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Quasiharmonic free energy and derivatives for slabs: Oxide surfaces at elevated temperatures

M. B. Taylor, C. E. Sims, G. D. Barrera,* and N. L. Allan
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~Received 19 October 1998!

The work of Tayloret al. @Phys. Rev. B56, 14 380 ~1997!#, which calculates the free energy of three-
dimensional periodic crystals and its analytic derivatives with respect to all the external and internal degrees of
freedom using lattice statics and lattice dynamics in the quasiharmonic approximation, is extended to lattices
which are periodic in only two dimensions. Derivatives are calculated by means of first-order perturbation
theory and detailed expressions for all the lattice sums required are presented. The method is used to calculate
the temperature variation of the surface free energy, surface structure, and density of states of some represen-
tative oxide surfaces. These include the$100% and$110% surfaces of MgO, the$100% surface of NiO, the$111%
surface of Li2O and the microfaceted$110% surface of MgO. For these systems, surface free energies decrease
slightly over the range of temperatures for which the quasiharmonic approximation holds.
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I. INTRODUCTION

Many technologically important areas of interest rang
from heterogeneous catalysis to high-temperature super
ductivity ~see, e.g., Refs. 1 and 2! utilize the properties of the
surfaces of ionic oxides. In addition to experimental a
vances over the past decade, considerable progress has
achieved in the calculation of properties of surfaces, incl
ing surface structure, surface energy, point defect proper
and segregation characteristics.3–5 Where experimental dat
have been available, the agreement has been encouragi
particularly notable example is the extensive relaxation at
$0001% basal plane ofa-Al2O3, predicted by atomistic lattice
simulations6 and later by first-principles density-function
theory7 and Hartree-Fock8 calculations, which has been ver
fied substantially by recent surface x-ray measurements
Guenardet al.,9 as shown in Table I. In addition, calculate
surface and/or attachment energies have been used to
nalize the crystal morphology, of, among other examp
a-Fe2O3,

10 Fe-, Cr-, Y-, and La-dopeda-Al2O3,
6 BaSO4,

11

SnO2 and SrSnO3,
12 and zircon.13

A potentially serious limitation of the majority of previ
ous theoretical work on oxide surfaces is that it has b
restricted to thestatic limit. Few calculations have include
dynamic effects, includingtemperature, largely because the
full dynamical treatment of complex solids, including cry
tals with large unit cells, defective crystals and surfaces, p
sents severe computational demands if reasonably high
cision is required. For surfaces, it can be crucial, as we s
see, to take explicit account of the relaxation of a large nu
ber of layers adjacent to the surface.

There are three main simulation techniques available
the calculation of surface properties: Monte Carlo, molecu
dynamics, and quasiharmonic lattice dynamics. Of these o
the last is capable of giving free energies~as well as derived
properties such as the entropy and the heat capacity! directly
and to high precision. This method is consequently not o
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the most suitable for structure optimisation as a function
temperature but in many applications it has also been sh
to be a valid approximation up to two-thirds of the bu
melting temperature.14,15

We have recently developed a code based on quas
monic lattice dynamics designed for the efficient study
three-dimensional periodic structures withmany internal
strains ~degrees of freedom!.16 To calculate the optimum
structure of a~periodic! crystal at temperatureT, and external
pressure,Pext, it is necessary to determine the minimum fr
energy with respect to all the geometrical variables that
fine the unit cell. Some previous approaches to this opti
zation ~e.g., Watsonet al.17! have used the zero static inte
nal stress approximation~ZSISA!,18 in which only the
external coordinates~dimensions of the unit cell! are relaxed
using fully dynamic free-energy derivatives, while intern
coordinates~positions of the ions within the unit cell! are
relaxed using static energy derivatives. This approach
popular since static energy derivatives can be calculated
lytically, and quite rapidly, while only a small number o
free-energy derivatives is required for the unit-cell dime
sions and these can be readily obtained numerically. On

TABLE I. Comparison of theoretical and experimental surfa
relaxations~%! of a-Al2O3 $0001%. S(Al) denotes the outer surfac
layer with Al atoms outermost. Inner surface layers are numbe
sequentially according to increasing distance from the surface.

Layer
Mackrodt
~Ref. 3!

Aprá et al.
~Ref. 8!

Manassidis
et al. ~Ref. 7!

Guénardet al.
~Ref. 9!
~Expt.!

