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Quasiharmonic free energy and derivatives for slabs: Oxide surfaces at elevated temperatures
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The work of Tayloret al. [Phys. Rev. B56, 14 380(1997], which calculates the free energy of three-
dimensional periodic crystals and its analytic derivatives with respect to all the external and internal degrees of
freedom using lattice statics and lattice dynamics in the quasiharmonic approximation, is extended to lattices
which are periodic in only two dimensions. Derivatives are calculated by means of first-order perturbation
theory and detailed expressions for all the lattice sums required are presented. The method is used to calculate
the temperature variation of the surface free energy, surface structure, and density of states of some represen-
tative oxide surfaces. These include {460 and{110 surfaces of MgO, th¢100 surface of NiO, thg111}
surface of L}O and the microfacetefd 10; surface of MgO. For these systems, surface free energies decrease
slightly over the range of temperatures for which the quasiharmonic approximation holds.
[S0163-182699)01310-7

[. INTRODUCTION the most suitable for structure optimisation as a function of
temperature but in many applications it has also been shown
Many technologically important areas of interest rangingto be a valid approximation up to two-thirds of the bulk
from heterogeneous catalysis to high-temperature supercofrelting temperaturé&’*
ductivity (see, e.g., Refs. 1 and a@tilize the properties of the ~ We have recently developed a code based on quasihar-
surfaces of ionic oxides. In addition to experimental ad-monic lattice dynamics designed for the efficient study of
vances over the past decade, considerable progress has béig¢e-dimensional periodic structures withany internal
achieved in the calculation of properties of surfaces, includStrains (degrees of freedont® To calculate the optimum
ing surface structure, surface energy, point defect propertie§tructure of dperiodig crystal at temperaturg and external
and segregation characteristics.Where experimental data PressurePey, it is necessary to determine the minimum free
have been available, the agreement has been encouraging A€rgy with respect to all the geometrical variables that de-
particularly notable example is the extensive relaxation at théine the unit cell. Some previous approaches to this optimi-
{0001 basal plane of-Al,Os, predicted by atomistic lattice Zation (e.g., Watsoret all’) have used the zero static inter-
simulation§ and later by first-principles density-functional Nal stress approximatioiZSISA),*® in which only the
theory and Hartree-Fockcalculations, which has been veri- €xternal coordinate@limensions of the unit celare relaxed
fied substantially by recent surface x-ray measurements bysing fully dynamic free-energy derivatives, while internal
Guenardet al.® as shown in Table I. In addition, calculated coordinates(positions of the ions within the unit cg¢lare
surface and/or attachment energies have been used to rati§/axed using static energy derivatives. This approach is
nalize the crystal morphology, of, among other examp|espo_pular since static energy deri_vatives can be calculated ana-
a-F8,05,'° Fe-, Cr-, Y-, and La-doped-Al,05,° BaSQ,** Iytically, and quite _rapld_ly, Whll_e only a small_ numbe_r of
SnQ, and Srsn@*? and zircon' free-energy derivatives is required for the unit-cell dimen-
A potentially serious limitation of the majority of previ- Sions and these can be readily obtained numerically. On the

ous theoretical work on oxide surfaces is that it has been

restricted to thestatic limit. Few calculations have included ~ TABLE |. Comparison of theoretical and experimental surface

dynamic effects, includingemperature largely because the relaxationg%) of a-Al,05;{0001. S(Al) denotes the outer surface
' layer with Al atoms outermost. Inner surface layers are numbered

full dynamical treatment of complex solids, including crys- sequentially according to increasing distance from the surface
tals with large unit cells, defective crystals and surfaces, pre- d y 9 9 '

sents severe computational demands if reasonably high pre- Gumardet al
cision is required. For surfaces, it can be crucial, as we shall Mackrodt Apraetal. Manassidis (Ref. 9 '
see, to take exp!|C|t account of the relaxation of a large nUM( aver (Ref. 3  (Ref.8 et al. (Ref. 7 (Expt)

ber of layers adjacent to the surface.

