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Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria,
1428 Buenos Aires, Argentina
‡ School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK

Received 16 September 1999

Abstract. Calculations of thermodynamic properties of crystals by means of quasi-harmonic
lattice dynamics require numerical integrations over the Brillouin zone, using successively finer
grids to achieve convergence to the required precision; but for complex crystals convergence may
be uneconomically slow. A model for orthorhombic polyethylene is used to show how convergence
may be improved (1) at low temperatures by taking successively finer grids close to the origin of
reciprocal space, and (2) at all temperatures by using a three-dimensional Simpson’s rule.

1. Introduction

In the quasi-harmonic approximation, the Helmholtz free energyF is expressed as an integral
over the first Brillouin zone (or an equivalent region) in reciprocalq-space, whereq is a phonon
wave-vector (e.g. Tayloret al 1997, Barron and White 1999):

F = V

(2π)3

∫
FBZ

dq
∑
s

f [h̄ωqs(kT )
−1]. (1)

HereV is the volume,k is Boltzmann’s constant, the sum overs is taken over all the vibrational
modesqs with wave-vectorq, andf is the function

f (x) = kT [ 1
2x + ln(1− e−x)]. (2)

For comparison with experiment, we require not only the free energy but also other
properties such as the heat capacity and thermal expansion, which may often be measured to
accuracies of 1% or better. At least at low temperatures, these can be obtained more precisely
by integrating explicit analytic expressions over the FBZ rather than by differentiating the
calculated free energy numerically. Thus the constant-volume heat capacity is given by

CV = V

(2π)3

∫
FBZ

dq
∑
s

c[h̄ωqs(kT )
−1] (3)

wherec is the function

c(x) = kx2[(ex − 1)(1− e−x)]−1. (4)

The integration is often carried out using uniform grids inq-space§. The frequencies
are obtained by diagonalizing the dynamical matrix for eachq, and their strain derivatives
(required for essentially anharmonic properties such as the thermal expansion) from derivatives

§ Spectral properties such as the frequency distribution require special treatment (Gilat 1976).
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of this matrix by means of first-order perturbation theory (e.g. Wallace 1972, Barron 1998).
This can be achieved easily for a crystal structure with only a few atoms per primitive cell and
consequently a small dynamical matrix, but it becomes rapidly more time consuming for larger
dynamical matrices, especially when there are long-range Coulomb forces between atoms. It
may then be very expensive to use uniform integration grids fine enough to give the required
accuracy, particularly at low temperatures. More efficient methods are needed.

In this paper we describe two techniques we have found useful in recent work on a model
for the highly anisotropic thermal expansion of crystalline polyethylene at low temperatures
(Brunoet al1998). The orthorhombic unit cell of polyethylene is of moderate size, containing
twelve atoms which belong to two conformationally equivalent chains; the calculation of the
phonon frequencies then requires the diagonalization of a 36× 36 dynamical matrix at each
point q of the integration grid. In calculations on this crystal, Lacks and Rutledge (1994)
used coarse integration grids containing either 32 or 108 independentq-points in the FBZ,
which gaveF to within 0.01 kJ mol−1; to obtain the thermal expansion,F was then minimized
numerically at different temperatures with respect to the lattice parameters. This worked well,
but was insufficiently precise to give detailed behaviour at low temperatures. In contrast,
the calculations described in the present paper were directed primarily at the understanding
of low-temperature behaviour. The model uses the short-range VFF2 molecular mechanics
force field described previously by Brunoet al (1998). The crystal is sufficiently complex
to give rise to difficulties in the zone integration, but small enough for these to be resolved
relatively easily, thus providing an efficient means of examining the effectiveness of different
methods of Brillouin zone integration.

A very common method is that described by Monkhorst and Pack (1976), employing a
grid of equally spaced wave-vectors none of which lie along the boundary of the Brillouin
zone. Reciprocal space is divided into cells similar in shape to the reciprocal-lattice unit cell
but smaller in linear dimensions by a factor 1/m, wherem defines the inverse mesh size. The
grid comprises the centres of the cells, as illustrated for a two-dimensional lattice in figure 1.
These are ‘special points’, in the sense that using them ensures that low Fourier components of
a periodic function inq-space are integrated correctly (Chadi and Cohen 1973, Cunningham
1974, Dal Corso 1996).
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Figure 1. A uniform grid comprised of cell centres, in the positive quadrant of the FBZ of a
two-dimensional rectangular lattice.