S(Al) 259 266 286 251
S-1(O) 2 1 3 16
S-2(Al) 249 243 254 229
S-3(Al) 26 18 25 20
S-4(O) 8 4
6742 ©1999 The American Physical Society
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other hand, even for unit cells of moderate size, numer
differentiation of the free energy with respect to all the
ternal coordinates is normally prohibitively expensive. O
code SHELL ~Ref. 16! for three-dimensional crystals calcu
lates the full set of free-energy first derivative
analytically19,20and a full minimization of the quasiharmon
free energy with respect to all internal and external variab
for large unit cells is possible.

Here we extend this previous work to the surfaces of io
solids by developing the theory for slablike geometries
which the crystal is finite in one direction and infinite in th
other two. If the slab is sufficiently thick to provide what
effectively a bulklike region in the interior of the slab, the
the two surfaces are essentially noninteracting and, in eff
are free surfaces. We give explicit expressions for the lat
sums required to calculate the slab free energy and its s
derivatives: these are the analogs of the bulk lattice s
expressions presented in Tayloret al.19 Thus our approach is
a radical departure from the two-region strategy used
Tasker21 and Gay and Rohl,13 in which the positions~and
polarizations! of the ions in the vicinity of the surfaceonly
are relaxed explicitly by minimizing theinternal energy of
the system, while the remainder are constrained to their b
lattice positions. In the corresponding ZSISA approximat
for slablike geometries, lattice relaxation perpendicular
the surface, which in most cases is the predominant re
ation from the bulk structure, comprises the internal stra
and is thus calculated from the internal energy and not
free energy of the system. As we show later, this approxim
tion is very poor for surfaces.

This is a report of surface free energies based on a c
plete minimization of the free energy. Previously, Mulher
and co-workers have used a localized Einstein-like appr
mation for the phonon spectrum to estimate the tempera
dependence of surface energies.22–24 Molecular-dynamics
simulations have been used to study the$001% surface of KCl
~Ref. 25! and NiO.26 Here we report calculations for th
$001% and $110% surfaces of MgO, for the$001% surface of
NiO ~for comparison with Mulheran24!, and the$111% surface
of Li2O. The$001% and$110% surfaces of MgO and NiO are
type I, according to the Tasker classification;27 the surface
layers are neutral and contain all component ions in th
stoichiometric ratio. The$111% surface of Li2O is type II,27

since the surface is comprised of only one type of ion e
though there is no dipole moment perpendicular to the s
face. We have also evaluated the temperature dependen
the microfaceted$110% surface of MgO, which, in the stati
limit, has been studied by Watsonet al.28

At present our approach to temperature effects can
two and three-body potentials, and the calculations repo
here are all based on simple two-body potentials. As Tab
illustrates fora-Al2O3, there is remarkably good agreeme
between results, subsequently confirmed by experiment,
tained using two-body potentials and those fromab initio
calculations in the static limit; this suggests that potentials
this type can be used to describe dynamics properties o
kind reported here.

II. THEORY

A. Slab structure and strain coordinates

Slab structures can be defined in terms of two lattice v
tors a1 anda2 . The corresponding reciprocal lattice vecto
b1 andb2 , are given by
al

r

s

c

t,
e
in

m

y

lk
n
o
x-
s
e

a-

-

i-
re

ir

n
r-

of

se
d
I

t
b-

f
he

-
,

b15
2p

A2 a23~a13a2!, ~1!

b25
2p

A2 a13~a23a1!, ~2!

whereA is the area of the unit cell (5ua13a2u).
Much of the development of this section derives from th

in Taylor et al.,19 the equations of which are referred to
~Tn!. The particles which comprise the slab, which in a sh
model29 may be cores or shells, have Cartesian coordina
r ix

a , given by

r ix
a 5(

g
~dag1eag!~xg1r i

g!, ~3!

