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INTRODUCTION

The continuing growth in computer power has led to a tre-
mendous increase in the contribution of computer simulation to
the understanding of the physical and chemical properties of min-
erals. Atomistic simulation techniques and ab initio methods have
proved extremely useful in providing detailed and accurate pre-
dictions of the structures and properties of silicate minerals. The
principal objectives of these computations are to obtain insight
into atomistic or microscopic processes that underlie macroscopic
phenomena and to carry out simulations at pressures and tem-
peratures beyond the accessible range of experimental techniques
(e.g., Hazen and Downs 2000; Allan et al. 2001). For example,
calculated seismic velocity profiles can be used to supplement
models of density contrasts derived from seismic tomography
and test proposed compositional models for the mantle.

Geological materials are often poorly characterized since
many minerals occur deep within the Earth’s mantle and there
are limitations in experimental techniques. This problem is acute
since naturally occurring minerals contain a large number of
elements, including minor and trace element impurities, which
may be disordered over several crystallographic sites. Unfor-
tunately, the present computational techniques available are
largely restricted to idealized end-member systems (e.g., pure
MgSiO3 perovskite) since kinetic barriers prevent classical
Monte Carlo and molecular dynamics simulations being un-
dertaken within a realistic timescale. Contact between experi-
ment and theory is thus considerably restricted which is
unfortunate considering the importance of solid solutions in
mineral physics.

This paper seeks to address some of these problems and to
describe and apply a Monte Carlo technique that can be readily
employed to study the ordering mechanisms of solid (or liq-
uid) mechanisms of solid (or liquid mixtures). As an example,
we calculate the degree of ordering of the spinels AB2O4 (e.g.,

MgAl2O4, ZnAl2O4, FeAl2O4, NiAl2O4, and MgFe2O4) over a range
of temperatures and pressures. We compare our results with ex-
perimental data (where available) and calculations in the static limit
using a parameterized Hamiltonian (Warren et al. 2000).

The structure of spinel is shown in Figure 1 (e.g., Sickafus
et al. 1999). The O ions form a cubic-close packed array and in
each unit cell there are 32 octahedral and 64 tetrahedral holes
available for occupation by cations. Of these, 16 octahedral
and eight tetrahedral sites are occupied by cations in a regular
manner so that octahedra share edges with one another and the
tetrahedra share corners with the octahedra. In “normal” spinels
all the A-cations are at the tetrahedral sites and the B-atoms are
entirely at the octahedral sites. In the “inverse” structure half
the B-cations occupy the tetrahedral sites while the remainder
and all the A-cations occupy the octahedral sites. Thus, the
normal structure is completely ordered, while in the inverse
structure, configurational disorder remains between A- and B-
cations at the octahedral sites. However, this is an idealized
picture. Spinels usually demonstrate some degree of disorder
and in real systems the distribution of cations lies between the
extremes represented by “normal” and “inverse” and is a func-
tion of temperature and pressure. Usually, the distribution of
cations between tetrahedral and octahedral sites is described
by the so-called inversion parameter, x: (A1–xBx)T(B2–xAx)OO4,
where subscripts T and O refer to the cations at tetrahedral and
octahedral sites, respectively (Navrotsky and Kleppa 1967;
Navrotsky 1994). In this paper, we prefer to use an alternative
description of spinels in terms of the order parameter, Q (Car-
penter and Salje 1994; Harrison and Putnis 1999), which is
defined as Q = 1–3x/2. Q varies from a value of one for com-
pletely normal spinels to –0.5 for completely inverse spinels.
Q equals zero for a random arrangement of cations. Positive
values of Q indicate thus a degree of normal ordering in spinels,
while the negative values indicate some inverse ordering. Of
the systems studied in this paper, MgAl2O4, ZnAl2O4, and
FeAl2O4 are classified as normal spinels and NiAl2O4 and
MgFe2O4 as inverse.* E-mail: j.a.purton@dl.ac.uk
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ABSTRACT