There are three main simulation techniques available foB(Al) -59 —66 —86 -51
the calculation of surface properties: Monte Carlo, moleculas-1(0) 2 1 3 16
dynamics, and quasiharmonic lattice dynamics. Of these onlg-2(Al) —-49 —43 —54 -29
the last is capable of giving free energi@s well as derived s-3(Al) 26 18 25 20
properties such as the entropy and the heat capatiigctly  s-4(0) 8 4

and to high precision. This method is consequently not only
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other hand, even for unit cells of moderate size, numerical 2
differentiation of the free energy with respect to all the in- b1=K2-a2><(al>< ay), 1)
ternal coordinates is normally prohibitively expensive. Our
code sHELL (Ref. 16 for three-dimensional crystals calcu-
lates the full set of free-energy first derivatives 2
analytically*>?°and a full minimization of the quasiharmonic by =z 81X (8 Xay), (2
free energy with respect to all internal and external variables
for large unit cells is possible. ) )
Here we extend this previous work to the surfaces of ionidvhereA is the area of the unit cell={|a, X &;[). -

solids by deve|0ping the theory for slablike geometries in Much of the development of this section derives from that
which the crystal is finite in one direction and infinite in the in Taylor et al,*® the equations of which are referred to as
other two. If the slab is sufficiently thick to provide what is (Tn). The particles which comprise the slab, which in a shell
effectively a bulklike region in the interior of the slab, then modef® may be cores or shells, have Cartesian coordinates,
the two surfaces are essentially noninteracting and, in effect, , given by
are free surfaces. We give explicit expressions for the lattice
sums required to calculate the slab free energy and its strain
derivatives: these are the analoglsé of the bulk lattice sum re=> (84 +€)(X7+p]), (3)
expressions presented in Tayktral.™” Thus our approach is Y
a radical departure from the two-region strategy used by
Taskef' and Gay and RoHf! in which the positionsand  \here Greek subscripts and superscripts are indicg®r z
polarizations of the ions in the vicinity of the surfacenly = |apeling Cartesian axes oriented such that the surface lattice
are relaxed explicitly by minimizing thenternal energy of  yeciors lie in thexy plane® x is a surface lattice vector,
fgtet}isgsp:?)rs?t’i%hs"elr:rl?werecrg?rlggpe(;r%%éo;grrsinggg%;?g;t%r!: 1,...n is an index that labels a specific particle within a
f X ' . ; : . unit cell, ands,, 4 is the Kronecker delta. Components of the
or slablike geometries, lattice relaxation perpendicular to B . ) .

ensore*” determine both the orientation and the macro-

the surface, which in most cases is the predominant rel . : )
ation from the bulk structure, comprises the internal strain$COPIC state of the strain. The vector compongitsre in-

and is thus calculated from the internal energy and not thé&ernal coordinates determining the positions of particles
free energy of the system. As we show later, this approximaW'th'n a unit cell of the slab. Since we work always at con-
tion is very poor for surfaces. stant surface area we need only derivatives of the free energy
This is a report of surface free energies based on a conwith respect to the;” (cf. Tayloret al® where, for the three-
plete minimization of the free energy. Previously, Mulherandimensional case, derivatives with respect to #f€ are
and co-workers have used a localized Einstein-like approxigiven). In some applications symmetry reduces the number
mation for the phonon spectrum to estimate the temperaturef independent coordinates and it is possible to define a set
dependence of surface energiés* Molecular-dynamics of “symmetric internal coordinatesW,, [Eq. (T4)] that al-
simulations have bzeéen used to study {0@1} surface of KCl  |ow a description of the structure with a reduced number of
(Ref. 25 and NiO: Here we report calculations for the yariaples. In general, the geometry can be characterized by,
‘l{\(l)i%]} (fg:]gérlnlgrissuc:;a\?v?ti (Jum%?gﬁ;‘);;g‘ﬁﬁgﬁ 151‘-}”;?]‘;;00; and the free energy differentiated with respect to an
of Li,O. The{00L} and{110 surfaces of MgO and NiO are gj ﬁ]lz;nsg:n\é?i(;frthc;iygg:]?r:zl\lliic_j coordinatis Here the

type I, according to the Tasker classificatidrthe surface In order to optimize the structure of the slab, i.e., to find

layers are neutral and contain all component ions in thei{he most stable state under a given set of thermodynamic

stoichiometric ratio. Thg111} surface of LjO is type 112’ >t el IV :
since the surface is comprised of only one type of ion everfONStraints, it is necessary to minimize the appropriate ther-

though there is no dipole moment perpendicular to the surMedynamic potential with respect to thg structure param-