where Greek subscripts and superscripts are indicesx, y or z
labeling Cartesian axes oriented such that the surface la
vectors lie in thexy plane.30 x is a surface lattice vector,i
51,...,n is an index that labels a specific particle within
unit cell, anddab is the Kronecker delta. Components of th
tensor eab determine both the orientation and the mac
scopic state of the strain. The vector componentsr i

g are in-
ternal coordinates determining the positions of partic
within a unit cell of the slab. Since we work always at co
stant surface area we need only derivatives of the free en
with respect to ther i

g ~cf. Tayloret al.19 where, for the three-
dimensional case, derivatives with respect to theeab are
given!. In some applications symmetry reduces the num
of independent coordinates and it is possible to define a
of ‘‘symmetric internal coordinates’’wm @Eq. ~T4!# that al-
low a description of the structure with a reduced number
variables. In general, the geometry can be characterized
and the free energy differentiated with respect to
NE-element vector of generalized coordinatesEA . Here the
EA may comprise ther i

g or thewm .
In order to optimize the structure of the slab, i.e., to fi

the most stable state under a given set of thermodyna
constraints, it is necessary to minimize the appropriate th
modynamic potential with respect to theNE structure param-
etersEA . Since we are here interested solely in surfaces
zero pressure, the appropriate potential is the Helmholtz
ergy F.

B. Free-energy evaluation and strain derivatives

In the quasiharmonic approximation it is assumed that
Helmholtz energy at temperatureT can be written as the sum
of static and vibrational contributions,

F~E,T!5Fstat~E!1Fvib~E,T!. ~4!

Fstat is the potential energy of the static lattice in a giv
state of strainE, andFvib is the sum of harmonic vibrationa
contributions from all the normal modes. For a period
structure, the frequenciesn j (q) of modes with wave vectorq
are obtained by diagonalization of the dynamical mat
D(q) in the usual way~e.g., Wallace32!. Fvib is given by
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Fvib5(
q, j

H 1

2
hn j~q!1kBT ln@12exp~2hn j~q!/kBT!#J ,

~5!

and the associated vibrational entropy,S, and internal energy
Uvib by

S5(
q, j

H „hn j~q!/T…

exp„hn j~q!/kBT…21

2k ln @12exp„2hn j~q!/kBT…#J ~6!

Uvib5(
q, j

H 1

2
hn j~q!1

hn j~q!

exp„hn j~q!/kBT…21J , ~7!

in which the first term in the expressions forFvib andUvib is
the zero-point energy. For a macroscopic crystal the s
over q becomes an integral over a cell in reciprocal spa
which can be evaluated by taking successively finer unifo
grids until convergence is achieved. Since the recipro
space is now two-dimensional the Brillouin zone require
two-dimensional mesh of wave vectors—it is straightforwa
to implement the two-dimensional analog31 of one of the
usual meshes.

There are now two ways to continue. The minimization
F and subsequent thermodynamic manipulation can
course be carried out by brute force, from numerical val
of F obtained using Eq.~5!. However, for the type of sur
faces we wish to examine here and elsewhere, the co
sponding slabs are characterized by large numbers of inte
strains so that it is much more efficient to use analytic
pressions for the derivatives ofF with respect to strain. The
strain derivatives are given by

S ]Fvib

]EA
D
E8,T

5(
q, j

H h

2n j~q! S 1

2
1

1

exp„hn j~q!/kBT…21D
3S ]n j

2~q!

]EA
D
E8
J , ~8!

where the subscriptE8 denotes that all theE are kept constan
except for the differentiation variable. We thus require d
rivatives of the frequencies. In our code16 the derivatives
@]n j

2(q)/]EA#E8 are obtained from the analytic expressio
for the derivatives@]D(q)/]EA#E8 by first-order perturbation
theory.19,32 A crucial point here is that for obtaining deriva
tives the perturbation is infinitesimal and the procedure
act. In addition, for thermodynamic properties no spec
consideration needs to be given to degeneracies in first-o
perturbation theory, since the trace of@]D(q)/]EA#E8 is in-
variant for any complete normal set of eigenvectors ofD.

To obtain the equilibrium structure a variable met
method33 is used to minimizeF with respect to theEA .
In the initial configuration thestatic energy Hessian
(]2Fstat/]EA]EB), which is a good approximation to
(]2F/]EA]EB), is calculated from its analytic expressio
and its inverse together with the (]F/]EA) is used to obtain
an improved configuration. In subsequent iterations
(]F/]EA) are calculated in the configurations and the inve
Hessian updated by the Brogden-Fletcher-Goldfarb-Sha
m
,
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formula.34 An optimization therefore requires one static He
sian calculation, and a small number of dynamic gradi
calculations. We have found this to be much more effici
than methods involving repeated evaluation of the Hess
or frequent line minimizations or in which the derivatives a
determined numerically. For more details, discussion of s
ing aspects and examples, see Ref. 16.