We have extended a recently developed Monte Carlo technique which includes explicit exchange
as well as movement of ions to systems involving heterovalent exchange. These Monte Carlo com-
puter simulations, based on analytical inter-atomic potentials, are capable of providing detailed quan-
titative information concerning the thermodynamics of ordering of spinel (MgAl2O4), gahnite
(ZnAl2O4), hercynite (FeAl2O4), NiAl2O4, and magnesioferrite (MgFe2O4) over a range of pressures
and temperatures. At all temperatures and pressures ionic relaxation, lattice vibrations, and pressure
are explicitly taken into account. Each compound has a larger expansion coefficient and smaller bulk
modulus in the normal than in the inverse spinel structure. We predict only a small variation of order
parameter with pressure, and that this will be more pronounced for inverse than normal spinels. We
examine, briefly, the consequences of our results for the kinetics of cation ordering in these solids.
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Spinels, and especially MgAl2O4, are a geologically impor-
tant group of minerals. For example, MgAl2O4 may exist up to
50–80 km within the upper mantle and reacts with pyroxene to
form olivine and garnet. An understanding of the thermody-
namics of ordering of MgAl2O4 and thus its stability has impli-
cations for trace element partitioning of transition metals and
Al with other mantle phases. This paper is primarily concerned
with the simulation of the disorder of spinels over a range of
pressure and temperature.

METHOD

A key objective of our recent work (see for example Purton et al. 1998,
1999; Allan et al. 2001) is to study the phase equilibria of complex systems
such as oxides, silicate melts, and minerals at any given temperature and pres-
sure. Any technique that can be applied to systems of geological interest must
meet the following criteria: (1) The kinetic barriers that prevent diffusion on the
time scale of atomistic simulations must be overcome by generating the large
number of configurations possible within a disordered phase. This can be
achieved by making random changes to the identity of the ion(s) occupying a
crystallographic site and sampling a range of low energy states. (2) Ions must
be allowed to “relax” fully around the impurity ion. The importance of local
relaxation around defects in polar solids is much greater in oxides than in met-
als and has been discussed extensively in the literature (Catlow and Mackrodt
1982). (3) Lattice vibrations must be included in the calculation. The role of
lattice vibrations on the stability of materials is ambiguous. For example, in
Ni3Al the experimental difference in vibrational entropy between the ordered
and disordered phases is approximately 0.2kB (Fultz et al. 1995). The origin of
this difference is controversial and may be due to a nearly uniform softening of
modes caused by the increased volume of the disordered phase (Ravelo et al.
1998) or a significant decrease in the number of high frequency vibrational
modes during the disordering process (Anthony et al. 1993). In addition, Purton
et al. (1998) have demonstrated that removing the atomic vibrations from the
simulation can influence the degree of ordering in MgMnSiO4. (4) Methods
must be extendable to different ensembles (i.e., the effects of pressure can be
easily included in the simulation).

One approach, which has been used extensively to study metal alloys (for a
review see de Fontaine 1996), binary oxide mixtures (Tepesch et al. 1995; Kohan
and Ceder 1996), and more recently minerals (e.g., Bosenick et al. 2001), is to
construct an effective lattice Hamiltonian by expanding the pseudobinary sys-
tem in an orthogonal basis set of cluster functions. The expansion coefficients
are derived from a least squares fit to energies obtained from either atomistic

simulations or ab initio electronic structure calculations. Once the Hamiltonian
is constructed the cluster variation method (CVM) or Monte Carlo techniques
can be used to examine the ordering behavior and thus to construct the phase
diagram of the material. Although this approach has provided important insights
into the phase behavior of metals, there are a number of problems with this
method when applied to systems of geological interest. In particular vibrational
and pressure effects cannot be included easily during the parameterization of the
Hamiltonian (however, see van de Walle et al. 1998 and Sluiter et al. 1996). For
this reason we have decided to build on atomistic simulation techniques (i.e., we
have included ionic interactions explicitly) and omit the parameterization step,
even though these simulations are computationally more expensive.

Monte Carlo simulations
As a starting point we describe the classical Monte Carlo technique for

atomistic simulations and then discuss how this has been extended. During one
step of the Monte Carlo simulation a random decision is made to alter one of the
variables of the calculation, which may either be an atomic position or the cell
dimensions, i.e., all simulations are carried out within the NPT ensemble and
lattice vibrations are automatically included (Frenkel and Smit 2002). The mag-
nitude of the change is also chosen at random, but within a specified amount
and governed by the variables rmax and vmax respectively. The magnitude of these
variables is adjusted automatically so that the magnitude of the acceptance/
rejection ratio is 0.3. After each move/volume alteration the change in energy is
calculated and a decision whether to accept or reject this is made according to
the standard Metropolis scheme (Metropolis et al. 1953). We have extended this
approach to allow the atomic configuration to evolve during the simulation
(Purton et al. 1998). In addition to random movements of atoms or cell volume
we also make an exchange of two cations (for example, Mg2+/Al3+) chosen at
random with the acceptance/rejection decision made using the Metropolis
scheme. In the minerals in this paper, the efficiency of this exchange is very low
due to the difference in charge of the divalent and trivalent cations. For ex-
ample, in MgAl2O4 at 1000 K the rate of successful exchanges of Mg2+ and Al3+

