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Traditionally disorder in solid oxides has largely been investigated theoretically via classical point defect theory;
such methods are not readily extended to solid solutions, liquid phases or grossly non-stoichiometric
compounds. In this paper we show how Monte Carlo simulations in the semigrand canonical ensemble, which
include the explicit interchange of cations and use configurational bias techniques, are an attractive method for
situations involving finite and even high concentrations of defects or foreign atoms. We illustrate our approach
with two examples involving CaO: (i) the phase diagram for the system CaO–MgO is calculated for both solid
and liquid phases. All the characteristic features are reproduced, including the eutectic point and the regions of
liquid–solid coexistence; (ii) the first direct calculation of trace-element partitioning between solid and melt
phases. Our techniques take full account of local structural distortion and clustering due to the mismatch
between the sizes of the cations involved.

Introduction

Ceramic solid solutions, grossly non-stoichiometric oxides,
and phase stability all present considerable challenges for
theory. Oxide solutions are often strongly non-ideal. Energy
differences between different phases are often small. Subtle
cation ordering effects and resulting local changes in structure
can often be crucial in determining phase stability and thermo-
dynamic and chemical properties. An understanding of non-
ideal behaviour and ordering is also key to any process in
which there is a distribution of trace elements between two
solid phases, or between solid and melt. Approaches such as
the cluster variation method (CVM),1 which are widely used
for metallic alloys, often produce poor results when the species
involved are markedly dissimilar, as usually occurs in oxides
and minerals.
The importance of allowing for ‘‘ relaxation’’ of the ions

surrounding a defect in ionic solids, has long been recog-
nized2,3 Disorder in solid oxides has largely been investigated
theoretically via point defect calculations4 (the dilute limit)
or via the use of ‘ supercells ’.5 In point defect calculations
the total energy of the defective system is minimized by a
relaxation of the nuclear positions and shell displacements
of the ions surrounding the defect, which assumes the
relaxation is greatest in the proximity of the defect and that
relaxations decrease fairly rapidly away from the defect. The
crystal is partitioned into two regions: an inner region imme-
diately surrounding the defect, where relaxations are
assumed to be greatest and elastic equations for the force
are solved explicitly, and an outer region in which relaxa-
tions are estimated using a suitable approximation. In the
‘‘supercell ’’ approach a superlattice of defects is introduced,

which thus extends throughout the macroscopic crystal. The
periodicity is then that of the particular superlattice chosen
and convergence towards properties of an isolated defect
occurs as the superlattice spacing is increased. Neither
method is readily extended to solid solutions, liquid phases
or disordered systems with a finite impurity or defect con-
tent far from the dilute limit.
We are currently developing new methods for such pro-

blems. A key feature of all of these is the need to sample many
different arrangements of ions, allowing for the exchange of
ions located at crystallographically inequivalent positions.
Any method must also take into account the local environment
of each ion and the local structural movements (relaxation),
which accompany any exchange of ions and reduce consider-
ably the energy associated with these exchanges. Local effects
due to ion association or clustering should not be averaged
out. Methods should be readily extendible to incorporate the
effects of high pressure or thermal (vibrational) effects. The
use of parameterised Hamiltonians (e.g., of Ising type) is
increasingly difficult beyond binary or pseudobinary alloys
and so we have not resorted to any such approximate scheme.
Instead we calculate the energy of each configuration in the
simulation using interatomic interaction potentials.
In this paper we illustrate our methods by tackling two pro-

blems. The first is the CaO–MgO system where we consider the
entire composition range as well as the dilute limits. This sys-
tem is a particular challenge due to the large difference in ionic
radius6 between Ca2+ (1.00 Å) and Mg2+ (0.72 Å). We calcu-
late the entire phase diagram, including liquid and solid
phases. We continue examining the incorporation of divalent
trace elements (impurities) in CaO solid and melt and hence
the partitioning of these elements between these two solid
phases. An understanding of trace element partitioning7 is
of considerable interest in geochemistry since trace element
concentrations in igneous rocks and their constituent phases
(minerals� quenched melts) are widely used to develop and
test petrogenetic models.8 A prerequisite for using trace ele-
ments in this fashion is the accurate knowledge of the
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partitioning behaviour of trace elements between minerals and
co-existing melts.

