) in
a continuum with a dielectric constant set equal to that of
a typical silicate mineral shows that the effect of association
is large. For example, formation energies for E(M3+ + M+)
are lower by �100 kJ mol�1 than E(M3+) + E(M+) (Purton
et al., 1997). In this study we have therefore considered only
associated defects.

As in Purton et al. (1997), a range of plausible associated
charge-compensating defects has been investigated to iden-
tify the lowest energy mode for noble gas substitution. In
diopside and forsterite it has been found, consistent with re-
sults for alkali metal incorporation (Purton et al., 1997),
that two Sc3+ at adjacent cation M1 sites gives the lowest
solution energies for noble gas substitution. In CaO and
MgO, there is only one substitution site, and here two
Sc3+ are simply placed at adjacent cation positions. All
the results for noble gases presented in this paper are based
on this charge-compensating combination. We stress that
additional studies have shown that the variation of solution



Table 2
Calculated initial defect energies (no relaxation) (IDE), final defect
energies (including relaxation) (FDE), relaxation energies (RE) and
solution energies (SE) for noble gas impurities in MgO, CaO,
diopside and forsterite via the lattice site substitution mechanism

Impurity IDE FDE RE SE

MgO

Ne �537 �1710 1173 348
Ar 977 �1455 2432 603
Kr 4464 �1078 5542 980
Xe 11366 �621 11987 1437

CaO

Ne �1977 �3327 1349 285
Ar �1727 �3282 1554 330
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energy with noble gas atomic number remains basically the
same whatever the charge-compensating defect (e.g., other
two 3+ ions such as Al3+ or Ho3+ or one 4+ ion such as
Zr4+ or Ti4+). This is discussed further in Section 3.1.2.

In geochemical studies, partitioning is often related to
the atomic or ionic radius of the substituent. For presenta-
tion purposes and the discussion of trends, we use the
appropriate ionic or atomic radius. For diopside we have
used the values for sixfold and eightfold coordinate radii
(Shannon, 1976; Zhang and Xu, 1995) for all substitutions
at the M1 site (Mg) and M2 site (Ca), respectively, whereas
in forsterite both M1 and M2 are sixfold coordinate. It
must be stressed that the simulations themselves do not in-
volve in any way the use of atomic radii.
Kr �1094 �3169 2075 442
Xe �190 �3002 2812 609

Diopside (M1 site)

Ne �484 �1688 1204 374
Ar 646 �1569 2216 489
Kr 3265 �1405 4671 652
Xe 8452 �1222 9675 835

Diopside (M2 site)

Ne �1450 �2283 833 293
Ar �1311 �2247 936 329
Kr �930 �2152 1222 424
Xe �143 �2008 1865 568

Fosterite (M1 site)

Ne �717 �1828 1111 230
Ar 551 �1695 2246 363
Kr 3476 �1519 4996 538
Xe 9266 �1316 10582 742

Fosterite (M2 site)

Ne �329 �1650 1321 409
Ar 703 �1543 2246 515
Kr 3095 �1396 4492 662
Xe 7838 �1321 9159 737

Oxide MgO CaO Sc2O3

Lattice energy �3986 �3468 �14016

Noble gas Atomic radiusa

(sixfold)
Atomic radiusa

(eightfold)

Ne 1.21 1.32
Ar 1.64 1.77
Kr 1.78 1.87
Xe 1.96 2.03

The lattice energies of the binary oxides used to calculate the
solution energies are also listed as are the atomic radii (Zhang and
Xu, 1995) of the noble gases. All results are for associated defects
as described in the text. Energies are in kJ/mol and atomic radii are
in Å.
3.1.1. Defect and relaxation energies of noble gas substitution

in minerals

We first present calculated defect energies (compensated
by two Sc3+) for noble gas substitution in MgO, CaO, diop-
side (see e.g., Eq. (3)) and forsterite at zero pressure and these
are collected together in Table 2. Both initial (unrelaxed), Ui

and final (relaxed), Uf energies are given. The difference be-
tween the two, the relaxation energy (Urel = (Ui � Uf)), is
also listed. Fig. 2 shows the variation of the relaxed defect
energies with noble gas atomic radius for all minerals in-
volved in this study. In every case the final relaxed defect en-
ergy (Uf) increases with increasing noble gas atomic radius.
All final relaxed defect energies are negative. This does not
mean that the overall solution energies for noble gas substitu-
tion in these minerals are negative since these are a function
not only of the defect energies but also the lattice energies
of the binary oxides involved in the substitution reaction
(Purton et al., 1996, 1997). Further details are given in the
next section. The relaxed defect energies of noble gases in
diopside (see Fig. 2(c)) show that the defect energies at the
M2 site (Ca site) are lower than those at the M1 site (Mg),
in agreement with the relative size of the two sites.

The relaxation energy is the energy released when the
atoms move from their perfect lattice positions to accommo-
date the incoming trace element. The greater the relaxation
energy, the larger is the mismatch between host and substitu-
ent. The relaxation energy is always a positive quantity. In
Fig. 3, we have plotted the variation of calculated relaxation
energy against the noble gas atomic radius. The figure shows
that the general characteristics of these plots are similar for
Mg sites in all the minerals studied, and similar also for all
the Ca sites, which suggests that the rigidity of the local envi-
ronment rather than that of the bulk crystal largely deter-
mines the relaxation energy. On both Ca and Mg sites, the
relaxation energies exhibit an approximately parabolic
dependence on the noble gas atomic radius. The curvature
of the parabola is larger at the Mg sites than the Ca sites.
Relaxation energies for the Mg site are more sensitive to sub-
stituent size. The minimum relaxation energy for the noble
gases is a radius someway from that of the host atom (i.e.,
Mg in the M1 site and Ca in the M2 site of diopside), unlike
for isovalent substitution (Purton et al., 1996).