face. We have also evaluated the temperature dependence®€rs€a- Since we are here interested solely in surfaces at

the microfaceted110 surface of MgO, which, in the static Zero pressure, the appropriate potential is the Helmholtz en-

limit, has been studied by Watsen al?® ergy F.
At present our approach to temperature effects can use

two and three-body potentials, and the calculations reported

here are all based on simple two-body potentials. As Table |

illustrates fora-Al,Os, there is remarkably good agreement  In the quasiharmonic approximation it is assumed that the

between results, subsequently confirmed by experiment, olidelmholtz energy at temperatufecan be written as the sum

tained using two-body potentials and those fraim initio  of static and vibrational contributions,

calculations in the static limit; this suggests that potentials of

this type can be used to describe dynamics properties of the

kind reported here.

B. Free-energy evaluation and strain derivatives

F(ET)=Pgaf £) +Fuin(ET). 4

Il. THEORY d ¢ is the potential energy of the static lattice in a given
state of strairf, andF,;, is the sum of harmonic vibrational
contributions from all the normal modes. For a periodic

Slab structures can be defined in terms of two lattice vecstructure, the frequencies(q) of modes with wave vectay
torsa; anda,. The corresponding reciprocal lattice vectors,are obtained by diagonalization of the dynamical matrix
b, andb,, are given by D(q) in the usual waye.g., Wallacg). F, is given by

A. Slab structure and strain coordinates
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1 formula3* An optimization therefore requires one static Hes-

Fub= >, [zhvj(Q)JrkBT|n[1—eXFJ(—th(CI)/kBT)] : sian calculation, and a small number of dynamic gradient
) 5 calculations. We have found this to be much more efficient
®) than methods involving repeated evaluation of the Hessian,

and the associated vibrational entrofyand internal energy or frequent line minimizations or in which the derivatives are
Ui, by determined numerically. For more details, discussion of scal-
ing aspects and examples, see Ref. 16.
[ (hv;(q)/T)
s=2

exp(hv;(q)/kgT)—1 C. Lattice sums for short-range potentials

q.]
The same approach may be followed as in the three-
—KkIn[1—exp(— hv,—(q)/kBT)]] (6)  dimensional analog with no special treatment for slab geom-
etries. The expressions required for general short-range two

and three-body potentials are given by Taydoral 1%

T S A L L ™
vbT | 2 vi(d exphy;(q)/kgT)— 1]’ D. Lattice sums for Coulomb interactions
in which the first term in the expressions fey;, andU,;, is The two-dimensional Ewald summation has a different

the zero-point energy. For a macroscopic crystal the sufP'™ from that in three-dimensions. We start from the

over g becomes an integral over a cell in reciprocal space,reS_UIf for a slab periodic in two-dimensions but aperi-

which can be evaluated by taking successively finer unifornPdic in the third:

grids until convergence is achieved. Since the reciprocal __ qig-x ' '

space is how two-dimensional the Brillouin zone requires a >, (1= &)= 92X, )+ X e % TQ(q,r?)

two-dimensional mesh of wave vectors—it is straightforward * X x K

to implement the two-dimensional anafdgf one of the

usualpmeshes. ? ~ 9qoR(r), ©
There are now two ways to continue. The minimization ofwhere

F and subsequent thermodynamic manipulation can of

1
——exp(— (gri2)+rZerf(yr?)

course be carried out by brute force, from numerical values R(r?)= 2_77 (10)
of F obtained using Eq(5). However, for the type of sur- A 77\/; '
faces we wish to examine here and elsewhere, the corre-

sponding slabs are characterized by large numbers of internal AT , k ,

strains so that it is much more efficient to use analytic ex- Q(k,r)= Ak expkr?)erf 54— nr

pressions for the derivatives &f with respect to strain. The

strain derivatives are given by Lz L_ z
+exp(—kr )erfc(277 nre||. (11

0Fvib) B [ h (1 . 1 _ o
= 5 Equation (11) may be compared with its three-
Wn e r a1 (212 explhu(a)/ksT)—1 dimeqnsional equivaler{fl’lOl). The F?wo share the same no-
ayjz(q) tation. 5i’jx is zero unless eithef@ x=0 andi=|j or (b) x
( 0 ) } (8 =0 andi andj are shell and core of the same ion. In a
Ale rigid-ion system, only caséa) arises. The factor (% 5i’jx