is only 1.6%, rising to 18% at 2500 K. Low exchange rate slows the equilibra-
tion, so that special methods are necessary to increase the rate of successful
exchanges. To speed up the speed of sampling configurations we have applied
the biased sampling technique, widely used in the simulation of molecules and
polymers (e.g., Frenkel and Smit 2002). In our exchange-biased Monte Carlo
(Lavrentiev et al. 2001), instead of considering a single trial exchange, a set of
trial exchanges is picked at random. Suppose an exchange take place between
atoms A and B. First, k pairs {Ai, Bi, i = 1,…, k} are randomly chosen. We
denote the system energy in the initial configuration as Uold and the energy of
the system after exchange of atoms in the ith pair as Ui

new. One of the new con-
figurations is then chosen with probability
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The chosen configuration i (that after the exchange of the ith pair) with
energy Ui

new º Unew is then the trial configuration. However, the usual accep-
tance rule cannot be directly applied. Instead, starting from the new configura-
tion, a further k–1 pairs Aj, Bj, j = 1,…, k-1 are chosen. Denoting the energy of
the system after exchange of atoms in the jth pair Uj

old, we evaluate the expres-
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Fulfilling detailed balance, the criterion for the acceptance of the new con-
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Use of the exchange-bias technique with k = 10 makes possible Monte Carlo
simulations with a successful exchange rate of Mg2+ and Al3+ in MgAl2O4 of 15%

FIGURE 1. Cubic unit cell of AB2O4 spinel. A-cations = crossed
circles, B-cations = grey circles, O atoms = small empty circles. The
structure of normal spinel is shown, with A-cations occupying
tetrahedral, and B-cations occupying octahedral positions.
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at 1000 K and as high as 59% at 2500 K. This rate of exchange is sufficient for
convergence for the systems of interest in this paper at the temperatures studied.
All calculations were performed using a periodic cubic simulation cell containing
eight unit cells (448 ions), and 5 ¥ 106 steps in the accumulation stage following
an initial equilibration of 2 ¥ 106 steps. The resulting errors (standard deviations)
were typically as follows: for the volume ~0.02%; for the enthalpy ~0.004%;
for the the bulk modulus ~4%; for the expansion coefficient ~14%.

Potentials
All calculations are based on the ionic model using two-body potentials to

represent the short-range forces [for a full discussion of this well-known model
see, for example, Catlow and Mackrodt (1982) and Catlow (1997)]. We adopted
the common Born-Mayer form for the potentials, with the O-O interaction supple-
mented by an r-6 attractive term: V(r) = Aexp(–r/r) – C/r6, where A and r are
constants. As a starting point, we chose the set of cation-O atom potentials de-
rived for binary oxides by Lewis and Catlow (1985) and subsequently corrected
and tabulated by Cormack et al. (1988), and the O-O potential derived by Catlow
(1977). An important feature of this set of potentials is their dependence on the
coordination number of the cation. Lewis and Catlow (1985) alter the
preexponential factor when an atom changes coordination from octahedral to
tetrahedral according to Atet = Aoct exp(–Dr/r), where Dr is the difference in ionic
radii between the two environments (Dr = roct – rtet). Lewis and Catlow (1985)
set Dr equal to 0.06roct and take roct from Goldschmidt (1948).

We have adjusted these potentials in several ways in the present study. The
original set of potentials were obtained by fitting so that the experimental lat-
tice parameters of the binary oxides at room temperature were reproduced by
energy minimizations in the static limit, which neglect vibrational terms, and
thus thermal expansion. To remove this inconsistency, the parameters r for the
cation-O atom potentials and the charge of the Al ion were fitted using the Monte
Carlo simulations described above to reproduce as closely as possible both the
lattice parameter of MgAl2O4 at 973 K (Wood et al. 1986) and the observed
order parameter of MgAl2O4 at 1500 K (Redfern et al. 1999). The resulting
value of the parameter r for the cation-O atom potentials was 6% smaller than
that of Lewis and Catlow (1985) and the ionic charges of Al and O were +2.3
and –1.65 respectively. This scaling of r was performed for all the cations and
these values of charges were used for all the trivalent cations and O atoms in
this study.