In previous studies (Purton et al., 1996, 1997; Van Wes-
trenen et al., 2000), the Brice lattice strain model (Brice,
1975) was adapted to describe successfully the near-para-
bolic dependence of lattice strain energy on atomic radius.
In this model, strain around a misfit element in an isotropic
perfectly elastic crystal lattice is obtained using macro-
scopic strain theory and the strain energy per mole of trace
element is given by

U ¼ 4pEaN A
ro

2
ðrM � roÞ2 þ

1

3
ðrM � roÞ3

� �
ð2Þ
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Fig. 2. Variation of defect energies for noble gas substitution in (a) MgO, (b) CaO, (c) diopside and (d) forsterite with atomic radius.
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Ea is the apparent Young’s modulus of the site. rM is the ra-
dius of the trace element and ro is the optimum radius of the
site. NA is Avogadro’s constant. We have fitted our series of
relaxation energy values to the Brice model, i.e., to the RHS
of Eq. (2) and these are shown as the curves in Fig. 3. Fitted
values of apparent site Young’s modulus Ea and the opti-
mum radius of the site, ro, for noble gas substitution are gi-
ven in Table 3. It is clear that both Ea and ro are broadly
similar for similar sites in the minerals consistent with the
relative compressibility of a site being dependent largely
on the type of site and not the mineral in which the site
occurs.

We stress that the defect energies and the relaxation
energies themselves are only parts of the overall physical
process involved in trace element partitioning. They are
purely a solid-state property and ignore the presence of a
melt phase.

3.1.2. Solution energies of noble gas incorporation via a

substitution mechanism

In general, partitioning of noble gases between minerals
and melts consists of three steps (i) removal of a noble gas
from the melt, (ii) incorporation of the gas molecule into
the mineral by a substitution mechanism and (iii) insertion
of the host cation(s), in our case either Mg or Ca, into the
melt. Thus the melt must also play a role in noble gas par-
titioning. Here, as previously (Purton et al., 1997; Van Wes-
trenen et al., 2000; Allan et al., 2001), we use an exchange
reaction to describe approximately the partitioning process,
and assume the noble gases behave ideally in the melt. An
example is given below, in which argon substitutes for Ca
(at the M2 site) with change compensation of two Sc3+ at
adjacent Mg site (M1 site):

ArðmeltÞ þ Ca4Mg4Si8O24ðsolidÞ þ Sc2O3ðmeltÞ
¼ ArCa3Mg2Sc2Si8O24ðsolidÞ
þ CaOðmeltÞ þ 2MgOðmeltÞ ð3Þ

The energy associated with this reaction is thus

Esol ¼ Edef þ ElatðCaOÞ þ 2ElatðMgOÞ � ElatðSc2O3Þ ð4Þ

Esol is the solution energy and Elat is the lattice energy of the
relevant binary oxide. As an approximation, following Pur-
ton et al. (1996, 1997) and Van Westrenen et al. (2000), we
assume that the local environments of host and substituent
trace elements in the melt are equivalent to their environ-
ments in the corresponding binary solid oxides. Hence the
energy associated with the exchange reaction, the solution
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Fig. 3. Variation of relaxation energies for noble gas substitution in (a) MgO, (b) CaO, (c) diopside and (d) forsterite with atomic radius.

Table 3
Apparent site Young’s modulus Ea and the optimum radii of the
site ro obtained by fitting relaxation energy data (Table 2) to the
Brice equation (Eq. (2))

Minerals Site Ea (GPa) ro (Å)

MgO Mg 5194 1.38
CaO Ca 779 1.48

Diopside Mg(M1) 4026 1.38
Ca(M2) 651 1.52

Forsterite Mg(M1) 4494 1.38
Mg(M2) 3753 1.38
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energy, not only includes defect energies but also the differ-
ences between the lattice energies of the host and the trace
element oxide. What will happen if the local cation environ-
ment of the melt is different from that of the binary oxide?
To investigate this possibility, we have also calculated the
lattice energies of MgO and CaO assuming they have a
four- or eight-coordinate structure rather than the sixfold
one they actually adopt in the solid-state. The results indi-
cate that in the four-coordination environment the overall
solution energies are very similar to those for six-coordina-
tion. However, with eight-coordination, the solution ener-
gies are much higher. But, in every case, the trends are
the same and the curvature of the solution energy vs. atom-
ic radius plot remains unchanged.

Calculated lowest solution energies of noble gas incor-
poration in MgO, CaO, diopside and forsterite (via the sub-
stitution mechanism) are plotted against atomic radius in
Fig. 4. The curves are the results of fitting the calculated
solution energies to the Brice equation (Eq. (2)). The solu-
tion energies, like the relaxation energies, show a near-par-
abolic dependence on radius. The minimum in solution
energies vs. atomic radius occurs at a radius larger than that
of the host atom, which is similar to the relaxation energy
vs. radius curve (Fig. 3). For all the noble gases the solution
energies are positive and the solution energy of Xe is the
highest. Fig. 4(c) shows similar features to those in
Fig. 2(c), in that the solution energies of noble gas substitu-
tion at the M2 site (Ca) in diopside are lower than those at
the M1 site (Mg). This indicates that overall the Ca is more
favourable than the Mg site for noble gas substitution in
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1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

300

600

900

1200

2 Sc (Ca site) 
2 Sc (Mg site) 
2 Al  (Ca site) 
2 Al  (Mg site) 
1 Zr  (Ca site) 
1 Zr  (Mg site) 

Diopside

S
ol

ut
io

n 
en

er
gy

 (
kJ

/m
ol

)

Radius (Å)

Fig. 5. Variation of solution energies for noble gas substitution at
the M1 (Mg) and M2 (Ca) sites in diopside, with different charge-
compensation defect(s) including: two Sc3+ ions, two Al3+ ions,
one Zr4+ at adjacent cation M1 site(s).

Noble gas incorporation in minerals 561
diopside. Additional calculations showed that solution
energies with two other 3+ cations (e.g., Al3+or Ho3+) or
one 4+ cation (e.g., Zr4+ or Ti4+) as compensating defects
are larger than those plotted in Fig. 4 but the trends with
noble gas radius and variation from one site to another
(in the same crystal or from one crystal to another) remain
the same, see Fig. 5 for the comparison.