But a grid of this type can only sample points close to the boundary of the integration
region, including those near to the0 point, when a very fine mesh is used. For this reason
the method is insensitive at low temperatures, an important range where experimental data on
heat capacity and thermal expansion are often available. In the next section we discuss how
the method can be adapted to sample points close to the0 point more efficiently.
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2. Low temperatures

The full line in figure 2(a) shows the variation with mesh size (1/m) of the coefficient of
thermal expansionα along thea-axis of crystalline polyethylene at 0.4 K.

At low frequencies the vibrational frequency distribution of a crystal is given by the
asymptotically convergent series

g(ω) = aω2 + bω4 + cω6 + · · · (5)

leading to a vibrational heat capacity at low temperatures of the form

Cvib = AT 3 +BT 5 +CT 7 + · · · . (6)

The first terms in these series can be derived from the elastic moduli of the crystal, by
generalizing Debye’s well known isotropic theory to elastically anisotropic materials. The
further terms arise because of dispersion; in other words, because the dependence of phonon
frequencies on wavenumber is not linear. Similar series exist for coefficients of thermal
expansion.

Departures from the DebyeT 3-limit due to dispersion are seen clearly in plots ofCvib/T
3

againstT 2, and also in plots of the Debye equivalent temperature2C(T ) againstT ; see, e.g.,
Barron and White (1999). They become appreciable at surprisingly low temperatures, even for
such simple crystal structures as cubic close packed, diamond or rock-salt. Typically deviations
are of the order of 1% whenT ≈ 2/100, and may rapidly increase withT thereafter; e.g.,
for grey tin2C has fallen by 25% whenT ≈ 6 K. With more complex structures, including
orthorhombic polyethylene, the combination of weak and strong interatomic forces within the
same crystal can lead to striking variations of behaviour, especially in the thermal expansion
of anisotropic materials; inα-quartz, for example, where the torsional forces are weak, the
expansion coefficient along the trigonal axis becomes negative below 12 K, andT 3-behaviour
is not found until lower temperatures are reached. Thus thermodynamic properties at low
temperatures cannot be obtained by extrapolation from higher temperatures; rather, they give
additional information about the solid. Theoretical models are therefore severely tested by their
ability to reproduce the variation of heat capacity and thermal expansion at low temperatures,
together of course with other experimental data. To apply this test we need precise integration
over the FBZ near the0 point.

Fortunately, in one respect the calculation of thermodynamic properties at low temp-
eratures is greatly simplified compared to that at higher temperatures. Because the total
thermal expansion is usually very small, we do not have to optimize the equilibrium geometry
at each temperature: negligible error is incurred by taking the equilibrium geometry atT = 0
over the whole low-temperature range. Computation of thermodynamic properties at different
temperatures can therefore be carried out simultaneously, and at each point of the integration
grid the frequencies and their strain derivatives need be found only once.

The crystal symmetry enables us to restrict the integration to the positive octant, and so
m3/8 independent wave-vectors are included in each integration. The failure of all the mesh
sizes to give adequate results at low temperatures is evident; for example, even form = 32
(4096 points) the calculated value ofαa is effectively zero, since none of the sampled modes
are excited appreciably at 0.4 K. The difference between the values obtained form = 48
(13 824 points) andm = 64 (32 768 points) indicate that we are still far from convergence
with increasingm, and hence that a much finer mesh would be needed for adequate sampling
of modes close to the0 point. At 1 K the grid withm = 8 (64 points) still samples no active
modes, and the value ofαa changes by about 17% fromm = 48 tom = 64, as shown by the
full line in figure 2(b). Only for temperatures above 5 K is adequate convergence (error less
than 1%) achieved form = 32 (figure 2(c): full line).
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Figure 2. Calculated thermal expansion coefficients for thea-direction (αa) of crystalline
orthorhombic polyethylene as a function of mesh size 1/m: (a) at 0.4 K; (b) at 1 K; (c) at 5 K. Full
lines are the results from a uniform grid of cell centres as described in the text. Others use finer
meshes in inner regions of the FBZ, with the number of iterations indicated. On the right of the
figure the lines are directed towards points given bym = 4.
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Thus it is clear from figure 2 that the uniform grid of cell centres is not well suited to the
evaluation of thermal properties at low temperatures.

Since the contribution to these from outer parts of the zone is negligible a very fine grid
over the entire Brillouin zone would be grossly wasteful. Rather, we need a systematic method
of progressively increasing the density of points as the0 point is approached. To this end we
adapt an iteration method applied previously to a model forα-quartz (Barron and Pasternak
1987). In the first step the integration over the inner region with linear dimension half that of
the full zone is recalculated with a finer grid employing the same number of points as that used
originally for the full zone. In the next iteration this inner region is itself treated in a similar
way, and so on until satisfactory convergence is achieved. Usually the linear dimensions of
successive inner regions are halved each time, but other factors are possible; for example, a
factor of one-third was used forα-quartz. Figure 3 illustrates the procedure (in two dimensions)
for meshesm = 2, 4, 8.