Potentials obtained in this way were used for MgAl2O4 and ZnAl2O4. These
potentials were also sufficient to give, for FeAl2O4, NiAl2O4, and MgFe2O4,
qualitative agreement with the observed order parameter (i.e., normal or in-
verse behavior at low temperatures) and good agreement with the experimental
lattice parameters. We then made a few changes to the Fe-O and Ni-O poten-
tials. In simulations of NiAl2O4 we chose also to alter Atet for the Ni-O potential
so as to reproduce the experimental order parameter at 1500 K (O’Neill et al.
1991). Similarly, for the Fe-O potentials in FeAl2O4 (divalent Fe) and MgFe2O4

(trivalent Fe), both Atet and Aoct were altered so as to reproduce the experimental
order parameters at 1000 K (Harrison et al. 1998; O’Neill et al. 1992). The data
used in the fitting and the final fitted values are listed in Table 1a. The final set
of potentials is collected together in Table 1b.

RESULTS AND DISCUSSION

An important test of the new potentials is their ability to
describe structural parameters of the systems studied not used
in the fitting procedure, and their variation with temperature.
For example, we calculated cation-O atom bond distances for
MgAl2O4 at 1000 K. The average cation-O atom distance was
1.889 Å for the tetrahedral sites; for the octahedral sites it was
1.938 Å. In Table 2 we compare our results with two sets of
experimental data as well as with results from the periodic
Hartree-Fock ab initio calculations of Catti et al. (1994). Ex-
perimental results indicate the average cation-O atom distances
in MgAl2O4 at 1000 K are in the region of 1.91–1.92 Å at tetra-
hedral and 1.93–1.94 Å at octahedral sites, respectively. Our
simulation results are very close to experimental values for oc-
tahedral cation-O atom distances and differ by not more than
1–2% for tetrahedral cation-O atom distances. In contrast, Catti
et al. (1994) obtain a cation-O atom distance for the tetrahedral

sites that was larger than that obtained for the octahedral sites,
in marked disagreement with experimental results.

Thermal expansion

Figure 2 shows the temperature variation of the lattice pa-
rameters for the five spinels, and compares these with experi-
mental data, where available. We also compare our calculated
results for the lattice parameters with experimental data in Table
3. For all of the systems studied, our results are within 1–2%
of the experiment data. A contentious issue is the thermal ex-
pansion of spinels. For example, for MgAl2O4 Andreozzi et al.
(2000) reported that the lattice parameter actually decreases
between 600 and 1100 ∞C, in contradiction, as shown in Figure

TABLE 1A. Experimental data used in the potentials fitting together
with the final fitted values

System Experimental data Fitted value

Lattice parameter Order parameter
Spinel 8.0834 Å (973 K, 8.050 Å
(MgAl2O4) Wood et al. 1986) (1000 K)
Spinel 0.61 (1480 K, 0.624
(MgAl2O4) Redfern et al. 1999) (1500 K)
NiAl2O4 –0.1835 (1523 K, –0.17

O’Neill et al. 1991) (1500 K)
Hercynite 0.802 (973 K, 0.81
(FeAl2O4) Harrison et al. 1998) (1000 K)
Magnesioferrite –0.2165 (973 K, –0.214
(MgFe2O4) O’Neill et al. 1992) (1000 K)

TABLE 1B. Potential parameters used in this study

Ion pair A (eV) r (Å) C (eV Å6)
O-O 22764.0 0.149 20.37
Zn-O (tetrahedral) 488.1 0.3421 0.0
Zn-O (octahedral) 561.1 0.3421 0.0
Mg-O (tetrahedral) 710.5 0.3047 0.0
Mg-O (octahedral) 821.6 0.3047 0.0
Divalent Fe-O (tetrahedral) 510.0 0.3195 0.0
Divalent Fe-O (octahedral) 590.6 0.3195 0.0
Trivalent Fe-O (tetrahedral) 903.3 0.3101 0.0
Trivalent Fe-O (octahedral) 992.2 0.3101 0.0
Ni-O (tetrahedral) 635.6 0.3132 0.0
Ni-O (octahedral) 683.5 0.3132 0.0
Al-O (tetrahedral) 1012.6 0.2931 0.0
Al-O (octahedral) 1114.9 0.2931 0.0

Ion Ionic charge (|e|)
O –1.65
Mg +2
Zn +2
Fe (divalent) +2
Ni +2
Al +2.3
Fe (trivalent) +2.3
Notes: The form of the potential function is V(r) = Aexp(–r/r) – C/r6. Note
different Fe-O potentials are used for divalent (FeAl2O4) and trivalent iron
(MgFe2O4).