3.1.3. Solution energies of noble gas incorporation via an

interstitial mechanism

We have also studied incorporation of noble gases via an
interstitial mechanism. In this case, there is no need for
compensating defects due to the charge of the noble gas,
or to assume ideal cation behaviour in the melt. The defect
energies are equivalent to the solution energies. An example
of such a process (here arbitrarily involving the incorpora-
tion of one Ar in a supercell containing four formula units
of diopside)

ArðmeltÞ þ Ca4Mg4Si8O24ðsolidÞ
¼ ArCa4Mg4Si8O24ðsolidÞ ð5Þ

and the energy associated with this process is given by

Esol ¼ Edef ð6Þ
To obtain the lowest solution energies, many different inter-
stitial positions were investigated. Those with the lowest
solution energies together with the lowest energies for
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incorporation by substitution are listed in Table 4. The
initial positions are presented in Appendix B. The order
of the solution energy of noble gas interstitial incorporation
in all minerals studied is Ne < Ar < Kr < Xe. Once again,
Xe has the highest solution energy as for substitution
incorporation. The results also suggest that there is a
connection between the density of the minerals and the
favoured mechanism. For the densest mineral, MgO
(q = 3.6182 g/cm3), the solution energies of all noble gas
substitutions are always lower than for interstitial incorpo-
ration. For forsterite, which has the lowest density of the
four minerals studied (q = 3.1889 g/cm3), the opposite
holds and the solution energies of noble gas incorporation
via the interstitial mechanism are always lower than those
for substitution. The interstitial site is now more favour-
able. The densities of both CaO (q = 3.3533 g/cm3) and
diopside (q = 3.2163 g/cm3) are smaller than that of MgO
but larger than forsterite. In both CaO and diopside the
solution energies of Ar, Kr and Xe substitution are lower
than that of interstitial incorporation, while for Ne the
interstitial mechanism has lower solution energy, by at
least 160 kJ/mol. Hence there is a possibility that Ne is
incorporated interstitially in both CaO and diopside.
Calculated solution energies of both noble gas substitution
and interstitial incorporation in diopside are plotted in
Fig. 6. It is clear that for noble gas incorporation in
diopside the larger atoms (e.g., Xe, Kr and Ar) prefer
crystal sites while smaller atoms, like Ne, tend to occupy
interstitial positions.
Table 4
Comparison of solution energies (kJ/mol) for two incorporation
mechanisms: lattice site substitution and interstitial

Noble gas Substitution (Mg site) Interstitial

MgO

Ne 348 402
Ar 603 1024
Kr 980 1542
Xe 1437 2005

Substitution (Ca site) Interstitial

CaO

Ne 285 122
Ar 330 454
Kr 442 785
Xe 609 1104

Substitution (Ca-M2) Interstitial

Diopside

Ne 293 123
Ar 329 389
Kr 424 515
Xe 568 773

Substitution (Mg-M1) Interstitial

Forsterite

Ne 230 56
Ar 363 247
Kr 538 444
Xe 742 657
3.1.4. Noble gas vs. cation substitution

Fig. 7 compares the calculated solution energies of noble
gas substitution in diopside with those of a wide range of
trace element cations with different charges, including 1+

(Li+, Na+, K+ and Rb+), 2+ (Ni2+, Co2+, Fe2+, Mn2+,
Cd2+, Eu2+, Sr2+ and Ba2+), 3+ (Sc3+, Lu3+, Yb3+, Ho3+,
Eu3+, Gd3+, Nd3+ and La3+) and 4+ (Zr4+, Ce4+, U4+

and Th4+) ions. For each cation trace element series (except
2+ isovalent substitution), associated defects are considered
and only the lowest solution energy at the M2 site (Ca) is
plotted. For univalent cations incorporated in diopside
the lowest mode of solution is X+(M2)/Lu3+(M1); for 3+
cations it is X3+(M2)/Na+(M2) and for noble gases and
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-200

0

200

400

600

800

1000

1200

Xe

Kr
ArNe

 Noble gas
1+
2+
3+
4+

S
ol

ut
io

n 
en

er
gy

 (k
J/

m
ol

)

Radius (Å)

Fig. 7. Variation of calculated solution energy with atomic radius
for noble gases and for a range of trace element cations with
different charges incorporation in diopside. The cations involved in
this study are: 1+ cations: Li, Na, K and Rb, 2+ cations: Mg, Co,
Fe, Mn, Cd, Eu, Sr and Ba, 3+ cations are: La, Nd, Eu, Gd, Ho,
Yb, Lu and Sc, 4+ cations are: Zr, Ce, U and Th. Each list is in
order of increasing ionic radius. Eightfold coordinate radii used for
all cations (Shannon, 1976).
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4+ cations the lowest modes of solution are X0(M2)/
2Sc3+(M1) and X4+(M2)/2Na+(M2), respectively. For 2+
cations no charge-compensating defects are required.
Fig. 7 shows that the variation of solution energies of all
impurities with ionic radius is similar and appears to be
roughly parabolic. Once more we have fitted the simulated
solution energies to the Brice model (see the curves in
Fig. 7). Both parameters Ea, and ro have been extracted
from the fitting and are listed in Table 5. The results show
that the order of the curvature of these parabolae (the effec-

tive site modulus, Ea) is noble gas <1+ ion <2+ ion <3+ ion
<4+ ion. The noble gases thus fall on a more open parabola
with less discrimination of the solution energies between one
element and another of different size. The optimum radius
of the site, ro, decreases with increasing charge.

