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Configurational lattice energy techniques are used to investigate oxygen vacancy ordering and the order–
disorder transition in SrFeO2.50 . Vacancy disorder is shown to present many new challenges, largely due to
the extensive relaxation in such grossly non-stoichiometric systems. With large supercells it is not feasible
to optimise each individual configuration. Efficient methods for choosing a small number of representative
configurations are discussed. Oxygen vacancy–vacancy interactions are considerable in SrFeO2.50 and lead to
the formation of preferred local structural entities. While the low-temperature structure consists of an ordered
arrangement of octahedra and tetrahedra, the disordered high-temperature structure may be described as a
mixture of tetrahedra, square pyramids and octahedra. Fe atoms with coordination numbers lower than four
are negligible. The assumption of an ideal solution of oxygen vacancies in such systems, commonly made in
standard thermodynamic treatments, is questionable.

1. Introduction

The energetics of grossly disordered materials remains poorly
understood and in particular energetic contributions of config-
urational origin are difficult to assess. Whilst random distribu-
tion-type approximations appear to be appropriate in systems
with weakly interacting defects, defects that interact strongly
result in pronounced short-range order that is far from
straightforward to treat mathematically.
Consider, for example, a perovskite-type oxide ABO3 . When

reduced, forming ABO3�d , some of the oxygen sites are vacant.
It is commonly assumed that there is a completely random dis-
tribution of these vacancies over the oxygen sublattice. This
assumption of ideality in turn implies a finite probability that
a B-atom is surrounded by five or six anion vacancies. Chemical
intuition suggests this is likely to be energetically highly unfa-
vourable. The likely importance of short-range order is sug-
gested by the common formation of ordered structures by
perovskite-type oxides at low temperatures. In these, the
B-atom, often a transition metal, is coordinated to six (octahe-
dral), five (square pyramidal) or four (tetrahedral or square pla-
nar) oxygen atoms. Examples are the ordered arrangement of
50% octahedra and 50% square planar structural entities in
La2Ni2O5 ,

1 of 50% octahedral and 50% tetrahedra in
Ca2Fe2O5

2 and of 100% square pyramids in Sr2Mn2O5 .
3 Often

only one type of ‘‘ reduced’’ polyhedron is observed in a given
compound, at least at low temperatures. There must therefore
be an energetic preference for the polyhedron adopted by a
given metal atom in a particular compound. The magnitude
of this enthalpic term is not known. In some oxides a mixture
of polyhedra is observed, indicating that the enthalpy difference
between different orderings is not too large; in La8�xSrx-

Cu8O20 , for example, CuO6 octahedra, CuO5 square pyramids
and CuO4 square planar entities are all observed.

4 On heating,
changes in structure take place and phase transitions to disor-
dered modifications are often observed. Nevertheless, a signi-
ficant degree of short-range order may still be present even in
disordered high-temperature states. In the present paper we
investigate the effects of oxygen ordering and the formation
of favoured structural entities on the structural and thermody-
namic properties of grossly non-stoichiometric oxides, through
a series of lattice energy calculations.5

We take as our model system SrFeO3�d (0� d� 0.5), which
is grossly non-stoichiometric at high temperatures. We have
studied this system thoroughly6–8 as part of a larger investiga-
tion on the energetics of grossly non-stoichiometric oxides.9

Strong defect–defect interactions give rise to three reduced,
vacancy-ordered, low-symmetry phases on cooling: Sr8Fe8O23

(or SrFeO2.875), Sr4Fe4O11 (or SrFeO2.75), and Sr2Fe2O5 (or
SrFeO2.5).

10 We pay particular attention to the structural
order–disorder transition10,11 in SrFeO2.5 , which at low
temperatures adopts the ordered brownmillerite-type struc-
ture,10–12 with half the Fe(III) occupying octahedral sites and
the remainder tetrahedral sites, and at 1120 K transforms dis-
continuously to disordered perovskite-type SrFeO2.5 .