Exchange-bias Monte Carlo

All Monte Carlo calculations use a box-size of 512 ions and
4� 107 steps, following initial equilibration of 1� 107 steps.
All calculations in this paper are based on an ionic model using
two-body potentials to represent short-range forces. The parti-
cular set of interaction potentials employed is that of Lewis
and Catlow, first introduced in their study of the parent
oxides9 and subsequently employed by Ceder et al.10

We start with a Monte Carlo simulation (MC) in which
there are no cation interchanges. Allowing random moves of
randomly selected atoms takes account of vibrational effects.
Both atomic coordinates and cell dimensions are allowed to
vary during the simulation. During one step of the MC simula-
tion an atomic coordinate or a lattice parameter is chosen at
random and altered by a random amount. To determine
whether the change is accepted or rejected, the usual Metropo-
lis algorithm11,12 is applied. The maximum changes in the
atomic displacements and the lattice parameters are governed
by the variables rmax and vmax , respectively. The magnitudes of
these parameters are adjusted automatically during the equili-
bration part of the simulation to maintain an acceptance/
rejection ratio of approximately 0.3.
Thus, in these MC calculations at each step either an atom

movement or a change of size of the simulation box is
attempted. Almost always only one cation arrangement is
sampled—the initial configuration, which is chosen at ran-
dom. Consequently, for CaO–MgO, the calculated variation
of DHmix varies erratically with composition, and there is a
strong dependence of DHmix with the choice of initial arrange-
ment. For a 50/50 mixture we were able, by choosing different
cation arrangements, to vary DHmix by as much as 40 kJ
mol�1. This is much higher than the final value of DHmix

obtained below.
We have described elsewhere13 Monte Carlo Exchange

(MCX) simulations in which both the atomic configuration
and the atomic coordinates of all the atoms are changed. In
any step, a random choice is made whether to attempt a ran-
dom exchange between two atoms, a random displacement
of an ion, or a random change in the volume of the simulation
box. Again, the Metropolis algorithm is used to accept or
reject any attempted move. This technique works well14 for
the MnO–MgO solid solution but for CaO–MgO, where there
is a much larger mismatch between the cation radii, the rate of
successful exchanges in MCX simulations is much smaller and
amounts to only �1% of the attempted exchanges at 2000 K.
Long runs are thus necessary in order to obtain good sampling
of configurations. These are computationally far too expen-
sive, and we must resort to special methods in order to increase
the rate of successful exchanges.
To speed up the sampling of configurations, we apply the

biased sampling technique, which is widely used in simulations
of molecules with an orientation-dependent interaction poten-
tial (orientational bias) and polymer conformations (config-
urational bias),12 to the CaO/MgO solid solution. In our
exchange-bias Monte Carlo, instead of considering a single
trial exchange, a set of trial exchanges is picked at random.
One of these is then chosen as explained below. The acceptance
rule differs from the standard Monte Carlo (Metropolis) algo-
rithm. Below, we describe the exchange-bias Monte Carlo
algorithm in detail and demonstrate that it satisfies the condi-
tion of detailed balance.
In our exchange-biased Monte Carlo,15 instead of consider-

ing a single trial exchange, a set of trial exchanges is picked at
random. Suppose an exchange takes place between atoms A
and B. First, k pairs {Ai, Bi, i ¼ 1,. . ., k} are randomly chosen.
Here we set k equal to 100. We denote the system energy in the

initial configuration as Uold and the energy of the system after
exchange of atoms in the ith pair as Ui

new. One of the new
configurations is then chosen with probability

pi ¼
expð�bðUi

new �UoldÞÞ
Wnew

; b ¼ ðkTÞ�1 ð1Þ

where Wnew is given by

Wnew ¼
Xk
i¼1

exp½�bðU1
new �UoldÞ� ð2Þ

The chosen configuration i (i.e., that after the exchange of
the ith pair) with energy Ui

new �Unew is then the trial config-
uration. However, the usual acceptance rule cannot be directly
applied. Instead, starting from the new configuration, a further
k� 1 pairs Aj, Bj, j ¼ 1,. . ., k� 1 are chosen. Denoting the
energy of the system after exchange of atoms in the jth pair
Uj

old, we evaluate Wold , where

Wold ¼ exp½�bðUold �UnewÞ� þ
Xk�1

j¼1

exp½�bðUj
old �UnewÞ�

ð3Þ

To fulfill detailed balance, the criterion for the acceptance of
the new configuration is

accðold ! new ¼ min 1; exp½�bðUold �UnewÞ�
Wnew

Wold

� �
ð4Þ

The use of the exchange-bias technique increases the success-
ful exchange rate of Ca2+ and Mg2+ in the CaO–MgO solid
solution from �1% to �45%. at 2000 K. This rate of exchange
is sufficient for convergence for the systems and properties we
examine in this paper.