3.1.5. Calculation vs. experiment

In Fig. 8, we have displayed the experimentally deter-
mined partition coefficients as a function of atomic radius.
The data are selected from experiments for trace elements,
including noble gases, in diopside-rich clinopyroxene–melt
systems (Brooker et al., 2003; Heber et al., 2007). The
experiments were carried out at 0.1 GPa and 1200 �C and
analysed using a combination of standard ion-probe tech-
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Fig. 8. Experimentally determined mineral–melt partition coeffi-
cients for 1+cations, 2+ cations, 3+ cations, 4+ cations and noble
gases from Brooker et al., 2003) and recent data for noble gases
from Heber et al. (2007). The 1+ cations are Na, K, Rb and Cs; the
2+ cations are Mg, Ca, Sr and Ba; the 3+ cations are Lu, Nd, Y, Ce,
La; the 4+ cations are U and Th. Eightfold coordinate radii
(Shannon, 1976) used for all cations.

Table 5
Extracted apparent site Young’s modulus Ea and the optimum
radius ro of the site (M2 site) obtained by fitting calculated solution
energy data in diopside to the Brice equation (Eq. (2)) for trace
elements with different charges

Impurity Ea (GPa) ro (Å)

Noble gas 151 1.49
1+ ion 224 1.21
2+ ion 384 1.19
3+ ion 451 1.17
4+ ion 685 1.04
niques (cations) and ultraviolet laser ablation microprobe
(UVLAMP) technique (noble gases). The experimentally
determined partition coefficients show very similar features
to the calculated solution energies discussed in Section 3.1.4
and shown in Fig. 7. The variation of partition coefficients
of all impurities with atomic radius is roughly parabolic
and the curvature of the parabolae decreases with decreas-
ing cation charge. There are some differences in the magni-
tude of the curvature, i.e., the ‘‘openness’’ of the parabola
between experiments and simulations. This could be due
to some simplifying assumptions made in the simulations,
such as melt environment or calculation of all energies in
the static limit rather than the elevated temperatures of
the experiments. Both simulated and experimental data sug-
gest that the solution energies (or partition coefficients) for
noble gases are approximately the same as for the 4+ cat-
ions (U and Th) as predicted by Wood and Blundy
(2001). The results also suggest there will be little fraction-
ation between the heavier noble gases during crystallisation
of clinopyroxene from the melt. The extent of agreement
between simulation and experiment is very encouraging.

According to the Blundy and Wood (1994) adaptation
of the Brice equation, the partition coefficient, Di, for an
ion with charge n+ and radius ri entering a crystal lattice
site M can be described in terms of three parameters:
rnþ

oðMÞ, the ideal radius of that site for cations with this
charge; Ea, the apparent (effective) Young’s Modulus of
the site and Dnþ

oðMÞ the ‘‘strain-free’’ partition coefficient for
a ion with radius rnþ

oðMÞ, the final expression is

Di ¼ Dnþ
oðMÞ exp �4pEa

1

2
rnþ

oðMÞðri � rnþ
oðMÞÞ

2 þ 1

3
ðri � rnþ

oðMÞÞ
3

� ��
�

kBT
�

ð7Þ

Dnþ
0ðMÞ and Ea vary with charge as well as pressure, temper-

ature and melt composition. We now consider the simu-
lated and experimental data in terms of the Brice and the
lattice strain model. Fig. 9 plots values of Ea vs. the ratio
of the trace element charge (Z) to the ‘‘site volume’’, taken
to equal d3, where d ¼ ro þ r2�

O , ro is the optimum site ra-
dius and r2�

O the ionic radius of O2�. A value of 1.38 Å is
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assigned to r2�
O (Shannon, 1976). Two lines are plotted; one

corresponding to values of Ea extracted from experimental
partition coefficients and the other to values from simulated
solution energies. The existence of these lines and the de-
crease of the optimum radius with cation charge evident
in the plots for both experiment and simulation in
Fig. 10, suggest that, in terms of their partitioning behav-
iour, noble gases behave quite simply as ‘‘zero charge cat-
ions’’ (Brooker et al., 2003).

Since the calculations in this paper were completed new
melt-mineral experimental partitioning data for forsterite
and clinopyroxene have been generated by Heber et al.
(2007), which were also presented in Fig. 8. The data for
forsterite suggest relatively little fractionation during
crystallisation from the melt and the values of the forste-
rite–melt partition coefficients are similar to those for diop-
side-rich clinopyroxene–melt systems, both entirely
consistent with our calculations. On the basis of experi-
ments in which varying amounts of Sc or Ti were added
to the starting materials, Heber et al. (2007) conclude that
incorporation of all the noble gases in forsterite is as inter-
stitials. This is consistent with our conclusions in Section
3.1.3 above. However, we should emphasise that even tiny
amounts of trace impurities are sufficient to charge-balance
noble gas incorporation via a coupled substitution mecha-
nism, such as the replacement of 3Mg2+ by Ar and 2Sc3+

(Eq. (3)), in which the noble gas and its charge-compensat-
ing defects are strongly associated. For example, according
to Heber et al. (2007), the total solubility of noble gases
He–Xe in olivine at 0.1 GPa amounts to just
1.1 · 10�8 ± 7 · 10�9 mol/g. To charge balance this entire

noble gas inventory using Sc3+ alone requires just 0.9 ±
0.6 ppm (by mass), or in the case of Ti4+, 0.5 ± 0.3 ppm
(by mass). We rather doubt that such low contents (i.e.,
P99.9999% purity) of Sc, Ti or other potential charge-bal-
ancing cations, can be eliminated even when using highest
grade commercially available reagents. Thus, while we
agree with the interpretation of Heber et al. (2007) regard-
ing the likely substitution mechanism of noble gases, we do
not consider the experimental modus operandi by which
they arrive at this conclusion to be definitive. Similarly,
we take issue with the statement of Heber et al. (2007) that,
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by analogy with olivines, ‘‘[noble gas] partitioning is into
sites which are vacant in all clinopyroxenes’’, i.e., that all
noble gases take up interstitial positions whatever the min-
eral and whatever the conditions. Our results in Section
3.1.3 show clearly this is not so, with the calculated solution
energies indicating that in diopside the larger atoms (e.g.,
Xe, Kr and Ar) prefer crystal lattice sites while smaller
atoms, like Ne, tend to occupy interstitial positions. We
conclude that when dealing with trace elements that are
highly insoluble in silicate minerals and are incorporated
via strongly associated compensating defects, it is very dif-
ficult to establish unequivocally by variable level doping
alone the favoured substitution mechanism.