where the subscrif’ denotes that all thé are kept constant therefore properly eliminates the Coulombic interaction of an
except for the differentiation variable. We thus require de/on With itself. Thex summation is over all surface lattice
rivatives of the frequencies. In our cdethe derivatives vectors and thé& summation over all reciprocal-lattice vec-
[9v2(q)/3EA]: are obtained from the analytic expressionsOrS omittingg=k=0 (as indicated by the primez is an

for the derivativeg dD(q)/dEx]¢ by first-order perturbation arbitrgry parameter, which can be chosen so that good accu-
theory®32 A crucial point here is that for obtaining deriva- racy is achieved when both sums are truncated after a small

tives the perturbation is infinitesimal and the procedure exUMber of terms going out from their respective origins.
act. In addition, for thermodynamic properties no special™ \/;A is a reasonable choice. Additional quantities, also
consideration needs to be given to degeneracies in first-ord&ged in Ref. 19 are
perturbation theory, since the trace[@D(q)/dE]¢ IS in-

variant for any complete normal set of eigenvectorPof =i 12
To obtain the equilibrium structure a variable metric ry=r+x, (13

method® is used to minimizeF with respect to theS,.

In the initial configuration thestatic energy Hessian, ak=9+Kk, (14

(?D ool IEAIES), Which is a good approximation to

(9°Fl9EA0ER), is calculated from its analytic expression, S = 1, q=0. (15)

and its inverse together with th&R/d€,) is used to obtain “©10, otherwise,

an improved configuration. In subsequent iterations the ,

(9F19&,) are calculated in the configurations and the inverse XO(r )= erfo( 77rx) — 5ijx_ (16)

Hessian updated by the Brogden-Fletcher-Goldfarb-Shanno I'x
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The same approach can then be used as in Ref. 19. It is 1258
possibld Eqs.(T70)—(T78)] to construct the energy, dynami-
cal matrix and the required internal coordinate derivatives in

terms of two sets of matrice§ andT:

1
q)statzzz Sij ) (17
i
ﬁq)stat -
( apg) 2 (1= 88k, (18)
(92(1)56
(W&pt{;)zgklg (1_5ik)sﬁ(ﬁ_(l_5k|)sg|ﬁ, (19)
Bi(a)= 0,2 TH(0)-Ti¥(a), (20
9B (q) " oy
op7 ) = w2 THE(0)+ 6, THE0)
+(Si— 8 TP (). (22)

The elements of the dynamical matfb{"g(q) and its deriva-
tives are related tB“B(q) via (T18) and(T34) Derivatives
with respect to the symmetrlc internal coordinaies rather
than thep; can be obtained using EGr4).

Since the real-space part of the slab expresdton(9)] is
the same as that for the three-dimensional equivdlEqt

(T10D)], the real-space part of all the derivatives will not

change from the three-dimensional cafggs. (T111),

(T112), (T114), (T117), (T118]. We concern ourselves here

therefore only with the reciprocal space parts.
We define a set of functions

J
R*“(rz)sz*(rz), (22

d
Q*“(k,r)=—=Q*(k,r?), (23

where in these equations the supersctipt indicates any

sequence of zero or more indicey,z (Greek letter super-
script9. Then the reciprocal space parts of the relevant ex-

pressions for slab geometry can be written

Sij [recip]

=;’cos(k-r)Q(k,rZ)—R(rz), (24)

s
e 2" [eogk-N)Q(k,r) —sin(k-1k*Q(k,r%)]
1

—R(r?), (25

SI “ij[recip] [recip]

7 = 2 {eodk-N[QA(k,r?) — kK Qk,r?)]

ij
—sin(k-r)[k*QF(k,r*) +kPQ*(k,r?) 1}

—R%(r?), (26)
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ij[reci (q _
= = 3 e 9 [Q (g 1)~ Ak Q1)
1]
—iqﬁQB(qk,rZ)—iqu“(qk,rz)]
— 8q0R*(r?), (27)
|J[reC|p](q)

7= 2 e Q") — aaRQ (1)
ij

—qraiQP(aw,rd) —afafQ(ay.r?)
—iggQPY(qy,r)—igfQ*(qy.r?