Chemical potential and the semigrand-canonical
ensemble

Simulations were performed using the semigrand-canonical
ensemble12,16 at temperatures between 2000 and 4000 K and
zero pressure monitoring the enthalpy and volume of the sys-
tem and the chemical potential difference between Ca2+ and
Mg2+ ions. The latter was calculated as previously implemen-
ted by us15 for the determination of the phase diagram of the
solid phases of MgO–MnO. In this method we evaluate the
potential energy change DUB/A which would result if one spe-
cies, B, were to be converted into another, A. This change in
energy is related to the corresponding change in chemical
potential DmB/A by

DmB=A ¼ �kT ln
NB

NA þ 1
expð�DUB=A=kTÞ

� �
ð5Þ

Thus for CaO–MgO, we evaluate the energy associated with
the conversion of a randomly chosen Mg2+ ion to Ca2+,
DUMg/Ca , every fifth step (on average). As the simulation pro-
ceeds, the average value of the right hand side of eqn. (5) is
determined. Note that the change of Mg into Ca is only con-
sidered but not actually performed—the configuration remains
unchanged after evaluating DUMg/Ca . We have checked consis-
tency in that identical results areobtainedconsidering the reverse
transformation, i.e., of a randomly chosen Ca2+ to a Mg2+.
At T� 3000 K the system begins to melt. The liquid–solid

transition is evident in a plot of volume vs. temperature, with
a characteristic jump at the melting point. It is well known that
it is difficult to locate melting points exactly in Monte Carlo
and molecular dynamics simulations if the initial system is
homogeneous, because of significant overheating.17–19 In our
Monte Carlo calculations the calculated melting temperature
is also too high if the starting configuration is the one
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appropriate for a solid phase. If instead, the simulations start
from the liquid phase, the system does not crystallize at low
temperatures, but rather freezes into a glass-like state. In order
to avoid this hysteresis and establish the melting point, we start
simulations using a simulation box that is half-solid, half-
liquid. This strategy has been used successfully previously in
molecular dynamics simulations (of, e.g., forsterite,20MgSiO3

21

and MgO22). In our case, we started by performing simulations
at a very high temperature (4500 K), where the system is mol-
ten for all Ca/Mg concentrations. Then, half of the simulation
box was filled using a configuration appropriate for the melt,
and the other half with perfect solid crystal. We tried different
ways of constructing this initial half-melt, half-solid configura-
tion by locating the interface between the two at either the
(100) or the (110) solid surface. The results from each are vir-
tually identical. In this way the location of the melting point
can then be determined to within a few degrees. The calculated
melting temperatures Tm for pure MgO and pure CaO are 2870
K and 2600 K, respectively. For both systems, calculated tem-
peratures are 10–15% lower than experiment23,24 but it is
encouraging that our calculated melting point for CaO is less
than that of MgO. Overall agreement is very satisfactory, par-
ticularly bearing in mind that the potentials were originally
fitted to reproduce a range of solid-state properties only in
the static limit.9

Phase diagram

Given the dependence of the chemical potential difference
Dm ¼ mCa� mMg on concentration, the thermodynamic poten-
tial and hence the phase diagram of the system can be deter-
mined. In practice, this problem is more complicated here
than in our earlier work on solid solutions13 due to the exis-
tence of the liquid phase. At temperatures where solid and
liquid phases coexist, a plot of Dm(xMg) vs. xMg contains
regions corresponding to solid and to liquid, depending on
which phase has the lower thermodynamic potential at any
given concentration, as illustrated in Fig. 1. To extract the
phase diagram from the simulations, it is necessary to find
the thermodynamic potential for both phases. The coexistence
concentrations can then be found from the usual double tan-
gent construction.
The calculated values of Dm(xMg) were fitted to a cubic poly-

nomial in xMg similar in form to that used in the Margules
approximation for solid solutions:25

DmsðlÞ
kT

¼ ln
x

1� x
þ asðlÞ þ bsðlÞxþ csðlÞx

2 þ dsðlÞx
3 ð6Þ

where s(l) refers to solid (liquid) phase and we have dropped
the Mg subscript for clarity. The cubic term was found to be
negligible for the liquid phase, but it is important to keep this
term for the solid phase to describe the asymmetry of the
calculated Dms . Integrating with respect to xMg gives G(xMg):