3.2. Influence of pressure on noble gas incorporation in

minerals

In previous sections, we have discussed the defect ener-
gies and solution energies of noble gas incorporation (both
substitution and interstitial) in CaO, MgO, diopside and
forsterite at one atmosphere. In this section, we consider
briefly the effects of pressure on the noble gas substitution
incorporation. We use the ‘‘supercell’’ method (Taylor
et al., 1997) described in earlier section to evaluate directly
the defect enthalpies at high P in the same set of minerals
examined.

As before, the noble gas is placed at a Ca or Mg site with
two Sc3+ situated at Mg or Ca sites adjacent to the noble
gas (we assume that pressure has no effect on the favoured
substitution mechanism). For diopside, only those noble
gases substituted at M2 sites are considered. For forsterite,
we consider the M1 site only. The solution enthalpy of no-
ble gas incorporation at the diopside Ca site is given by

H sol ¼ H df � Hpf þ H latðCaOÞ þ 2H latðMgOÞ � H latðSc2O3Þ
ð8Þ

where Hsol is the solution enthalpy and Hdf, Hpf are the
enthalpies of the defective and perfect supercells at the
pressure of interest. Hlat(CaO), Hlat(MgO) and Hlat(Sc2O3)
are the lattice enthalpies of CaO, MgO and Sc2O3 at the
pressure of interest, respectively. The corresponding equa-
tion for substitution for Mg2+ follows immediately. To
evaluate the solution enthalpies at high pressure, we have
calculated the required lattice energies for CaO, MgO,
Sc2O3 at a range of pressures and these are listed in Table
6. The GULP program was used, as before, for all perfect
and defective supercell structure optimisation at high
pressure.

For perfect and defective lattice calculations, we first
investigate the effect of ‘‘supercell’’ size on the calculated
defect energies at one atmosphere pressure to check
Table 6
Lattice energies (kJ/mol) of binary oxides used to calculate the
solution enthalpies at various pressures

Pressure MgO CaO Sc2O3

0.1 MPa �3986 �3468 �14016
10 GPa �3877 �3307 �13674
40 GPa �3570 �2869 �12715
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convergence to the dilute limit and determine the most suit-
able size of the ‘‘supercell’’. Xe was chosen for these calcu-
lations; its large size gives rise to the largest elastic
relaxations. The convergence of defect energies with size
of the ‘‘supercell’’ is shown in Fig. 11. It is clear that the
energies converge to the point-defect limit as the size of
‘‘supercell’’ increases. This suggests an optimum ‘‘super-
cell’’ size, minimising the computational effort, but without
sacrificing accuracy, of 512 atoms for MgO and CaO, 360
atoms for diopside and 336 atoms for forsterite. We have
also compared the results of the’’supercell’’ calculations
using these cells at one atmosphere with those from the
two-region method used earlier and results are plotted in
Fig. 12. The good agreement between the two methods
leads support to our further use of the ‘‘supercell’’ method
to obtain defect and solution enthalpies at high pressure.

The ‘‘supercell’’ method was then used to perform calcu-
lations for noble gas substitution in CaO, MgO, diopside
and forsterite at P = 10 and 40 GPa. The results indicate
that, as expected, solution enthalpies increase with pressure,
as shown in Fig. 13. The variation of solution enthalpies of
noble gas substitution with the atomic radius is roughly
parabolic no matter what type of mineral or what pressure.
In all cases, except forsterite, the largest increase in solution
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Fig. 11. Variation of calculated defect enthalpies with unit cell size at z
(b) CaO, (c) diopside and (d) forsterite.
enthalpy with pressure is for Xe. For forsterite the change
in solution enthalpy with pressure does not vary signifi-
cantly from one noble gas to another. We have fitted the
simulated solution energies to the Brice model (Eq. (2)),
shown as the curves in Fig. 13. Both parameters Ea, and
ro are listed in Table 7. The data show that, as expected,
apparent site modulus increases with pressure for noble
gas incorporated in MgO, CaO and diopside, but no such
clear trend is observed in fosterite. The optimum radius
of the site decreases with the pressure for all except for
MgO at 40 GPa, a particular case which may be an artefact
due to the difficulties of fitting to such few points.

3.3. Surface vs. bulk incorporation

Surfaces and grain boundaries, whether internal or
external, provide a different electrostatic and elastic envi-
ronment from that of the bulk crystal. Consequently, defect
and solution energies may differ substantially at surfaces
and grain boundaries from that in the bulk. If surface solu-
tion energies are substantially lower than bulk solution
energies significant migration of species to the mineral
surface will result, and vice versa. It is therefore worthwhile
to carry out further simulations and explicitly compare
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Fig. 12. Comparison of defect energies calculated at atmosphere pressure (0.1 MPa) using the supercell method and the two-region approach
for noble gas incorporated in (a) MgO, (b) CaO, (c) diopside and (d).
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calculated solution energies in the bulk with those at the
surface. We have used MgO as a representative mineral.
A slab of MgO, terminated at top and bottom by the
(001) surface, with surface area �282 Å2 (512 atoms), is
separated by a vacuum gap from its periodic images. To test
convergence, calculations were conducted for a series of
slab thickness and gap widths which indicated that a slab
thickness of eight layers (�17 Å) and a gap width of about
25 Å were sufficient for the calculations reported here. Sur-
face defect energies are calculated by a supercell method.
Initially, the geometry of the undefective (perfect) slab is
optimized at constant volume, i.e., cell with fixed dimen-
sions. The noble gases and the compensating defects are
then introduced at the surface. The noble gas atom is placed
at a Mg surface site and two Sc atoms replace two Mg
atoms at the surface Mg sites nearest to the noble gas.
The geometry of the slab is reoptimised at constant volume.
The surface solution energy (Es�sol) is