C. Lattice sums for short-range potentials

The same approach may be followed as in the thr
dimensional analog with no special treatment for slab geo
etries. The expressions required for general short-range
and three-body potentials are given by Tayloret al.19,20

D. Lattice sums for Coulomb interactions

The two-dimensional Ewald summation has a differe
form from that in three-dimensions. We start from th
result35–37 for a slab periodic in two-dimensions but ape
odic in the third:

(
x

eiq•x

r x
~12d i j x8 !5(

x
eiq•xX0~r x!1(

k
8e2 iqk•rQ~qk ,r z!

2dq0R~r z!, ~9!

where

R~r z!5
2p

A F 1

hAp
exp„2~hr z!2

…1r z erf~hr z!G , ~10!

Q~k,r z!5
p

Ak Fexp~krz!erfcS k

2h
1hr zD

1exp~2krz!erfcS k

2h
2hr zD G . ~11!

Equation ~11! may be compared with its three
dimensional equivalent~T101!. The two share the same no
tation. d i j x8 is zero unless either~a! x50 and i 5 j or ~b! x
50 and i and j are shell and core of the same ion. In
rigid-ion system, only case~a! arises. The factor (12d i j x8 )
therefore properly eliminates the Coulombic interaction of
ion with itself. Thex summation is over all surface lattic
vectors and thek summation over all reciprocal-lattice vec
tors omittingq5k50 ~as indicated by the prime!. h is an
arbitrary parameter, which can be chosen so that good a
racy is achieved when both sums are truncated after a s
number of terms going out from their respective origins.h
5ApA21/2 is a reasonable choice. Additional quantities, a
used in Ref. 19 are

r5r i j , ~12!

r x5r1x, ~13!

qk5q1k, ~14!

dq05 H1,
0,

q50
otherwise, ~15!

X0~r x!5
erfc~hr x!2d i j x8

r x
. ~16!
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The same approach can then be used as in Ref. 19.
possible@Eqs.~T70!–~T78!# to construct the energy, dynam
cal matrix and the required internal coordinate derivatives
terms of two sets of matrices,S andT:

Fstat5
1

2 (
i j

Si j , ~17!

S ]Fstat

]rk
a D 5(

i
~12d ik!Sik

a , ~18!

S ]2Fstat

]rk
a]r l

bD 5dkl(
i

~12d ik!Sik
ab2~12dkl!Skl

ab , ~19!

Bi j
ab~q!5d i j (

k
Tik

ab~0!2Ti j
ab~q!, ~20!

S ]Bi j
ab~q!

]rk
g D 5d ikd jk(

l
Tlk

abg~0!1d i j Tik
abg~0!

1~d ik2d jk!Ti j
abg~q!. ~21!

The elements of the dynamical matrixDi j
ab(q) and its deriva-

tives are related toBi j
ab(q) via ~T18! and~T34!. Derivatives

with respect to the symmetric internal coordinateswm rather
than ther i can be obtained using Eq.~T4!.

Since the real-space part of the slab expression@Eq. ~9!# is
the same as that for the three-dimensional equivalent@Eq.
~T101!#, the real-space part of all the derivatives will n
change from the three-dimensional case@Eqs. ~T111!,
~T112!, ~T114!, ~T117!, ~T118!#. We concern ourselves her
therefore only with the reciprocal space parts.

We define a set of functions

R* a~r z!5
]

]r a R* ~r z!, ~22!

Q* a~k,r z!5
]

]r a Q* ~k,r z!, ~23!

where in these equations the superscript~* ! indicates any
sequence of zero or more indicesx,y,z ~Greek letter super-
scripts!. Then the reciprocal space parts of the relevant
pressions for slab geometry can be written

Si j @recip#

Zi j
5(

k
8 cos~k•r !Q~k,r z!2R~r z!, ~24!

Si j @recip#
a

Zi j
5(

k
8 @cos~k•r !Qa~k,r z!2sin~k•r !kaQ~k,r z!#

2Ra~r z!, ~25!

Si j @recip#
ab

Zi j
5(

k
8$cos~k•r !@Qab~k,r z!2kakbQ~k,r z!#

2sin~k•r !@kaQb~k,r z!1kbQa~k,r z!#%

2Rab~r z!, ~26!
is

n

-

Ti j @recip#
ab ~q!