6,10,13

Grossly non-stoichiometric compounds in general and oxy-
gen-deficient ceramics are particularly challenging for theory.
Previous studies of grossly disordered systems have been lar-
gely restricted to systems with weak defect–defect interactions,
such as solid solutions where the disorder is confined to the
cation lattice with modest deviations from ideality.14,15 Our
long term aim is a quantitatively accurate description of a wide
range of specific systems. This present study focuses on the
underlying methods, but also provides a picture of the short-
range order present in grossly non-stoichiometric oxides such
as SrFeO2.5 .
We have recently been developing a number of new general

techniques16,17 for simulating grossly-nonstoichoimetric solids
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and solid solutions. A key feature of all these is to sample many
different configurations, allowing the exchange of ions or
vacancies located at crystallographically inequivalent posi-
tions. Any method must also take into account the local envir-
onment of each ion, and in particular the structural and thus
energetic relaxation which accompany an exchange of ions.
Ion association and clustering must not be averaged out.
Configurationally averaged lattice dynamics involves the

evaluation of an appropriate thermodynamic average over
a (limited) set of calculations, each representing different
arrangements or configurations of the cations within a super-
cell.16 The accurate calculation of the enthalpy in the static
limit of each configuration is quick and computationally effi-
cient. In each configuration the energy is minimised with
respect to the unit-cell dimensions and the atomic positions.18

When the Gibbs energy of each configuration is minimised
with respect to all structural variables, the resulting entropy
includes both configurational and vibrational contributions.
In the present work we neglect the vibrational contribution
and minimise only the enthalpy in the static limit; this gives
the configurational entropy that is the major contribution to
the entropy increase accompanying the order–disorder transi-
tion. No a priori assumptions are made regarding this contri-
bution. Applications to mixing properties of solid solutions
of binary oxides using this technique are presented else-
where.14,15,19 We shall see that vacancy disorder produces
many new challenges, largely due to the extensive relaxation
which accompanies vacancy motion and the formation of pre-
ferred local structural entities in systems such as SrFeO2.5 .

2. Methods

The success of any atomistic simulation relies on the accuracy
and transferability of the short-range interatomic potentials.
All calculations are based on an ionic model using two-body
potentials to represent short-range forces and the Ewald sum-
mation used for the long-range Coloumbic interactions. A con-
ventional Born model is used, assigning integral ionic charges,
based on accepted chemical valence rules, to all species (i.e. 2+
to Sr, 3+ or 4+ to Fe and 2� to O). Cation–oxygen inter-
actions were described by a set of 2-body interionic potentials
of the form Aexp(�r/r), where the constants A and r are listed
in Table 1 and r is the interionic distance. Oxide ion polarisa-
bility was taken into account by using the shell model of Dick
and Overhauser,20 and the shell charge and spring constant are
also given in Table 1. This set of potentials was developed to
reproduce closely the lattice parameters and average iron–oxy-
gen bond lengths of the ordered low temperature orthorhom-
bic form of SrFeO2.5 (Sr2Fe2O5), as shown in Table 2 where
we compare experimental and simulated structural data for
this phase. The same potentials are used unchanged for the
high temperature phase. The non-Coulombic interatomic
potential for Fe4+ used for a small number of defect calcula-
tions in the dilute limit (i.e. point defects in SrFeO3) is also
given in Table 1, and was obtained by fitting to reproduce
the lattice parameter of the cubic perovskite SrFeO3 . To check

the model, bond lengths were calculated for SrFeO3 and the
intermediate compounds Sr4Fe4O11 and Sr8Fe8O23 , together
with lattice parameters for the intermediate compounds. These
are compared with experimental data in Table 2.

Table 1 Non-Coulombic interatomic potential parameters for the

SrFeO2.50–SrFeO3.00 system. Potentials are of the form Aexp(�r/r).
The cut-off distance for all potentials is 14 Å. The shell charge on

oxygen was �2.5e and the associated spring constant 27 eV Å�2

Interaction A/eV r/Å

Fe(III)/O2� 3358.400 0.2650

Fe(IV)/O2� 4058.400 0.2650

Sr2+/O2� 3220.0 0.3067

O2�/O2� 249.3764 0.3621

Table 2 Crystal structure data for the ordered compounds; compar-

ison of experimental data and simulation results. The final column

(�2, �1 etc.) lists the number of bonds with the given lengths

Sr2Fe2O5 Observed12 Calculated Deviation

a/Å 5.672(1) 5.746 1.5%a

b/Å 15.59(2) 15.219 �2.4%a

c/Å 5.527(1) 5.589 1.1%a

V/Å3 488.73 488.76 0.1%

Octahedral Fe(1) site,

Fe(III)

Fe(1)–O(1)/Å 1.870 2.002 �2

Fe(1)–O(2)/Å 2.083 2.015 �2

Fe(1)–O(3)/Å 2.162 2.136 �2

Average 2.041 2.051 0.5%

Tetrahedral Fe(2) site,

Fe(III)