Es-sol ¼ Ed-surf � Ep-surf þ 3ElatðMgOÞ � ElatðSc2O3Þ ð9Þ

where Ed-surf, Ep-surf are the energies of the defective and
perfect (undefective) slabs, respectively. For the bulk,
once again the supercell method is used for the defect en-
ergy calculations, where the number of atoms is same as
to that used in surface calculations. Both bulk and sur-
face calculated results are listed in Table 8. It is clear
from the calculated results that in all cases, the solution
energy of a noble gas substituted at a surface site is lower
than in the bulk and the solution energy for surface
incorporation decreases with the size of the noble gas
atom, a trend opposite to that in solution energies ob-
served for bulk incorporation. At the surface, the differ-
ence in solution energy between different noble gases is
much smaller than that in the bulk. For heavy atoms
(e.g., Xe) the energy difference for substitution in the
bulk and at surface is very large with the solution energy
for surface substitution approximately a seventh that in
the bulk. For small atoms the difference is smaller (e.g.,
about two-thirds for Ne). This indicates that there is pro-
nounced segregation of Xe at the (001) surface.

The solubility of the heavier noble gases may thus be
considerably enhanced by the presence of interfaces and
other extended defects. This is consistent with the exper-
imental study studies of Brooker et al. (1998), Wartho
et al. (1999) and Chamorro et al. (2002), who observed
unusually high concentrations of argon at analysed crys-
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Fig. 13. Calculated solution enthalpies vs. atomic radius (Å) in (a) MgO, (b) CaO, (c) diopside and (d) forsterite at P = 0.1 MPa, 10 and
40 GPa using the ‘‘supercell’’ method.

Table 7
The effect of pressure on apparent site Young’s modulus Ea and the
optimum radius rO of the site of noble gas incorporated in MgO,
CaO, diopside and forsterite

Materials Pressure Ea (GPa) ro (Å)

MgO 0.1 MPa 324 1.23
10 GPa 390 1.17
40 GPa 771 1.26

CaO 0.1 MPa 194 1.49
10 GPa 264 1.48
40 GPa 448 1.45

Diopside 0.1 MPa 172 1.49
10 GPa 218 1.47
40 GPa 311 1.41

Forsterite 0.1 MPa 131 1.19
10 GPa 138 1.14
40 GPa 103 0.90

Table 8
Solution energies (kJ/mol) of noble gas incorporated in MgO bulk
vs. at its surface, calculated via supercell calculations

Noble gas Bulk Surface

Ne 358 221
Ar 614 216
Kr 991 213
Xe 1433 208

The small differences between the bulk defect energies here and
those in Table 4 arise since the former obtained from supercell
calculations while the latter are point-defect energies calculated
using the Mott–Littleton technique (see text).
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tal surfaces. For the exposed surfaces in diffusion exper-
iments this concentration is far in excess of the amount
expected, given the projected diffusion profile observed
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at depth in the same analysis pit. For freshly exposed
surfaces (i.e., sectioned partitioning experiments) a high
surface concentration of heavier noble gas is sometime
observed compared to concentrations in deeper analyses
that are though to represent bulk solubility. This may
represent redistribution of the gas during/after sectioning
as a relaxed lattice surface is created. The fact that the
surfaces analysed in the partitioning experiments were
cut after the experiment was quenched, may suggest that
migration to a surface via diffusion can occur on short
timescales and is a serious consideration for any experi-
mentalist wishing to measure heavy noble gas concentra-
tions in sectioned run products. This is in addition to
problems with the diffusive loss of the lighter noble gases
(He and Ne) from crystal surfaces at room temperature
as observed by Heber et al. (2007). Anomalously high
‘hot spots’ of argon concentration, compared with aver-
age values were observed on the surface of quartz grains
by Roselieb et al. (1997), who argued that some previous
experimental studies (e.g., Broadhurst et al., 1990, 1992)
showing unusually high noble gas partition coefficients
were a consequence of surface enrichment of the noble
gas.
4. CONCLUSIONS

In this study, we have used the Grand Canonical Monte-
Carlo technique to determine potential parameters between
noble gas and silicate minerals by fitting to available
adsorption isotherm data. The resulting parameters were
then used to study possible mechanisms of noble gas incor-
poration in minerals.

The two-region approach was used to study the mech-
anisms of noble gas incorporation in a variety of miner-
als including MgO, CaO, diopside and forsterite. There
appears to be a correlation between the density of the
materials and the favoured mechanism. For the densest
mineral, MgO, a lattice site seems to be more favourable
than an interstitial position for all the noble gases stud-
ied. For forsterite, which has the lowest density of the
four materials studied, the opposite holds and an intersti-
tial position is favoured over a lattice site for all noble
gases. Heavy noble gases, such as Ar, Kr and Xe, prefer
to enter the Ca lattice site in diopside and CaO rather
than an interstitial position. For light noble gases (e.g.,
Ne) in the same minerals it is possible that the interstitial
mechanism dominates.

The variation of solution energies of noble gas substi-
tution in CaO, MgO, diopside and forsterite with their
atomic radii is roughly parabolic, analogous to those of
1+, 2+, 3+ and 4+ trace element cations incorporated in
diopside. Our simulated results also indicate that the
apparent site Young’s modulus (Ea) vs. the ratio of
charge to site volume for all trace elements in diopside
is a linear relationship and the optimum radius, ro, in-
creases with decreasing charge. Both features are consis-
tent with high temperature partitioning experiments
(Blundy and Wood, 2003). Our results suggest that noble
gases enter crystal lattices in just the same way as cat-
ions, causing lattice strain due to the size and charge mis-
match, and are therefore subject to the same
thermodynamic controls on crystal–melt partitioning.