TABLE 2. Comparison of calculated and experimental data for cat-
ion-O atom distances in MgAl2O4

Cation-O atom distance (Å)

Tetrahedral sites Octahedral sites
Our results, T = 1000 K 1.889 1.938

Redfern et al. (1999), T = 1000 K 1.925 1.94

Andreozzi et al. (2000), T = 1000 K 1.9141 1.9309

Catti et al. (1994), calculated
(periodic Hartree-Fock theory, T = 0) 1.939 1.908
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FIGURE 2. Calculated lattice parameters (Å) vs. temperature for
(a) MgAl2O4, (b) FeAl2O4, (c) ZnAl2O4, (d) NiAl2O4, and (e) MgFe2O4.
These are compared with the experimental results of (a) Redfern et al.
(1999) (circles), Singh et al. (1975) (triangles), Andreozzi et al. (2000)
(squares), (b) Harrison et al. (1998), (d) O’Neill et al. (1991), and (e)
O’Neill et al. (1992). Experimental data: empty symbols; calculated
results: solid circles (P = 0), solid triangles (P = 10 GPa), solid squares
(P = 20 GPa).
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2a, to the results of Singh et al. (1975) and those of Redfern et
al. (1999). Singh et al. (1975) concluded that the linear thermal
expansion coefficient a increases from 5.9 ¥ 10–6 K–1 at 299 K
to 12.73 ¥ 10–6 K–1 at 1073 K for synthetic spinel (of stoichio-
metric content) and report similar values of a for a natural
nonstoichiometric spinel with 7 at% of Mg replaced by Fe. Re-
sults reported by Redfern et al. (1999) give an average value of
a over the range 299–1662 K of 9.2 ¥ 10–6 K–1. Finally, in the
recent study of Suzuki et al. (2000), a is given as 8.59 ¥ 10–6

K–1 at 998 K, in excellent agreement with our calculations, which
give a = 8.7 ¥ 10–6 K–1 at 1000 K, increasing with temperature
to 12.7 ¥ 10–6 K–1 at 2000 K. We see no negative thermal ex-
pansion over the range 500–2000 K.

Calculated values of a for all the systems studied are pre-
sented in Table 3, together with average experimental values
where experimental data for a were available over a wide tem-
perature range. Our calculated values are in good agreement
for the normal spinels MgAl2O4 and FeAl2O4, but agreement is
poorer for the inverse spinels NiAl2O4 and MgFe2O4, for which
experimental data suggests values which are smaller by a fac-
tor of 3–10. This discrepancy requires further investigation;
however, in this context it is worth mentioning the agreement
between our results for MgFe2O4 and the calculations of Hazen
and Yang (1999), who predicted an a value of 8 ¥ 10–6 K–1 for
the fully inverse structure.

Bulk modulus

We now turn to the pressure dependence of the volume. We
also plot in Figure 2 the calculated variation of the lattice pa-
rameter with temperature at 10 GPa and 20 GPa as well as at
zero pressure. For the isothermal bulk modulus of MgAl2O4,
our calculated values of KT are 178.3 GPa at 1000 K and 187.8
GPa at 500 K, extrapolating to 191.6 GPa at room temperature
and to 197 GPa at T = 0. These results are in very good agree-
ment with recent measurements by Suzuki et al. (2000), who
reported values of 179.592 GPa at 996 K and 191.986 GPa at
496 K, and in good agreement with earlier experiments by
Askarpour et al. (1993), who gave 198.93 GPa at ambient tem-
perature, extrapolating to 180.8 GPa at 1000 K, and by Yoneda
(1990), who found KT to be 196.5 GPa at ambient temperature.
Hartree-Fock calculations of Catti et al. (1994) gave 227 GPa

at T = 0, overestimating the experimental value of Suzuki et al.
(2000) by ~20 GPa. The agreement is substantially better in our
atomistic simulations.