Zi j
5(

k
8e2 iqk•r@Qab~qk ,r z!2qk

aqk
bQ~qk ,r z!

2 iqk
aQb~qk ,r z!2 iqk

bQa~qk ,r z!#

2dq0Rab~r z!, ~27!

Ti j @recip#
abg ~q!

Zi j
5(

k
8e2 iqk•r@Qabg~qk ,r z!2qk

bqk
gQa~qk ,r z!

2qk
aqk

gQb~qk ,r z!2qk
aqk

bQg~qk ,r z!

2 iqk
aQbg~qk ,r z!2 iqk

bQag~qk ,r z!

2 iqk
gQab~qk ,r z!1 iqk

aqk
bqk

gQ~qk ,r z!#

2dq0Rabg~r z!, ~28!

whereZi j is the Coulomb factor

Zi j 5
zizj

4p«0
, ~29!

and zi is the charge on particlei. The forms of theR* (r z)
andQ* (k,r z) functions are determined by repeated applic
tion of Eqs.~22! and ~23! to Eqs.~10! and ~11!. By obser-
vation, if any of the indicesa represented by the superscri
~* ! is not equal toz, then the corresponding function will b
zero.

The nonzeroR functions are given by

Rz~r z!5
2p

A
erf~hr z!, ~30!

Rzz~r z!5
4Aph

A
exp„2~hr z!2

…, ~31!

Rzzz~r z!5
28Aph3

A
exp„2~hr z!2

…. ~32!

The Q functions are somewhat more lengthy and m
easily expressed in terms of intermediate functions. Defin

F~k,r z!5exp~krz!erfcS k

2h
1hr zD , ~33!

E~k,r z!5p21/2expF2S k

2h D 2

2~hr z!2G , ~34!

P~k,r z!5
p

A
@F~k,r z!1F~k,2r z!#, ~35!

M ~k,r z!5
p

A
@F~k,r z!2F~k,2r z!#, ~36!

G~k,r z!5
p

A
@E~k,r z!1E~k,2r z!#5

2p

A
E~k,r z!,

~37!

which lead to the relations
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]

]r z P~k,r z!5kM~k,r z!, ~38!

]

]r z M ~k,r z!5kP~k,r z!22hG~k,r z!, ~39!

]

]r z G~k,r z!522h2r zG~k,r z!. ~40!

It is then straightforward to derive the following expressio
for the nonzeroQ functions:

Q~k,r z!5P~k,r z!k21, ~41!

Qz~k,r z!5M ~k,r z!, ~42!

Qzz~k,r z!5P~k,r z!k2G~k,r z!2h, ~43!

Qzzz~k,r z!5M ~k,r z!k21G~k,r z!4h3r z. ~44!

In calculating lattice sums for large numbers of atom
both computational efficiency and economy of storage m
be considered. With our approach it is not necessary to s
the whole set of derivatives of the dynamical matrix sim
taneously. Instead, the matricesS andT are calculated once
for each wave vector and the required derivatives constru
from these and used one at a time.

III. SURFACE FREE ENERGIES

A. MgO

We start with the$100% and$110% surfaces of MgO~both
Type I! and use the interatomic potentials of Stoneham
Sangster.38 Irregularities such as ledges, kinks, steps, a
electronic defects, present on real surfaces, are ignored.
ure 1 shows the dynamically relaxed$100% surface free en-
ergy as a function of slab thickness, which indicates t
approximately ten layers are required for convergence
0.001 J m22. This is more than twice the number of layers~4!
required to converge the static energy. Figure 2 shows
calculated temperature dependence of the$100% and $110%
surface free energies, based on slabs containing 12 la
The inclusion of the zero-point energy contribution reduc
the surface energy at 0 K, from 1.180 to 1.179 J m22. The
$100% surface energy decreases slightly with temperat
~Fig. 2!, less markedly than as predicted for the$100% surface
of NiO by Mulheran.24

FIG. 1. Variation of the MgO$100% surface free energy with
slab thickness.
,
st
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-
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d
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t
to

e

rs.
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e

The importance of using a sufficient number ofq vectors
to achieve convergence is illustrated by the plots in Fig.
Too small a number ofq vectors leads in general to a muc
smaller decrease of surface free energy with tempera
than is shown by the converged values. We find it is cruc
to take adequate account of long-wavelength modes by u
a grid of sufficient size in the reciprocal-space summati
Equivalently, as indicated by preliminary calculations,39 in
any molecular-dynamics simulation the cell size must be s
ficient to permit such motions. Similarly, Oliveret al.26 sug-
gest the$100% surface energy of NiO increases with tempe
ture from 0 K to themelting point, which is not in agreemen
with our results, and is likely to be an artifact due to t
small number of atoms used in their molecular-dynamics c
culations.