GsðlÞ
kT

¼ x ln xþ ð1� xÞ lnð1� xÞ þ asðlÞxþ 1

2
bsðlÞx

2

þ 1

3
csðlÞx

3 þ 1

4
dsðlÞx

4 þ CsðlÞ ð7Þ

for both phases. The last unknown parameter for both phases
is the constant Cs(l) , which depends only on temperature; in
fact, only the difference between these constants Cs�Cl is
required to compare the free energy of solid and liquid phases.
When xMg ¼ 0 (pure CaO), then at the calculated melting
point, 2600 K, the free energies of both phases are equal and
Cs�Cl ¼ 0. Similarly, at T ¼ 2870 K (the calculated melting
point of pure MgO), the free energies of liquid and solid are
equal when xMg ¼ 1, from which we can obtain the value of
Cs�Cl . We assume Cs�Cl , which we need only over a 500
K temperature range, varies linearly with T. We have checked
this is a good approximation by also extracting the value of
Cs�Cl at 2400 K where Dm(xMg) also jumps between solid
and liquid phases when xMg ¼ 0.26. This provides all the
information required to determine the phase diagram.
Fig. 2a shows the calculated enthalpy of mixing of solid

CaO/MgO as a function of composition at 2000 K and the
enthalpy of mixing liquid CaO/MgO at T ¼ 3000 K. The

Fig. 1 Chemical potential vs. composition for CaO–MgO at 2500 K.
Solid and empty circles denote solid and liquid phases, respectively.

Fig. 2 (a) DHmix (kJ mol�1) at 2000 K (solid state, circles) and 3000
K (liquid state, triangles). (b) DSmix (J mol�1 K�1) at 2000 K (solid
state, full line) and T ¼ 3000 K (liquid state, dashed line). The ideal
entropy of mixing is also shown (dotted line).

2192 Phys. Chem. Chem. Phys., 2003, 5, 2190–2196



curve for the solid system is somewhat asymmetric, with a
maximum �25 kJ mol�1 when the mole fraction of MgO is
�0.54. Our results for DHmix are substantially lower than those
of Ceder and co-workers10 who used the same set of potentials
and, for example, predict enthalpies as high as �49 kJ mol�1

for an equimolar mixture of CaO and MgO. This difference
may result from the use in ref. 10 of ordered cation arrange-
ments and relatively small unit cells (up to 64 ions). As shown
above, in the absence of exchanges the results for DHmix in
Monte Carlo can be substantially higher, closer to the results
by Ceder et al.10 We have previously evaluated,26 enthalpies
of mixing in the solid state for small CaO concentrations up
to xCa ¼ 0 using hybrid Monte Carlo and quasiharmonic lat-
tice dynamics methods. The results obtained here are in good
agreement with these previous data. We also note in passing
that the energy associated with the replacement of a single
Ca by a Mg or of a single Mg by a Ca varies significantly with
composition. For the liquid system, DHmix is close to zero,
indicating virtually ideal behaviour.
Entropies of mixing can be extracted from the free energies

and enthalpies of mixing. Values of DSmix at 2000 K and 3000
K are shown in Fig. 2b together with the ideal entropy of mix-
ing. The excess entropy in the solid state can be as high as 30%
of the ideal entropy, which is substantially higher than that cal-
culated13 for MgO–MnO. As with the excess enthalpy, there is
a slight asymmetry in the entropy vs. composition curve. These
results are also in good agreement with those obtained using
our configurational lattice dynamics approach to solid solu-
tions;26 however these lattice dynamics calculations were
restricted to compositions <16% CaO since at higher CaO
concentrations the quasiharmonic approximation broke down,
preventing full free energy minimisation. Although DHmix for
CaO/MgO is large and positive, it is clear that this is offset
in the single-phase regions by large, positive values of DSmix ,
which are considerably in excess of the ‘ ideal ’ value. In con-
trast, in the melt (3000 K) DSmix is much smaller than in the
solid, again indicating that the solution is close to ideal.
The calculated dependence of DG(xMg) at four different tem-