Ordering

For each spinel we have calculated the order parameter, Q,
over a broad temperature range, as shown in Figure 3. This
figure also compares our calculated values of Q at zero pres-
sure with experimental data (Redfern et al. 1999; Andreozzi et
al. 2000; Harrison et al. 1998; Waerenborgh et al. 1994; O’Neill
et al. 1991, 1992). The calculated value of Q for the normal
spinels gradually decreases on heating. Above approximately
900–1000 K our results show excellent agreement with the
experiments. Below this temperature kinetic effects, which are
not included in our calculations, become increasingly impor-
tant. Our results for MgAl2O4 display similar features to those
calculated using a parameterized Hamiltonian (Warren et al.
2000). This is not unexpected due to the similar nature of the
computational technique, even though that of Warren et al.
(2000) does not include thermal effects. Note that the two ex-
perimental studies of MgAl2O4 (Redfern et al. 1999; Andreozzi
et al. 2000) shown in Figure 3a differ substantially, which indi-
cates difficulties in preparing stoichiometric samples and in
the experimental determination of the order parameter. The
variation of Q with temperature, if not the absolute value of Q
itself, is similar in the two studies. Of the three normal spinels
studied, ZnAl2O4 shows the weakest temperature dependence
of the order parameter (Q changes from 1 to 0.72 between 1000
and 3000 K). In contrast to the normal spinels, the calculated
value of Q for the inverse spinels increases with temperature.
Our calculated values are not in as good agreement with the
experimental data as for the normal spinels, but are neverthe-
less able to provide qualitative and quantitative information.
For example, our simulations consistently give lower Q (more
inverse order) for NiAl2O4 then for MgFe2O4, in agreement with
experimental data. The derivative ∂Q/∂T is similar for both
compounds, according to our simulations, while experimental
data suggests higher value for MgFe2O4. It is worth noting in
this context that earlier experiments (Tellier 1967; Faller and
Birchenall 1970) gave lower values of ∂Q/∂T, in better agree-
ment with our simulations. Finally, it is worth noting that in-

TABLE 3. Calculated and experimental values of the lattice parameters and linear expansion coefficients of the five spinels studied

System Lattice parameter (Å) Lattice parameter (Å) Linear expansion coefficient a Linear expansion coefficient a
(calculated at 1000 K) (experimental) (10–6 K–1) (calculated at 1000 K) (10–6 K–1) (experimental)

Spinel 8.050 8.0834 (973 K, 8.7 9.2 (299–1662 K,
(MgAl2O4) Wood et al. 1986) Redfern et al. 1999)

8.13564 (1035 K,
Redfern et al. 1999)

Hercynite 8.003 8.19571 (1023 K, 8.3 9.1 (298–1423 K,
(FeAl2O4) Harrison et al. 1998) Harrison et al. 1998)
gahnite 8.185 8.0883 (1000 K, 8.7 –
(ZnAl2O4) Waerenborgh et al. 1994)

8.089; 8.110
(773 K, Revel et al. 2000)

NiAl2O4 8.030 8.0451 (Tabira and 10.1 1.2 (973–1673 K,
Withers 1999) O’Neill et al. 1991)
8.0452 (973 K,
O’Neill et al. 1991)

Magnesioferrite 8.299 8.3914 (1023 K, 10.0 3.8 (673–1073 K,
(MgFe2O4) O’Neill et al. 1992) O’Neill et al. 1992)
Note: The entry in italics is a fitted value (see Table 1a).
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FIGURE 3. Calculated values (solid circles) of the order parameter,
Q, vs. T for (a) MgAl2O4, (b) FeAl2O4, (c) ZnAl2O4, (d) NiAl2O4, and
(e) MgFe2O4. The data are compared with the experimental results of
(a) Redfern et al. (1999) and Andreozzi et al. (2000), (b) Harrison et
al. (1998), (c) Waerenborgh et al. (1994), (d) O’Neill et al. (1991), and
(e) O’Neill et al. (1992). Experimental data shown as open circles in
Figures 3b–e. Symbols for experimental data for MgAl2O4 are explained
in Figure 3a.
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creasing temperature to 2000 K leads to an almost random ar-
rangement of cations (Q ª –0.1) in inverse spinels, while for
all normal spinels studied, a large degree of order remains even
at this temperature (0.5 £ Q £ 0.9).