—i97Q(a,r*) +iagafalQ(ak.r%)]
— 8oR“PY(r?), (28
whereZ;; is the Coulomb factor
7z -
ij— 47780 ’ ( )

and z; is the charge on particle The forms of theR*(r?)
andQ* (k,r?) functions are determined by repeated applica-
tion of Egs.(22) and (23) to Egs.(10) and(11). By obser-
vation, if any of the indices represented by the superscript
(*) is not equal taz, then the corresponding function will be
zero.

The nonzerdR functions are given by

R*(r%) = 2Twerf( 7re), (30
R¥(r?)= f exp(— (7r9)?), (31)
RE#A(r?) = — f” T exp(— (9r9)?). (32)

The Q functions are somewhat more lengthy and most
easily expressed in terms of intermediate functions. Defining

F(k,rz):exp(krz)erfc<%+ nre (33
k 2

E(k,rz)zw‘l’zex;{—<z) —(ﬂrz)z}, (34

au
P(k,rz)zK[F(k,rz)+F(k,—r2)], (35

ar
M(k,rz)zK[F(k,rz)—F(k,—rz)], (36)

T 2
G(k,r)= K[E(k,rz)+E(k,—rZ)]= TE(k,rZ),

(37

which lead to the relations
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FIG. 1. Variation of the MgO{100}; surface free energy with Temperature (K)

slab thickness.

FIG. 2. Calculated temperature variation of the free energy of

J
— P(k,r3)=kM(k,r?), (39) the {100 and{110}; surfaces of MgO.
d The importance of using a sufficient numbergp¥ectors
MK r9)=kP(k,r%) =27G(k,r?), (39 {0 achieve convergence is illustrated by the plots in Fig. 3.

Too small a number off vectors leads in general to a much
9 , . , smallgr decrease of surface free energy wi.th t_er_‘nperat_ure
Sz Gk ) ==277TG(k,r%). (40 than is shown by the converged values. We find it is crucial
to take adequate account of long-wavelength modes by using
It is then straightforward to derive the following expressionsa grid of sufficient size in the reciprocal-space summation.

for the nonzerdQ functions: Equivalently, as indicated by preliminary calculatioisn
, - any molecular-dynamics simulation the cell size must be suf-
Qk,r5)=P(k,rk=, (4D ficient to permit such motions. Similarly, Olivet al2® sug-
S , gest the{100 surface energy of NiO increases with tempera-
Q*(k,r)=M(k,r?), (42)  ture fram 0 K to themelting point, which is not in agreement

with our results, and is likely to be an artifact due to the
small number of atoms used in their molecular-dynamics cal-
culations.

In contrast to th¢10Q surface at 0 K, the inclusion of the
zero-point contribution increases tH&10 surface energy

In calculating lattice sums for large numbers of atoms, :
both computational efficiency and economy of storage musvom a static value of 1.18 to 1.20 Jth ThE{ll.O} surface
Iso shows a rather more marked decrease with temperature

be considered. With our approach it is not necessary to sto . ; .
the whole set of derivatives of the dynamical matrix simul-t an the{001 su.rface, as I1s clear f.rom.Flg. 2. For this sur-
face, the quasiharmonic approximation breaks down at

taneously. Instead, the matricBsand T are calculated once ~1600 K with th rance of imaginary fr ncies. Th
for each wave vector and the required derivatives constructegfOrresponoling t:n,?;gg?u?eg Z? Whigr? m?aéini\?; ir:qise.nciees
from these and used one at a time. appear for the bulk and thf001} surface are~2900 and
~2600 K, respectively, which indicates that the quasihar-
monic approximation fails at somewhat lower temperatures

A. MgO for the surfaces than for the bulk due to the presence of some
We start with the{100 and{110; surfaces of MgQboth

Q¥ k,r5)=P(k,r)k—G(k,r* 2y, (43

Q¥ k,r)=M(k,r>)k®>+ G(k,r5)4 %2 (44)

lll. SURFACE FREE ENERGIES

Type ) and use the interatomic potentials of Stoneham and 120

Sangster® Irregularities such as ledges, kinks, steps, and ~ 11

electronic defects, present on real surfaces, are ignored. Fig- U 8

ure 1 shows the dynamically relax¢tiOG surface free en- 2

ergy as a function of slab thickness, which indicates that & 1.16

approximately ten layers are required for convergence to 2

0.001 Jm?2. This is more than twice the number of layé4s o 114

required to converge the static energy. Figure 2 shows the § o—0 1 g-vector
calculated temperature dependence of {b@d and {110 @ 112 o—27g-vectors
surface free energies, based on slabs containing 12 layers. a—= 1728 q-vectors
The inclusion of the zero-point energy contribution reduces 1-10200 1200 2200

the surface energy at 0 K, from 1.180 to 1.179 FniThe
{100 surface energy decreases slightly with temperature
(Fig. 2), less markedly than as predicted for 100 surface FIG. 3. Variation of the MgO{100; surface free energy with
of NiO by Mulheran?* number ofg vectors used in the reciprocal sum summations.