peratures is shown in Fig. 3. At 2400 K the system is solid at all
concentrations (Fig. 3a): the straight line (common tangent)
defining the two phase region does not intersect the dashed line
showing the calculated free energy of the liquid phase. At 2440
K (Fig. 3b) this common tangent is also a tangent to the liquid-
phase curve, and so all three phases coexist at this temperature
(the eutectic point). The concentration of Mg in the liquid
phase is 0.32. For comparison, the experimental value23

of Teutectic is 2647 K, at a Mg mole fraction, xeutecticMgO ¼ 0.41.
At a higher temperature, 2500 K, the liquid phase coexists with
one of the two solid phases, depending on the overall composi-
tion of the system (Fig. 3c). At higher temperatures still, the
liquid curve lies below the solid curve and there is liquid at
all compositions.
The resulting phase diagram is shown in Fig. 4. The overall

agreement with the experimental phase diagram is good. All
the characteristic features of the MgO/CaO phase diagram,
including the eutectic point and the regions of liquid–solid
coexistence, are reproduced. We predict that solid MgO is
more soluble in solid CaO than CaO in MgO, in agreement
with the experiments of Doman et al.23 and of Trojer and
Konopicky.27

Trace element partitioning

We can extend the approach outlined in previous sections to a
further problem—the direct calculation of the partitioning of a
trace element or dopant between more than one phase. Our
knowledge of the accretion and subsequent chemical differen-
tiation of the Earth, for example, derives largely from chemical
analyses of trace elements and their isotopes in rocks; model-

ing and interpretation of these data require an understanding
of how trace elements are partitioned between coexisting
phases. Here we consider partitioning of a range of divalent
trace element cations J (J ¼ Ni2+, Mg2+, Fe2+, Mn2+ and
Sr2+) between the solid and melt phases of CaO. Previous
approaches to this quantity have generally ignored the liquid
phase7,28 or worked only with enthalpies of substitution in
each phase in the dilute limit and ignored entropic contribu-
tions.29,30 To our knowledge, this is the first full direct calcula-
tion of partition coefficients between mineral and melt. Our
method is quite general.
We adopt the usual convention7 that the partition coefficient

D is the ratio of the molar concentrations of the trace element
in the solid to that in the liquid phase and so equal to xs/xl .

Fig. 3 DGmix vs. composition at (a) 2400 K, (b) 2440 K (c) 2500 K.
Solid lines correspond to the solid phase, dashed lines to the liquid
phase.
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Small values of D correspond to trace elements that prefer the
melt to the solid phase. As shown schematically in Fig. 5a, the
partition coefficient at any temperature can be found from the
phase diagram of the CaO–JO system where J is the trace ele-
ment of interest. A schematic plot of the
dependence of the free energy of solid and liquid mixtures
on the concentration of the trace elements is given in Fig.
5b. The partition coefficient can be determined from the usual
double tangent construction, as shown also in this figure.
The starting point for our calculations is once again the

expression for the chemical potential difference as a function
of concentration [Fig. 1 and eqn. (6)]. We run semigrand cano-
nical simulations at the required temperature for both liquid
and solid systems (CaO–JO), as described earlier. The resulting

values of DmB/A for solid and liquid are fitted separately to
eqn. (6).
At equilibrium, the chemical potentials of both A and B

must be the same in both phases. Thus the difference in chemi-
cal potential (DmB/A , eqn. (6)) must also be the same in both
solid and melt phases. From eqn. (6) it follows that

as � al ¼ lnðxLð1� xSÞ=xSð1� xLÞÞ þ blxL

� bSxS þ clx
2
L � cSx

2
S þ dLx

3
L � dsx

3
S ð8Þ

When xL and xS are small, eqn. (8) simplifies to

al � as ¼ lnðxS=xlÞ ð9Þ

and the partition coefficient D is given by

D ¼ xs=xl ¼ expðal � asÞ ð10Þ

Calculated partition coefficients are plotted in Fig. 6 as a
function of ionic radius. D varies over more than an order of
magnitude over the range of cations we have examined. Unfor-
tunately there does not appear to be direct experimental data
for comparison. Nevertheless, a large number of experimental
studies on a wide range of minerals31–33 indicate that partition
coefficients for isovalent series of cations show an approxi-
mately parabolic dependence on ionic radius. The optimum
radius, i.e., that for which D is largest, lies close to the radius

Fig. 5 (a) Schematic phase diagram of a binary oxide system near the
melting point. The partition coefficient D is given by D ¼ XS/XL . (b)
Schematic plot of the free energies of solid and liquid solutions at small
impurity concentrations.