At high pressures the variation of solution energy
with the atomic radius of noble gas remains nearly par-
abolic. Solution energies increase with the atomic num-
ber of the noble gas and strongly depend on the
pressure, especially for the largest noble gases, such as
Xe. The behaviour of noble gases in these dense materi-
als is thus very different from that in porous materials
such as zeolites and their behaviour is consistent with
that expected by extrapolation from that of trace ele-
ment cations. We also predict pronounced segregation
to mineral surfaces and that the solubility of the heavier
noble gases may be enhanced considerably by the pres-
ence of extended defects such as interfaces. In future
work it will be of particular interest to extend our stud-
ies to consider noble gas diffusion as well as the thermo-
dynamics of incorporation.
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APPENDIX A

The derivation of the potentials involving the noble
gases and solid.

Lennard-Jones potentials are used for the gas–solid and
gas–gas interactions:

UðrijÞ ¼
4eij

rij

rij

� �12

� rij

rij

� �6
� �

rij 6 rc

0 rij > rc

8<
: ð10Þ

where rc is the cut-off distance. A major task here is the
determination of the gas–solid interaction parameters, eij

and rij. These were first obtained for the interaction of
argon with atoms of the solid by fitting to experimental
adsorption isotherms for Ar in a range of zeolites, as de-
scribed in more detail below. Adsorption isotherms are
calculated using the Grand Canonical Monte-Carlo
(GCMC) technique (Frenkel and Smit, 2002). The
Monte-Carlo simulations are carried out within the
lVT ensemble. During the simulation chemical potential,
temperature and box volume (l,T,V) are kept constant
and the number of molecules in the box is allowed to
fluctuate. Many previous Monte-Carlo simulations in
zeolites have usually assumed a rigid framework for the
zeolites (Mooij et al., 1992; Smit and Siepmann, 1994;
Vlugt et al., 1999). In our GCMC simulations, all zeolite
frameworks are flexible. There are three types of trial
movements involved in GCMC simulations. In addition
to particle displacements that include atoms both in the
gas and the crystal, attempts at adding or removing a
gas particle to or from the simulation box are also made.
At each simulation step, one of the movements described
above is randomly selected. In the course of
displacement, one particle (either a gas or a solid atom)
is randomly chosen and then given a randomly selected



Table 9
Comparison between calculated static limit and experimental (in
parentheses) lattice parameter of the three zeolites used to obtain
noble gas/mineral potential parameters

Zeolites Lattice parameters (Å)

A B C

Silicalite (20.022)a (19.899) (13.383)
20.424 20.298 13.652

Mordenite (17.920)b (20.310) (7.480)
18.338 20.784 7.650

5A (12.420)c (12.420) (12.420)
12.542 12.542 12.542

a Van Koningsveld et al. (1987).
b Schlenker et al. (1979).
c Seff and Shoemarker (1967).
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displacement. During the simulation the maximum dis-
placement is adjusted to achieve an overall acceptance
of 50%. According to the energy of the new configura-
tion, the movement is accepted or rejected using the
Metropolis algorithm (Metropolis et al., 1953). If the
movement is accepted then the system will be updated.
Otherwise, it will stay in the old configuration. For dis-
placement of a particle this takes the form

accðo! nÞ ¼ min 1; exp � 1

kBT
½UðnÞ � UðoÞ�

� �� �
ð11Þ

where acc(o fi n) is the acceptance probability of a move
from an old configuration to a new configuration. U(n)
and U(o) are the potential energies of the new and old con-
figurations, respectively. kB is Boltzmann’s constant.

For the insertion/removal of a gas particle, it is ran-
domly decided whether an attempt is made to insert or to
remove a randomly selected particle. For particle insertion:

accðo! nÞ

¼ min 1;
V

K3ðN þ 1Þ
exp

1

kBT
½l� UðnÞ þ UðoÞ�

� �" #

ð12Þ

where K(=h/(2pmkBT)1/2) is the thermal de Broglie wave-
length of the noble gas atom and m the mass of the noble
gas atom. N is the instantaneous number of particles. l is
the chemical potential and V is the volume of the simula-
tion box. It is assumed that the volume of the reservoir is
much larger than the volume of the zeolite cavity and the
bulk noble gas phase is treated as an ideal gas.

For particle removal:

accðo! nÞ

¼ min 1;
K3N

V
exp � 1

kBT
½lþ UðnÞ � UðoÞ�

� �� �
ð13Þ

The GCMC technique mimics a zeolite in contact with a
reservoir (in this case noble gas). The reservoir keeps the
temperature and chemical potential of each component
constant, whereas the number of particles is allowed to fluc-
tuate during the simulations. The adsorbed noble gas mol-
ecules (inside the zeolite) are in equilibrium with the gas in
the reservoir. The equilibrium conditions are such that the
temperature and chemical potential of each component of
the gas inside and outside the adsorbent must be equal.
For each simulation the bulk-gas pressure P and tempera-
ture T are specified. To generate an adsorption isotherm a
wide range of pressures, 0–1000 kPa, is selected for each
temperature.

We assume all the interaction parameters are transfer-
able from silicate minerals to zeolites. Firstly, we carried
out Monte-Carlo simulations for silicalite, mordenite and
5A zeolites in the static limit at constant pressure (zero)
to obtain optimised zeolite structures. Table 9 compares
calculated and experimental lattice parameters for the zeo-
lites used for isotherm generation. Lattice parameters are
reproduced to within 2.3% of the experimental data. For
silicalite zeolite, a simulation box was constructed by
2 · 2 · 2 replication of the unit cell with side lengths
40.848, 40.596 and 27.304 Å containing 2304 atoms. For
5A zeolite, a cubic lattice with side length 25.084 Å contain-
ing eight unit cells and 640 atoms was used as a simulation
box. The simulation box for mordenite zeolite has side
lengths of 36.676, 41.572 and 30.600 Å consisting of 16 unit
cells and 2432 atoms. In the implementation of the Monte-
Carlo simulation, the system first was equilibrated for 106