Temperature (K)
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FIG. 4. Calculated bulk, surface and excéssrface minus bulkdensities of states at 700 K for th&00 and{110} surfaces of MgO.

modes with large amplitudes of vibration. It is tempting to so contributing to the entropy and hence the thermal expan-
suggest from this that surface melting occurs at temperatureson; the excesésurface minus bulkentropy is positive. At
below that of the bulk, which for MgO is=3100 K. Bulk  nonzero temperatures, the entropy teri, S, dominates the
and surface vibrational density of stat@09) at 700 K for  excess static energy and total internal energy both of which
both {100t and {110 surfaces are shown in Fig. 4, the sur- increase with temperature, unlike the surface free energy. For
face plots show a generalized Rayleigh mode at frequencieall the surfaces studied here, the coordination numbers of the
<5 THz. Also plotted in Fig. 4 are the excess DGBrface surface ions, though smaller than in the bulk, are still rela-
minus bulk which is responsible for the dynamic contribu- tively high, so that thgpositive expansion of the surface
tion to the surface free energies. For both surfaces thedaterlayer spacing is governed, as is that of the bulk, by the
show decreases in intensity of bulk modes in the rang&bond-stretching” effect’? in which the asymmetry of the
10-14 THz. There are several surface-localized modes. Uform of the interionic potential leads to an increase of the
to ~18 THz the excess DOS for tH200 surface is in good mean interatomic distance with increasing amplitude of vi-
agreement with the experimental measurements of Ri&derbrations. It will be particularly interesting in future work to
close to 800 K. The calculated excess DOS does not shostudy surfaces where the structure is more open and the co-
the peak reported above 18 THz. Our calculations do nobrdination numbers much lower. In such cases where the
support an earlier suggestfinthat surface relaxation at vibration includes components of perpendicular motion rela-
elevated temperature is responsible for this feature. tive to a bond, a “tension effect*> may dominate, leading
Figure 5 shows the temperature variation of the variougo a thermal contraction of the surface layers.
entropic, vibrational, and internal energy contributions to the We have also studied one example of nonplanar
dynamically relaxed{100} surface free energy. First, note surfaces—the d/ \/E)/z anda\2 microfaceted{110 sur-
that the vibrational internal energy and zero-point contribu-
tions are both very small and nearly equal. At high tempera-
tures, in the classical limit, the vibrational internal energy
contributes equally to both slab and bulk so that the net
effect on the surface free energy is zero. As for the zero-
point energy, each vibrational mode contributés/Q) and
soall frequencies contribute to the small negative difference
in zero-point energy between surface and bulk. At low tem-
peratures, only low-frequency modes are thermally excited
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1.00 | o--0Helmholtz Energy
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oo Temperature x Entropy

»——x Vibrationa! Internal Energy

0.50 | & — = vibrational Free Energy e
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0.00 | WEEHEr o m—bm = e = ok ]
__—V-_____V___V.\§
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-0.50 . ; : ;
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FIG. 6. (i) Unfaceted(ii) (a/v2)/2 faceted, andiii) av2 micro-
FIG. 5. Temperature variation of the surface entropy and interfaceted{110; surfaces of MgO. Black circles are magnesium; gray,
nal energy contributions to thHd 00 surface free energy of MgO. oxide ions.
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faces of MgO, in which rows of cations and anions are re- 02r = — Bulk Atomic Position  +
moved from the unfaceted surface as shown in Fig. 6. Sur- 0.0 HEtE=—p——t—t——tp=)
faces of this type have been observed experimentally using
low-energy electron diffractiodLEED) and scanning elec- -0.2 1 i
tron microscopy’> An alternative description of these struc- -0.4 : e
tures is as a set of steppéti00 surfaces. Figure 7 shows 00 5000 10000 1500.0 2000.0
that the temperature variation of the surface free energies is Temperature (K)

indeed intermediate between those noted earlier for the pla- £ 9. calculated temperature variation of the positions of the
nar {100} and {110 surfaces. It is clear that as the faceting qrface ions relative to bulexpressed as the percentage shift in
gets more extensive, mof&0Q} surface is generated, with & atomic position from that of the bulkin the outer three layers for

consequent lowering of the surface energy and reduced tente {100 surface of NiO, approximated by a slab of 12 layers.
perature variation, which reflects the differences between the