The Monte Carlo technique allows us to investigate the de-
pendence of the bulk modulus and thermal expansion coeffi-
cient on the order parameter. Recently, Hazen and Yang (1999)
(see also Smyth et al. 2000) have derived equation-of-state pa-
rameters, such as compressibility and thermal expansion, for
spinels from bond distances, bond compressibilities, and bond
thermal expansivities, which, in turn, are estimated from crys-
tal chemical systematics. They propose that the degree of cat-
ion order-disorder strongly affects both the bulk modulus and
the thermal expansion, and in particular their calculations sug-
gest that the compressibilities for normal (fully ordered) and
completely inverse variants may differ by as much as 17%
(Mg2TiO4), with linear thermal expansivities differing by 15%
(MgAl2O4, MgFe2O4). We therefore performed calculations for
(completely) normal and (completely) inverse spinels at 1000
K and zero pressure. During the simulation, the value of Q was
kept constant (i.e., 1 for normal and –0.5 for inverse spinel), so
that the normal spinel is completely ordered and exchanges
between cations are prohibited, while in the inverse spinel,
exchanges between A- and B-type cations at octahedral sites
are still possible. The results are collected together in Table 4.
Our results indicate that the bulk modulus and the linear ex-
pansion coefficient exhibit a marked dependence on Q. The
biggest difference between normal and inverse spinels is for
the calculated thermal expansion coefficient, which is as large
as 21% for NiAl2O4 and MgFe2O4. For the bulk modulus, the
largest difference is for NiAl2O4 (9%). Our conclusions for the
expansion coefficient agree with those of Hazen and Yang
(1999) in that normal MgAl2O4 and MgFe2O4 have larger ex-
pansion coefficients than the inverse structures. However,
Hazen and Yang (1999) also suggest the bulk modulus is larger
for the normal structures, whereas our simulations suggest the
contrary. This discrepancy is possibly due to the values of bond
compressibility used by Hazen and Yang (1999), which were
taken from high-pressure structure studies and cannot be di-
rectly applied at zero pressure. In addition, their results for the
inverse structure depend on the procedure chosen to average
bond distances and the derivatives of these quantities with re-
spect to pressure.

Finally, in this section we turn to how the order parameter
varies with pressure. This dependence is related to the change
of volume accompanying the interchange of cations between
tetrahedral and octahedral sites. Quantitatively, as shown in
the Appendix, the pressure dependence of the equilibrium value
of the order parameter is related to the variation of volume
with Q by
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Since the second derivative (∂2G/∂Q2)P,T is positive for the
system in equilibrium, (∂V/∂Q)P,T and (∂Qeq/∂P)T are opposite
in sign, in agreement with Le Châtelier’s principle.

In Table 5 we compare the calculated change of volume
accompanying the transition from inverse to normal (i.e., when
Q increases from –0.5 to 1) for all five spinels. This table shows
that (∂V/∂Q)P,T has the opposite sign to (∂Q/∂P)T over the pres-
sure range 0–10 GPa. For the normal spinels we predicted that
the order parameter is almost independent of pressure (Figure
4). Increasing the pressure leads to a slight decrease of the or-
der parameter for MgAl2O4 and hercynite FeAl2O4, and to a
very small increase in Q for gahnite ZnAl2O4. The results for
MgAl2O4 appear to be consistent with the known resistance of
this material to void swelling under neutron radiation, which,
it has been suggested, is linked to a small volume change ac-
companying interchange of the Mg and Al ions (Sickafus et al.
2000). The pressure effect is more pronounced for inverse
spinels, and especially for NiAl2O4. For both inverse spinels,
the degree of inversion for a given temperature increases with
increasing pressure.

Kinetics

Lastly we briefly discuss how a knowledge of the thermo-
dynamic properties of spinel is useful for modeling the kinet-
ics of the cation ordering process. The time dependence of the
order parameter can be derived from the statistical mechanics
of small steps (Metiu et al. 1976; Salje 1988) and is given by

d
d

R
R

Q

t

G T

T

G

Q
= - ∂

∂

*g exp( / )D D
2

(6)

where g is a frequency factor, DG* the free energy of activa-
tion, and DG the free energy (see also Harrison and Putnis 1999).