Fe(2)–O(1)/Å 1.867 1.881 �1

Fe(2)–O(2)/Å 1.932 1.871 �2

Fe(2)–O(3)/Å 1.906 1.881 �1

Average 1.909 1.876 �1.7%

Sr4Fe4O11 Observed12 Calculated Deviation

a/Å 10.974(1) 10.867 �1.9%

b/Å 7.702(1) 7.866 2.1%

c/Å 5.473(1) 5.424 �0.9%

V/Å3 462.59(18) 463.64 0.2%

Square-pyramidal

Fe(1) site, Fe(III)

Fe(1)3+–O(1)/Å 1.902 1.788 �1

Fe(1)3+–O(3)/Å 1.855 1.946 �4

Average 1.864 1.914 2.7%

Octahedral Fe(2) site,

Fe(IV)

Fe(2)–O(2)/Å 1.937 1.966 �2

Fe(2)–O(3)/Å 2.044 1.939 �4

Average 2.008 1.948 �3.0%

Sr8Fe8O23 Observed12 Calculated Deviation

a/Å 10.929(1) 10.874 �0.5%

c/Å 7.698(1) 7.777 1.0%

V/Å3 919.47 919.56 0.0%

Square-pyramidal

Fe(1) site, Fe(III)

Fe(1)–O(1)/Å 1.926 1.814 �1

Fe(1)–O(2)/Å 1.851 1.944 �4

Average 1.866 1.918 2.8%

Octahedral Fe(2) site,

Fe(IV)

Fe(2)–O(2)/Å 2.036 1.925 �2

Fe(2)–O(3)/Å 1.931 1.937 �2

Fe(2)–O(4)/Å 1.952 1.950 �2

Average 1.973 1.937 �1.8%

Octahedral Fe(3) site,

Fe(IV)

Fe(3)–O(4)/Å 1.912 1.919 �4

Fe(3)–O(5)/Å 1.925 1.944 �2

Average 1.921 1.927 0.3%

Sr2FeO3 Observed12 Calculated Deviation

a/Å 3.851(1) 3.850 0.0%a

Octahedral Fe(1) site,

Fe(IV)

Fe(1)–O(1)/Å 1.926 1.925 �0.1% �6

a Value used in fitting.
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2.1. Defect energies at infinite dilution (point defects)

We also calculate a small number of point-defect internal ener-
gies at constant volume in the dilute limit, using the conven-
tional two-region approach.5 In this method the total energy
of the defective system is minimised by a relaxation of the
nuclear positions and shell displacements of the ions surround-
ing the defect. It is a reasonable assumption that this relaxa-
tion is greatest in the proximity of the defect and decreases
fairly rapidly with distance away from the defect. The crystal
is accordingly partitioned into a region immediately surround-
ing the defect, where the relaxations are assumed to be great-
est, and an outer region that is only slightly perturbed. In
the inner region the appropriate elastic equations for the force
are solved explicitly, yielding the relaxed nuclear positions and
shell displacements. Relaxation in the outer region is estimated
using a suitable approximation due to Mott and Littleton.21 In
our calculations the inner region typically contained about 200
ions. The program GULP22 was used in all calculations.

2.2. Defects energies in grossly disordered materials

Our method for grossly nonstoichiometric oxides employs the
full structural optimisation of periodic systems with large unit
cells, by means of a combination of lattice statics and quasi-
harmonic lattice dynamics. An appropriate thermodynamic
average over a set of calculations is evaluated for different
configurations of vacancies within a supercell, using methods
discussed previously.14–16

Given the Gibbs energy, Gk , for the relaxed (optimised)
structure of each possible configuration k we then average:

H ¼

PK
k

Hk expð�Gk=kBTÞ

PK
k¼1

expð�Gk=kBTÞ
; ð1Þ

G ¼ �kBT ln
XK
k¼1

expð�Gk=kBTÞ; ð2Þ

S ¼ H

T
þ kB lnð

XK
k¼1

expð�Gk=kBTÞÞ ð3Þ

where K is the total number of possible configurations for the
supercell considered. Here K equals N!/[NV!NO!] where N is
the total number of oxygen sites and NO and NV the number
of oxygen atoms and oxygen vacancies in a particular super-
cell.
In previous work15,16,19 eqns. (1)–(3) were used to study

solid solutions of binary oxides and each arrangement k repre-
sented a different configuration of cations. For any but the
smallest cell sizes it was not possible to sum over all possible
configurations. In these studies the solutions were close to ideal
and K0 particular arrangements were chosen entirely at ran-
dom. These K0 arrangements were then used in the evaluation
of eqns. (1)–(3). In eqn. (1) the sum is simply restricted to K0

rather than K arrangements. Eqn. (2) becomes

G ¼ �kBT ln
Xk¼K 0

k¼1

K

K 0

� �
expð�Gk=kBTÞ

 !