{100 and{110} surfaces. Thus our calculations suggest that

for relatively simple faceting of this type the introduction of surfaces, are ignored. Like Mulhefdrwe use the well-
steps at the surface does not appear to lead to features othestablished set of interionic potentials due to Stoneham and
than those associated with the parent surfaces. One possitangstef? Figure 8 shows the calculated temperature depen-
explanation for the peak at high frequencies seen in the exdence of the unrelaxed and the fully dynamically relaxed
perimental excess DORef. 40 for the{100 surface is thus {001 surface energy of NiO. We find that, for the relaxed

the presence of steps on the surface. surface, at temperatures up to 2500 K 12 layers are sufficient
for convergence in the surface energy to 0.0003 %na
B. NiO smaller number of layers is required for comparable conver-

gence in the unrelaxed energy. The number of layers for
Here we consider th¢001} surface(type ) of NiO for  convergence in the static limit is smaller stillt @ K the
direct Comparison with the results of Mulhe?émbtainEd fu”y relaxed dynamic surface energy is 1.19 jzn'wmch
using an Einstein approximation. Irregularities such asompares with a value of~1.15 Jm? calculated by
ledges, kinks, steps, and electronic defects, present on regluiheran®® Our value of the surface energy in the static

limit, 1.18 Jm 2, also compares favorably with that of

1.50 - - 1.23 Jm? from ab initio Hartree-Fock calculatiorf§. Un-
—_ O—= Relaxed Surface like MgO {100 inclusion of the zero-point energy thus in-
o OO Unrelaxed Surface . . .
'e 1.40 O . ] creases the surface energy slightly. As shown in Fig. 8, both
<) \ the relaxed and unrelaxef®01} surface energies decrease
3 1.30 \Ko . slighty by ~0.1 Jm?2 over the temperature range
o 0-2000 K, the unrelaxed surface shows a similar variation.
G 120 | ] The change of the dynamically relaxed surface energy with
3 temperature over this range is approximately one-third of
g 110!t | that reported by Mulher&h for the same surface, which
a gives an indication of the limitations of the Einstein approxi-
, , mation. There is no direct experimental data for comparison,
1.00 AT - .
0.0 1000.0 2000.0 but the temperature variation is at least consistent with that

Temperature (K) noted for rocksal{001) surfaces by Benson and Y.
The positions of the Ni and O iongores and shellsin
FIG. 8. Calculated temperature variation of the dynamically re-the outermost three layers of a slab containing 12 layers are
laxed and unrelaxed free energy of #i®0 surface of NiO. plotted as a function of temperature in Fig. 9, where all the
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face plane consists only of Liions with an underlying non-
w’E‘ dipolar stacking sequence of the type
213t i
> —LiT—
g .
Lé;:l 12t ©
£ .
3 Lit
11 : y y i
0 500 1000 1500 2000 Li*
Temperature (K}
o*
FIG. 10. Calculated temperature variation of the free energy of
the {100 surface of NiO, using the ZSISA approximation as de- Li*

scribed in the text.