TABLE 4. Calculated bulk moduli and thermal expansion coefficients
for normal and inverse spinels at 1000 K

System Type of Bulk modulus Linear expansion
ordering (GPa) coefficient (10–6 K–1)

spinel (MgAl2O4) Normal 170 8.8
Inverse 180 8.1

hercynite (FeAl2O4) Normal 166 9.8
Inverse 181 8.4

gahnite (ZnAl2O4) Normal 158 10.3
Inverse 161 9.3

NiAl2O4 Normal 165 10.0
Inverse 180 8.3

magnesioferrite (MgFe2O4) Normal 144 11.6
Inverse 155 9.6

TABLE 5. Calculated difference in volume between normal and in-
verse spinel and the change of order parameter Q result-
ing from an increase in pressure from 0 to 10 GPa

System V(normal) – V(inverse), Q(P = 10 GPa) – Q(P = 0)
10–6 m3 /mol

Spinel (MgAl2O4) 0.0196 –0.009
Hercynite (FeAl2O4) 0.0123 –0.014
Gahnite (ZnAl2O4) –0.0071 0.002
NiAl2O4 0.1022 –0.120
Magnesioferrite 0.0422 –0.010
(MgFe2O4)
Note: All results are at 1000 K except for ZnAl2O4, where the variation in
Q with pressure is calculated at 1500 K (Q is too close to zero at 1000�K
for a reliable answer).
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FIGURE 4. Calculated temperature variation of the order parameter
at zero and high pressure for (a) MgAl2O4, (b) FeAl2O4, (c) ZnAl2O4,
(d) NiAl2O4, and (e) MgFe2O4. Results are given for P = 0 (solid circles),
P = 10 GPa (solid triangles), and P = 20 GPa (solid squares).

a

b

c

d

e
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To date, DG(Q) has been described using phenomenological
models (Carpenter and Salje 1994; Harrison and Putnis 1999),
putting DG(Q) equal to zero at Q = 0 (fully disordered state).
The excess free energy due to ordering is then given by

DG hQ a T T Q cQc= - + - +1
2

1
6

2 6( )                             (7)

where parameters h, a, Tc, and c are determined from experi-
mental data relating to the temperature dependence of Q. Em-
pirical values of g and DG* are usually chosen so as to obtain
the best overall agreement between the experimental and cal-
culated time dependence of Q. The choice of values for g and
DG* clearly depends strongly on DG(Q). We can calculate di-
rectly the dependence of DH on Q from simulations in which
Q is not allowed to change. In the simplest approximation, the
entropy term can be taken to be purely configurational and ideal
and, using DG(Q) = DH(Q) – TDSconf(Q), we can calculate ∂DG/
∂Q from theory rather than from experiment. As a first step,
we calculated DG(Q) for MgAl2O4 at 1000 K and compare our
results with those of Carpenter and Salje (1994) and Harrison
and Putnis (1999) in Figure 5. Our results differ somewhat from
these authors; Eqn. (7) and our fitted parameters give the DG(Q)
curve shown as the full line in Figure 5 [h = 21.847 kJ/mol;
a(1000–Tc) = 11.878 kJ/mol (we are unable to determine both
a and Tc from results for one temperature); c = 36.378 kJ/mol].
The magnitudes of DG(Q) and of the derivative ¶DG/fQ are
larger in our calculations. Consequently, the value of the prod-
uct g exp(–DG*/RT), obtained by fitting to the experimental
ordering data, is lower than that obtained previously. In this
context it is worth noting also that the minimum of DG(Q) at
1000 K obtained by Carpenter and Salje (1994) (Qmin = 0.607),
is at a much smaller value of Q than suggested by the experi-
mental data of Redfern et al. (1999) (Q = 0.77), but very close
to the results of Andreozzi et al. (2000) (Q = 0.595).
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APPENDIX

Our starting point is the general expression for the free en-
ergy of a system as a function of pressure, temperature, and
arbitrary internal variable Q:

G = G(P,T,Q) (A.1)

At equilibrium at given pressure and temperature, the free
energy is minimized with respect to Q and stability requires
that its second derivative is positive:
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Equation A.2 defines the equilibrium value of Q: Qeq(P,T).
The change of the function (∂G/∂Q)P,T under arbitrary changes
of P and Q is as follows:
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If the system remains in equilibrium after an arbitrary change
of pressure, then DQ = DQeq(P,T), and the total change in (∂G/
∂Q)P,T, according to (Eq. A.2), is zero:
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Changing the order of differentiation in the first term and
recognizing (∂G/∂P)T,Q as the volume V of the system at given
P, T and Q, we can rewrite (Eq. A.5) as
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In the limit of infinitely small changes of pressure and Qeq,
we arrive at the final expression:
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As the sign of (∂2G/∂Q2)P,T is always positive (Eq. A.3), we
see that the derivatives (∂Qeq/∂P)T and (∂V/∂Q)P,T indeed have
different signs.