Fig. 4 Calculated phase diagram of CaO/MgO. S1 denotes solution
of MgO in solid CaO, S2 solution of CaO in solid MgO, L corresponds
to the liquid mixture of both components. S1+L, S2+L, S1+S2 are
regions of coexistence of the two phases.

Fig. 6 Calculated partition coefficients at 2600 K of a range of diva-
lent cations between CaO solid and melt phases as a function of ionic
radius.

Fig. 7 Solution energies (in the static limit) of a range of divalent
cations in solid CaO as a function of ionic radius. For more details,
see the text.
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of the host cation in the solid. The calculations reproduce the
characteristic parabolic shape observed experimentally with a
maximum close to the ionic radius of Ca2+. It is interesting
that the calculated partition coefficient of Ni2+ is larger than
that of Mg2+ although it has a smaller ionic radius and is thus
somewhat out of line with the general trend.
For comparison, in Fig. 7 we plot the solution energy Esol

(as �Esol/RT log10 for direct comparison with Fig. 6) of the
binary oxides JO (J ¼ Ni2+, Mg2+, Fe2+. Mn2+ and Sr2+) in
solid CaO. These are calculated, in the static limit, from the
point defect energy Edef (JCa) associated with the substitution
of a Ca2+ by J2+, and the lattice energies Elatt of CaO and
JO. Using Kröger–Vink notation,

JOðsÞ þ CaCa ! JCa þ CaOðsÞ
Esol ¼ Edef ðJCaÞ þ ElattðCaOÞ � ElattðJOÞ ð11Þ

The variation of these solution energies with ionic radius is
similar to that of the partition coefficients in that the curve
is approximately parabolic with maximum solubility, as
expected, at an ionic radius close to that of Ca2+. The varia-
tion of the solution energy with size is nevertheless greater than
that of the partition coefficients, as is evident from the larger
curvature of the parabola in Fig. 7. In contrast to the beha-
viour of the partition coefficients, the solution energy of
Ni2+ is larger than that of Mg2+ in keeping with their relative
ionic radii. Nevertheless, the solution energy of Ni2+ is smaller
than expected from a parabolic extrapolation from those of the
larger ions. In passing, it is worth noting that equations of the
form of eqn. (11) have been used34 to rationalise trace-element
partitioning since as long ago as 1927.
Finally we relate our results briefly to an approximate model

for trace-element partitioning commonly used by geochemists
to fit experimental data. Proposed by Blundy and Wood,32 this
links the partition coefficient to the Young’s modulus of the
solid crystal, E. In this model,

D ¼ D0 exp

�4pE
r0
2
ðrj � r0Þ2 þ

1

3
ðrj � r0Þ3

� �

kT

0
BB@

1
CCA ð12Þ

where rj is the ionic radius of the substituent cation, r0 the opti-
mum radius of the site of interest and D0 the maximum value
of D. We have fitted our calculated partition coefficients to
eqn. (12). The resulting fitted value of E is �250 GPa. In con-
trast, using the same set of interionic potentials, the calculated
Young’s modulus of solid CaO in the static limit is only 149
GPa. Furthermore the Young’s modulus decreases with
increasing temperature. We have also fitted the calculated solu-
tion energies, rather than the partition coefficients themselves,
to an equation of the form of eqn. (12), obtaining an effective E
�420 GPa. The functional form of eqn. (12) does appear to be
reasonable in describing the variation of D from one element
to another, but the resulting values of E are best regarded only
as effective moduli.

Conclusions

We have shown in this paper how exchange-bias Monte Carlo
may be used to calculate the phase diagram of binary oxides
for both melt and solid phases, and thus the partition
coefficient of trace elements between these two phases. The
calculated MgO/CaO phase diagram reproduces all the char-
acteristic features of the experimental phase diagram, includ-
ing the eutectic point and the regions of liquid–solid
coexistence. A major advantage of our exchange-bias Monte

Carlo approach over lattice dynamics and CVM is that it is
also applicable to the liquid phase.
The key feature of our methods which are applicable to any

composition is that they sample many configurations, expli-
citly considering different arrangements of ions, and allow
for the local structural relaxation surrounding each cation.
This relaxation is crucial. If ignored, the energy of exchange
of any two ions is usually very high and all exchanges are
rejected, thus sampling only one arrangement. Vibrational
effects are included and the approach can be used at any
pressure and temperature.
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