We have used the set of interatomic potentials recently de-

rived from periodic Hartree-Fock calculations in Ref. 48. In
positions are relative to that of the middle layer of the slabthe static limit, unrelaxed and relaxed surface energies are
The relaxations, which for the two outermost layers result ing.631 and 0.582 J nf, respectively. These compare with a
a decrease in separation from that in the bulk of 0.3%, argully dynamically relaxed value of 0.601 Jrhat 0 K; so
qualitatively similar to those noted by MulherdhHowever  that, as with thé100} surface of NiO, the inclusion of vibra-
the temperature variation of the positions of the ions, as withjonal terms leads to a slight increase in the surface energy.
the surface free energies, is smaller than those obtained withhe dynamically relaxed surface energy at 300 K is 0.580
the Einstein approximation. The qualitative features of the @ m=2, and 0.579 J™* at 700 K, which is the smallest de-
K surface dilation, which, as expected, decreases away frorrease in surface free energy with temperature of the systems
the surface, are retained at elevated temperature. The rur@xamined in this paper. The onset of imaginary frequencies
pling of the second and third layers decreases with temperaxt the{111} surface of L}O, and consequent breakdown of
ture. Once again there is good agreement with first-principleghe quasiharmonic approximation, occurs at 900 K. This is
Hartree-Fock calculatioi3which have found a contraction somewhat lower than the temperature1100 K) where a
of the first interlayer spacing of 0.53%, which supports fur-superionic transition involving the Li ions is predicted for the

ther our use of two-body potentials in free-energy calculabulk materiaf® using the same set of interionic potentials.
tions for ionic systems. Furthermore, we note that the collec-

tion of reported theoretical relaxations, both here and
elsewhere, are all well within ampper boundof ~2% sug-
gested from LEED studi€¥,which attests to the increasing  This paper has presented a method for the calculation of
reliability of theoretical methods in the surface science ofthe fully dynamically relaxed free energies of isolated peri-
ionic oxides. odic slabs within the quasiharmonic approximation, based on
We now compare our results with those obtained usingnalytic first derivatives of the free energy and second de-
ZSISA. For application to surfaces where the surface latticaivatives of the static energy. We have found this to be con-
vectors are fixed by the lattice parameters of the correspondiderably more efficient for surface energies than the use of
ing bulk material, ZSISA requires a minimum of the static three-dimensional lattices which are constructed to produce
energy with respect to each internal strain with the othean infinite periodic array of slabs separated by vacuum
strains and the cell are& held constant, i.e., layers?® Detailed expressions for the lattice sums required
for Coulombic interactions are given. We show how the
complete set of analytic free-energy derivatives can be used
P o for structural optimization, following which it is straightfor-
( 0z ) =0 (45  ward to generate accurately equilibrium quantities such as
bIAE entropy, free energy, and heat capacity. The major part of the
computational effort is usually expended in the optimization

for all the internal strains. Thg00L surface energies calcu- Problem of the determination of the equilibrium geometry,

lated using this approximation are shown in Fig. 10 as eafte:rwmch calculation of the required properties is generally
function of temperature. The surface energy increases markapid. _

edly with temperature and so it is clear that for surfaces For the{100 surface of NiO our temperature dependence
ZSISA is a much poorer approximation than it is usually for Of the surface energy is markedly smaller than that reported
the bulk (e.g., Ref. 15 The physical reason is that ZSISA Previously by Mulherari based on a crude approximation

fails to allow for the expansion between the layers in the sla0 the phonon spectrum. It is a matter of speculation as to
as the temperature increases. whether larger differences would be obtained for more com-

plicated surfaces involving more extensive structural relax-
ations. The close agreement between our results for NiO
{100} in the static limit and those obtained from first-
Lastly we consider briefly the temperature variation of theprinciples Hartree-Fock calculatioiisonfirms our choice of
{111} surface of LO which is a type-Il surfac&’ The sur- interatomic potentials for this study, with further support for

IV. DISCUSSION

C. Li,0
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both from surface relaxations which are within the upper V. CONCLUSIONS

bounds that have been deduced from LEED measurerﬁ?ents. The principal conclusion of this study is that the method
Perhaps more significantly, our results highlight the inad-escribed by Tayloet al® for calculating the free energy of
equacy of the ZSISA approximation for surfaces. For NiOthree-dimensional ionic systems based on full dynamical re-
{100, the ZSISA predicts a rapid increase in the surfacqaxation of the lattice structure can be applied to isolated
energy with temperature, which is at variance with both theslabs, which, if sufficiently thick, yields the full dynamical
predictions from full dynamic relaxation and experim&ht. free energy and equilibrium structure of the free surface.
While the main body of results is for simple surfaces whichCalculations for two facetefiL10 surfaces of MgO suggest
show relatively minor structural relaxation, the calculationsthat the method could be applied to much more complex
for faceted{110 surfaces of MgO demonstrate that our ap-surfaces than those reported in this study.

proach is entirely suitable for much more complex surfaces,

including those that are heavily defective. Finally, an impor- ACKNOWLEDGMENTS
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