Figure 2 shows results obtained using this iterative approach forαa at three different low
temperatures. For mesh size 1/m, a total of(n + 1)m3/8 wave-vectors are sampled aftern
iterations. Convergence with respect to increasingm is much improved compared to that for a
uniform mesh of cell centres (n = 0). Different symbols are used to show how the convergence
with m changes as the number of iterationsn is increased (n = 1, . . . ,6). In general terms,
the coarser the mesh and the lower the temperature, the more iterations needed. At 0.4 K
satisfactory convergence is achieved after six iterations for meshm = 8, and after only three
for meshm = 64. At 1 K, for meshm = 8 four iterations are required, and just one iteration
is needed for meshm = 64. At 5 K, only two iterations are needed for meshm = 8.

As T → 0 the Debye limit is approached, where the heat capacity and thermal expansion
vary asT 3. The coefficients ofT 3 can also be derived from the elastic stiffnesses and their
strain dependence; this involves integration over all directions of propagation of elastic waves,
i.e. over all directions inq-space emanating from the0 point (e.g. Barron and White 1999,
section 2.9). Figures 3(a) and 3(b) show how the directions of points sampled inq-space
depend only on the inverse mesh sizem and are unaffected by the iteration procedure. A
coarse mesh of lowm gives points along only a few directions inq-space and can be expected
to give only crude estimates of theT 3-coefficients, even after the iterative procedure has been
used.

3. Using a three-dimensional Simpson’s rule

Even with the iterative method described above, convergence with increasingm can sometimes
still be very slow. Figure 4 is analogous to figure 2(c), but instead ofαa plotsαb, the coefficient
of thermal expansion along theb-axis, again at 5.0 K as a function of mesh size. Although the
iterative procedure for eachm has fully converged byn = 4, the limiting value for largem has
not been reached even form = 64.

Consideration of the physics of the model suggests that the slow convergence may be due
to the rapid change in the nature of vibrational modes as the planeqz = 0 is approached
in reciprocal space. Whenqz = 0, distances between second neighbours in the carbon
skeletons remain unaltered, and so the lower-frequency modes need not involve the strong
forces maintaining the C–C distances and the C–C–C angles; but away from theqz-plane these
forces are necessarily brought into play. Now the Monkhorst–Pack grids do not sample any
points on this plane. But we can include points for whichqz = 0 if we transpose each grid
so that it now samples the corners of cells rather than the cell centres. Since rapid variation
of integrands nearqz = 0 implies significant amplitudes of some high Fourier components,
it need not worry us that these are not ‘special points’. Integration with this grid of cell
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Figure 3. Two-dimensional grids illustrating the iterative procedure that is described in the text;
(a) meshm = 2, (b) meshm = 4, (c) meshm = 8. The points used in the first quadrant for up to
three iterations are shown. The symbol used to denote each point specifies its relative weighting
factor in the integration. The weighting factor of the black squares is 1/4 that of the open circles;
that of the open squares is 1/4 that of the black squares; and that of the black circles is 1/4 that
of the open squares. In three dimensions successive weighting factors are reduced by 1/8 instead
of 1/4.

corners does indeed raise additional problems, but these are solved by using the following
strategies.

(i) The grid includes points on the boundary of the integration region. This not only means
that the number of independent points is increased from(m/2)3 to [(m/2) + 1]3, but also
that points on the boundary have their weights reduced by a half for each face of the
integration region in which they occur; thus for points on edges the reduction factor is a
quarter and for points on corners of the integration region the factor is one eighth.

(ii) The grid includes the0 point, for which the acoustic Grüneisen parameters are
indeterminate. The0 point is therefore omitted from both numerator and denominator
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Figure 4. Calculated value ofαb for crystalline orthorhombic polyethylene at 5 K as afunction
of mesh size. The full line shows results obtained using uniform grids of cell centres. Others use
finer meshes in inner regions of the FBZ, with the number of iterations indicated.

when taking averages over the integration region (Barron and Gibbons 1974). This is a
potentially serious source of error for coarse meshes, but is eliminated when the iterative
technique is used and the weight of the0 point thus becomes negligible.