In contrast to the$100% surface at 0 K, the inclusion of the
zero-point contribution increases the$110% surface energy
from a static value of 1.18 to 1.20 J m22. The $110% surface
also shows a rather more marked decrease with tempera
than the$001% surface, as is clear from Fig. 2. For this su
face, the quasiharmonic approximation breaks down
'1600 K with the appearance of imaginary frequencies. T
corresponding temperatures at which imaginary frequen
appear for the bulk and the$001% surface are'2900 and
'2600 K, respectively, which indicates that the quasih
monic approximation fails at somewhat lower temperatu
for the surfaces than for the bulk due to the presence of s

FIG. 2. Calculated temperature variation of the free energy
the $100% and $110% surfaces of MgO.

FIG. 3. Variation of the MgO$100% surface free energy with
number ofq vectors used in the reciprocal sum summations.
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FIG. 4. Calculated bulk, surface and excess~surface minus bulk! densities of states at 700 K for the$100% and $110% surfaces of MgO.
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modes with large amplitudes of vibration. It is tempting
suggest from this that surface melting occurs at temperat
below that of the bulk, which for MgO is'3100 K. Bulk
and surface vibrational density of states~DOS! at 700 K for
both $100% and $110% surfaces are shown in Fig. 4, the su
face plots show a generalized Rayleigh mode at frequen
,5 THz. Also plotted in Fig. 4 are the excess DOS~surface
minus bulk! which is responsible for the dynamic contrib
tion to the surface free energies. For both surfaces th
show decreases in intensity of bulk modes in the ra
10–14 THz. There are several surface-localized modes.
to '18 THz the excess DOS for the$100% surface is in good
agreement with the experimental measurements of Ried40

close to 800 K. The calculated excess DOS does not s
the peak reported above 18 THz. Our calculations do
support an earlier suggestion41 that surface relaxation a
elevated temperature is responsible for this feature.

Figure 5 shows the temperature variation of the vario
entropic, vibrational, and internal energy contributions to
dynamically relaxed$100% surface free energy. First, not
that the vibrational internal energy and zero-point contrib
tions are both very small and nearly equal. At high tempe
tures, in the classical limit, the vibrational internal ener
contributes equally to both slab and bulk so that the
effect on the surface free energy is zero. As for the ze
point energy, each vibrational mode contributes (hn/2) and
soall frequencies contribute to the small negative differen
in zero-point energy between surface and bulk. At low te
peratures, only low-frequency modes are thermally exc

FIG. 5. Temperature variation of the surface entropy and in
nal energy contributions to the$100% surface free energy of MgO.
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so contributing to the entropy and hence the thermal exp
sion; the excess~surface minus bulk! entropy is positive. At
nonzero temperatures, the entropy term,2TS, dominates the
excess static energy and total internal energy both of wh
increase with temperature, unlike the surface free energy.
all the surfaces studied here, the coordination numbers of
surface ions, though smaller than in the bulk, are still re
tively high, so that the~positive! expansion of the surface
interlayer spacing is governed, as is that of the bulk, by
‘‘bond-stretching’’ effect,42 in which the asymmetry of the
form of the interionic potential leads to an increase of t
mean interatomic distance with increasing amplitude of
brations. It will be particularly interesting in future work t
study surfaces where the structure is more open and the
ordination numbers much lower. In such cases where
vibration includes components of perpendicular motion re
tive to a bond, a ‘‘tension effect’’42 may dominate, leading
to a thermal contraction of the surface layers.