cycles, after which data were collected for another 106

cycles.
We use the conventional ‘mixing’ rules to obtain inter-

atomic potentials. The Lennard-Jones energy parameter
for the interaction between atoms i and j, eij, is given by
the geometric mean of the pure atom values,

eij ¼
ffiffiffiffiffiffiffi
eiej
p ð14Þ

and the corresponding Lennard-Jones size parameter rij is
the arithmetic mean of the pure atom values,

rij ¼
ri þ rj

2
ð15Þ

Values of ei and ri for Kr and Xe were taken from Cuadros
et al. (1996). For Ne, for which no parameterisation is gi-
ven by Cuadros et al. (1996), we used values from Hirschf-
elder et al. (1964). We used the Lennard-Jones size
parameters ri for the pure atoms in the zeolite and the ei

and ri values for pure Ar listed by Watanabe et al.
(1995). The required rij parameters were calculated from
this set of ri. We then carried out GCMC calculations to
derive the Lennard-Jones energy parameters (namely, eij)
for the argon–oxygen and argon–cation interactions by fit-
ting to experimental adsorption isotherms of argon in these
three zeolites. We first guessed an eAr-O value and per-
formed a series of simulations of argon adsorption in silica-
lite zeolite at 298 K over a range of pressures (0–700 KPa)
to generate an adsorption isotherm. The simulated iso-
therm was then compared with the available experimental
data (Watanabe et al., 1995). We adjusted the eAr-O param-
eter until the simulated isotherm reproduced the experi-
mental adsorption isotherm well (see Fig. 14(a)). As our
first test, we then used the resulting eAr-O parameter to
determine a further isotherm for argon in the same zeolite
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Fig. 14. Simulated adsorption isotherms compared to those from experiment. (a) Adsorption isotherms of Ar in silicalite zeolite at 298 and
333 K (experimental data from Watanabe et al. (1995)), (b) adsorption isotherms of Ar in mordenite zeolite at 297 K (experimental data from
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at 333 K and compared with the corresponding experimen-
tal result. As shown in Fig. 14(a) agreement is satisfactory.
Next, we carried out simulations of argon adsorption in
mordenite zeolite, keeping the eAr-O parameters derived
from silicalite zeolite fixed, but varying eAr�Na for the
Na–Ar interaction. In this case, experimental data of Mac-
edonia et al. (2000) were available for fitting. Finally,
absorption data for the 5A zeolite (Miller et al. (1987))
were used to obtain the e parameter for Ar-Ca. Final sim-
ulated and experimental isotherms for argon on mordenite
and 5A zeolite are shown in Fig. 14(b) and (c). Fig. 14
shows that overall the agreement between the simulation
and experiment is good. The calculated isotherms are most
sensitive to the Ar–O potential. Based on the e parameters
of Ar–O, Ar–Si, Ar–Ca and Ar–Na we then calculate the
Lennard-Jonese parameters between the gas–solid for the
other noble gases using Eq. (14).

To test the resulting parameters we have used available
experimental data for Xe adsorption (Shen, 1991). The cal-
culated isotherm together with the experimental isotherm is
shown in Fig. 15. Agreement is excellent. Unfortunately we
have been unable to find further experimental data to refine
our parameter set. We assume that all these interaction
parameters are transferable from noble gas–zeolites to no-
ble gas–silicate minerals.
APPENDIX B

Initial configurations leading after minimisation to the
lowest energies for noble gas interstitial incorporation in
CaO, MgO, diopside and forsterite.
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 0.7843020

O
 0.5532133
 0.4000611
 0.7843020

O
 0.1807478
 0.6645757
 0.9810432

O
 0.6807478
 0.6645757
 0.9810432

O
 0.3322878
 0.3614956
 0.5189567

O
 0.8322878
 0.3614956
 0.5189567

O
 0.3214595
 0.3398389
 0.0189567

O
 0.8214595
 0.3398389
 0.0189567

O
 0.1699194
 0.6429190
 0.4810432

O
 0.6699194
 0.6429190
 0.4810432

Xe
 0.5000000
 0.5000000
 0.5000000
Forsterite

Lattice parameter
4.776739
 10.248095
 5.987122
 90.000000
 90.000000
 90.000000
Fractional coordinates
Mg
 0.0000000
 0.0000000
 0.0000000

Mg
 0.5000000
 0.5000000
 0.9999999

Mg
 0.5000000
 0.5000000
 0.4999999

Mg
 0.9999999
 0.0000000
 0.4999999

Mg
 0.9979086
 0.2830221
 0.2499999

Mg
 0.4979086
 0.2169778
 0.7499999

Mg
 0.5020913
 0.7830221
 0.2500000

Mg
 0.0020913
 0.7169778
 0.7500000

Si
 0.4446726
 0.0979293
 0.2499999

Si
 0.9446726
 0.4020706
 0.7499999

Si
 0.0553273
 0.5979293
 0.2499999

Si
 0.5553273
 0.9020706
 0.7499999

O
 0.7841050
 0.0925246
 0.2499999

O
 0.2841050
 0.4074753
 0.7499999

O
 0.7158949
 0.5925246
 0.2499999

O
 0.2158949
 0.9074753
 0.7500000

O
 0.2104659
 0.4527612
 0.2499999

O
 0.7104659
 0.0472387
 0.7499999

O
 0.2895340
 0.9527612
 0.2499999

O
 0.7895340
 0.5472387
 0.7499999

O
 0.2926881
 0.1648065
 0.0343755

O
 0.7926881
 0.3351934
 0.9656244

O
 0.2073118
 0.6648065
 0.4656244

O
 0.7073118
 0.8351934
 0.5343755

O
 0.7073118
 0.8351934
 0.9656244

O
 0.2073118
 0.6648065
 0.0343755

O
 0.7926881
 0.3351934
 0.5343755

O
 0.2926881
 0.1648065
 0.4656244

Xe
 0.5233700
 0.3317700
 0.3841000
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