(iii) Care is needed in the iterative procedure with the weights of points on the boundary
separating the inner and outer region, since they contribute to both regions. A simple way
of determining the weights of these in each region is to take Wigner–Seitz cells about
each grid point; the weight of the point is determined by the volume of the part of the
Wigner–Seitz cell that falls within the region.

Figure 5(a) shows values for both cell-centre and cell-corner grids ofαb at 5 K, calculated
with six inner-region iterations, as functions of mesh size. It is clear that the errors produced by
the centre grid are overcorrected by using the corner grid. We have therefore adopted a device
previously used by Barron and Gibbons (1974) for a rhombohedral lattice, and employed a
three-dimensional analogue of Simpson’s rule. In one dimension, the basis of Simpson’s rule
is that the integral of a quadratic function over any interval is obtained correctly from its value
at the centre of the interval and its values at both extremities, provided that the value at the
centre is given a weight four times that at each of the extreme points. Similarly, in three
dimensions it is easy to show that the integral of a quadratic function over a cell with parallel
faces is obtained correctly from its value at the cell centre and its values at the cell corners,
provided that the centre value is given a weight sixteen times that at each corner†. But each
cell centre belongs to one cell only, whereas each corner point in the interior of the integration
region is shared by eight cells. Consequently, applying a three-dimensional Simpson’s rule is
equivalent to combining the integral obtained from the centre grid and that obtained from the
corner grid of the same mesh size with respective weighting2

3 and 1
3; the integration would

then be exact if the integrand were quadratic in each grid cell.

† In two dimensions the weight at the centre would be eight times that at each of the corners.



556 J A O Bruno et al

Simpson
centre
corner

(a)

100/m

�

b

/
1
0
�

6

1
/
K

14121086420

0.45

0.4

0.35

0.3

0.25

0.2

Simpson
center
corner

(b)

100/m

�

c

/
1
0
�

4

1
/
K

14121086420

-0.052

-0.054

-0.056

-0.058

-0.06

-0.062

-0.064

Simpson
corner
centre

(c)

100/m

C
V

=
T
3

/
1
0
�

4

J
K
�

4

m
o
l(
C
H
2
)�
1

14121086420

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

Figure 5. Calculated thermodynamic properties (after six iterations of inner regions) as a function
of mesh size for centre grid (×) and corner grid (∗), compared with those obtained by applying
Simpson’s rule (full line). (a)αb at 5 K, (b)αc at 100 K, (c)CV /T 3 at 0.4 K.
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This simple method works well, and gave the degree of convergence that we required.
In figure 5(a) the full line shows the value obtained by combining the two grids in this way.
Immediately evident is the improved convergence of the full line over the use of either corner
or centre grids alone. Convergence to within 1% is achieved for meshm = 16.

Simpson’s rule is useful at all temperatures. In figure 5(b) calculated values ofαc at
100 K (negative, in agreement with experiment) are plotted against mesh size, and again the
combination of the two grids gives more rapid convergence than that given by either of the
separate grids.

The method can also be used for other thermodynamic quantities, such as the heat capacity.
In figure 5(c) the variation with mesh size ofCV /T 3 atT = 0.4 K is seen to converge to within
1% with meshm = 16. Plots ofCV /T 3 againstT 2 show that at this temperature deviations
from Debye limiting behaviour are small, and so this result is suitable for comparison with
theoretical or experimental elastic behaviour.

4. Conclusions

For many applications a uniform integration grid formed by sub-dividing the reciprocal-lattice
cells and taking the centres of the sub-cells works well; it avoids singularities atq = 0, and
accuracy can be tested by taking finer grids. For some symmetries other regular grids may
also be appropriate, as for trigonal crystals (Barron and Pasternak 1987). Further refinements
are needed only when achieving convergence becomes computationally expensive.

Over the whole low-temperature range, heat capacity, thermal expansion, and related
properties can be calculated at theT = 0 geometry, without the need to optimize the structure
at each temperature. But at low temperatures it is essential to refine the integration grid
progressively in the neighbourhood of the zone centreq = 0. This can be done by an iterative
procedure in which progressively finer meshes are taken in inner regions around the zone
centre, each iteration taking about the same CPU time as for the original mesh used at high
temperatures. The number of iterations needed depends upon the fineness of the original mesh,
the lowest temperatures used, and the precision required. No further knowledge is gained in
proceeding to lower temperatures once the limitingT 3-behaviour is reached.

Faster convergence with respect to the total number of grid points used may sometimes
be obtained by taking also the corner points of grid cells, and applying a three-dimensional
Simpson’s rule. This is particularly useful when the integrand changes rapidly near boundaries
of the integration region.
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