We have also studied one example of nonpla
surfaces—the (a/A2)/2 and aA2 microfaceted$110% sur-

FIG. 6. ~i! Unfaceted,~ii ! (a/&)/2 faceted, and~iii ! a& micro-
faceted$110% surfaces of MgO. Black circles are magnesium; gra
oxide ions.
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faces of MgO, in which rows of cations and anions are
moved from the unfaceted surface as shown in Fig. 6. S
faces of this type have been observed experimentally u
low-energy electron diffraction~LEED! and scanning elec
tron microscopy.43 An alternative description of these stru
tures is as a set of stepped$100% surfaces. Figure 7 show
that the temperature variation of the surface free energie
indeed intermediate between those noted earlier for the
nar $100% and $110% surfaces. It is clear that as the facetin
gets more extensive, more$100% surface is generated, with
consequent lowering of the surface energy and reduced
perature variation, which reflects the differences between
$100% and $110% surfaces. Thus our calculations suggest t
for relatively simple faceting of this type the introduction
steps at the surface does not appear to lead to features
than those associated with the parent surfaces. One pos
explanation for the peak at high frequencies seen in the
perimental excess DOS~Ref. 40! for the$100% surface is thus
the presence of steps on the surface.

B. NiO

Here we consider the$001% surface~type I! of NiO for
direct comparison with the results of Mulheran24 obtained
using an Einstein approximation. Irregularities such
ledges, kinks, steps, and electronic defects, present on

FIG. 8. Calculated temperature variation of the dynamically
laxed and unrelaxed free energy of the$100% surface of NiO.

FIG. 7. Temperature variation of the surface energies of the~i!
unfaceted,~ii ! (a/&)/2 faceted, and~iii ! a& microfaceted$110%
surfaces of MgO.
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surfaces, are ignored. Like Mulheran24 we use the well-
established set of interionic potentials due to Stoneham
Sangster.44 Figure 8 shows the calculated temperature dep
dence of the unrelaxed and the fully dynamically relax
$001% surface energy of NiO. We find that, for the relaxe
surface, at temperatures up to 2500 K 12 layers are suffic
for convergence in the surface energy to 0.0003 J m22: a
smaller number of layers is required for comparable conv
gence in the unrelaxed energy. The number of layers
convergence in the static limit is smaller still. At 0 K the
fully relaxed dynamic surface energy is 1.19 J m22 which
compares with a value of'1.15 J m22 calculated by
Mulheran.24 Our value of the surface energy in the sta
limit, 1.18 J m22, also compares favorably with that o
1.23 J m22 from ab initio Hartree-Fock calculations.45 Un-
like MgO $100% inclusion of the zero-point energy thus in
creases the surface energy slightly. As shown in Fig. 8, b
the relaxed and unrelaxed$001% surface energies decreas
slightly by '0.1 J m22 over the temperature rang
0–2000 K, the unrelaxed surface shows a similar variati
The change of the dynamically relaxed surface energy w
temperature over this range is approximately one-third
that reported by Mulheran24 for the same surface, which
gives an indication of the limitations of the Einstein appro
mation. There is no direct experimental data for comparis
but the temperature variation is at least consistent with
noted for rocksalt~001! surfaces by Benson and Yun.46

The positions of the Ni and O ions~cores and shells! in
the outermost three layers of a slab containing 12 layers
plotted as a function of temperature in Fig. 9, where all

-

FIG. 9. Calculated temperature variation of the positions of
surface ions relative to bulk~expressed as the percentage shift
atomic position from that of the bulk! in the outer three layers fo
the $100% surface of NiO, approximated by a slab of 12 layers.
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positions are relative to that of the middle layer of the sl
The relaxations, which for the two outermost layers resul
a decrease in separation from that in the bulk of 0.3%,
qualitatively similar to those noted by Mulheran.24 However
the temperature variation of the positions of the ions, as w
the surface free energies, is smaller than those obtained
the Einstein approximation. The qualitative features of th
K surface dilation, which, as expected, decreases away f
the surface, are retained at elevated temperature. The
pling of the second and third layers decreases with temp
ture. Once again there is good agreement with first-princip
Hartree-Fock calculations45 which have found a contractio
of the first interlayer spacing of 0.53%, which supports f
ther our use of two-body potentials in free-energy calcu
tions for ionic systems. Furthermore, we note that the col
tion of reported theoretical relaxations, both here a
elsewhere, are all well within anupper boundof ;2% sug-
gested from LEED studies,47 which attests to the increasin
reliability of theoretical methods in the surface science
ionic oxides.

We now compare our results with those obtained us
ZSISA. For application to surfaces where the surface lat
vectors are fixed by the lattice parameters of the correspo
ing bulk material, ZSISA requires a minimum of the sta
energy with respect to each internal strain with the ot
strains and the cell area,A held constant, i.e.,

S ]Fstat

]Ei
D

A,E8
50 ~45!

for all the internal strains. The$001% surface energies calcu
lated using this approximation are shown in Fig. 10 a
function of temperature. The surface energy increases m
edly with temperature and so it is clear that for surfac
ZSISA is a much poorer approximation than it is usually
the bulk ~e.g., Ref. 15!. The physical reason is that ZSIS
fails to allow for the expansion between the layers in the s
as the temperature increases.

C. Li 2O

Lastly we consider briefly the temperature variation of t
$111% surface of Li2O which is a type-II surface.27 The sur-

FIG. 10. Calculated temperature variation of the free energy
the $100% surface of NiO, using the ZSISA approximation as d
scribed in the text.
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face plane consists only of Li1 ions with an underlying non-
dipolar stacking sequence of the type

— Li1—

O22

Li1

Li1

O22

Li1

We have used the set of interatomic potentials recently
rived from periodic Hartree-Fock calculations in Ref. 48.
the static limit, unrelaxed and relaxed surface energies
0.631 and 0.582 J m22, respectively. These compare with
fully dynamically relaxed value of 0.601 J m22 at 0 K; so
that, as with the$100% surface of NiO, the inclusion of vibra
tional terms leads to a slight increase in the surface ene
The dynamically relaxed surface energy at 300 K is 0.5
J m22, and 0.579 J m22 at 700 K, which is the smallest de
crease in surface free energy with temperature of the syst
examined in this paper. The onset of imaginary frequenc
at the$111% surface of Li2O, and consequent breakdown
the quasiharmonic approximation, occurs at 900 K. This
somewhat lower than the temperature~'1100 K! where a
superionic transition involving the Li ions is predicted for th
bulk material48 using the same set of interionic potentials.

IV. DISCUSSION

This paper has presented a method for the calculation
the fully dynamically relaxed free energies of isolated pe
odic slabs within the quasiharmonic approximation, based
analytic first derivatives of the free energy and second
rivatives of the static energy. We have found this to be c
siderably more efficient for surface energies than the us
three-dimensional lattices which are constructed to prod
an infinite periodic array of slabs separated by vacu
layers.49 Detailed expressions for the lattice sums requir
for Coulombic interactions are given. We show how t
complete set of analytic free-energy derivatives can be u
for structural optimization, following which it is straightfor
ward to generate accurately equilibrium quantities such
entropy, free energy, and heat capacity. The major part of
computational effort is usually expended in the optimizati
problem of the determination of the equilibrium geomet
after which calculation of the required properties is genera
rapid.

For the$100% surface of NiO our temperature dependen
of the surface energy is markedly smaller than that repo
previously by Mulheran,24 based on a crude approximatio
to the phonon spectrum. It is a matter of speculation as
whether larger differences would be obtained for more co
plicated surfaces involving more extensive structural rel
ations. The close agreement between our results for N
$100% in the static limit and those obtained from firs
principles Hartree-Fock calculations45 confirms our choice of
interatomic potentials for this study, with further support f

f
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both from surface relaxations which are within the upp
bounds that have been deduced from LEED measuremen47

Perhaps more significantly, our results highlight the ina
equacy of the ZSISA approximation for surfaces. For N
$100%, the ZSISA predicts a rapid increase in the surfa
energy with temperature, which is at variance with both
predictions from full dynamic relaxation and experiment50

While the main body of results is for simple surfaces wh
show relatively minor structural relaxation, the calculatio
for faceted$110% surfaces of MgO demonstrate that our a
proach is entirely suitable for much more complex surfac
including those that are heavily defective. Finally, an imp
tant aspect of our approach is that since it is based on
exact calculation of the harmonic frequencies for all the n
essaryq points to obtain convergence, it automatically s
nals the temperature at which the harmonic approxima
breaks down, i.e., the onset of imaginary frequenc
thereby defining quite unambiguously the temperature
gime within which meaningful comparisons with experime
might be made.
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V. CONCLUSIONS

The principal conclusion of this study is that the meth
described by Tayloret al.19 for calculating the free energy o
three-dimensional ionic systems based on full dynamical
laxation of the lattice structure can be applied to isola
slabs, which, if sufficiently thick, yields the full dynamica
free energy and equilibrium structure of the free surfa
Calculations for two faceted$110% surfaces of MgO sugges
that the method could be applied to much more comp
surfaces than those reported in this study.
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