¼ �kBT lnK � kBT ln
Xk¼K 0

k¼1

1

K 0

� �
expð�Gk=kBTÞ

 !
ð4Þ

Eqn. (4) thus assumes that all the K0 configurations that are
chosen at random have the same degeneracy, K/K0. For sys-
tems such as SrFeO2.50 with strong defect–defect interactions
a random choice of configurations may be poor.
In this paper we ignore vibrational contributions to the

Gibbs energy Gk of each configuration. The vibrational

entropy and the vibrational contribution to the enthalpy is
neglected and the energy of each configuration is generated
in the static limit (Gk ¼ Hstatic

k ). The program GULP was used
for all such structural optimisations.22 Entropies calculated
using the resulting values thus represent solely the configura-
tional contribution to the total entropy of the system.

3. Results and discussion

3.1. Defects at infinite dilution

Conventional thermodynamic models for the entropy of oxy-
gen-deficient perovskites and indeed oxygen vacancy disorder
more generally, use expressions assuming ideal behaviour on
the oxygen sublattice. Since the effective charge of an oxygen
vacancy is 2+, this is unlikely to be a good approximation.
To illustrate this point, we have carried out a set of model
point-defect calculations for the end-member compound
SrFeO3 .
An increasing number of oxygen vacancies are successively

introduced into the octahedron of oxygen ions which surround
a specific Fe atom. Fig. 1 displays the defect energies per
vacancy as a function of the total number of vacancies in the
octahedron, and shows that in the dilute limit it becomes stea-
dily more expensive to introduce an additional vacancy into a
polyhedron where one or more vacancies are already present.
There is a strong repulsive interaction between vacancies.
When two vacancies are introduced these may be located either
on opposite sides or on the same face of the FeO6 octahedron.
The latter is the most favourable in our example, where relaxa-
tion leads to a local tetrahedral rather than square planar geo-
metry. This illustrates the role that is played by the elastic
forces in addition to the effective charges of the defects, which
by themselves would favour the square planar rather than tet-
rahedral geometry. In addition, attempts to place more than
three oxygen vacancies in the same octahedron fail, because
during relaxation oxygen atoms migrate from surrounding
octahedra and increase the coordination number of the Fe
defect centre. All such physically unrealistic configurations
are nevertheless assumed to be possible in an ideal solution
model. The assumption of ideality is thus unjustified. In the
next section we move on to the details of a model in which
defect–defect interactions are explicitly accounted for and the
calculations are not confined to the dilute limit.

3.2. Simulations of grossly disordered materials with strong
defect–defect interactions

SrFeO2.5 is a complex system from a computational point of
view. We neglect any configurational disorder in the low

Fig. 1 The defect internal energy per oxygen vacancy in SrFeO3.0 as
a function of the total number of vacancies in the octahedron. X,N, ˙,
and c represent square pyramidal, tetrahedral, square planar and tri-
angular local arrangement of the remaining oxygen atoms around the
central Fe-ion.

Phys. Chem. Chem. Phys., 2003, 5, 2237–2243 2239



temperature orthorhombic brownmillerite phase,13 and vibra-
tional contributions are also ignored. With these assumptions
the Gibbs energy of this phase is equal to the enthalpy in the
static limit.
For the high temperature disordered phase of SrFeO2.5 we

start with a cubic perovskite supercell containing 40 atoms.
We generate initial configurations by removing the appropriate
number of oxygen atoms from the ‘undefective ’ structure
SrFeO3 . One-sixth of the oxygen sites occupied in this end-
member compound are empty. We then estimate the enthalpy
and configurational entropy of this phase using configura-
tional averaging (eqns. (1)–(3)). Individual configurations are
not constrained to retain cubic symmetry during the optimisa-
tions. Note that this choice of supercell does not permit the
formation of the low temperature phase.
The interactions between the vacancies are large, and it is

not clear how many configurations should be included in the
summations in eqns. (1)–(3). If a purely random subset of con-
figurations is chosen there is a clear danger that important low-
energy configurations will be omitted. In our 2� 2� 2 cubic
cell for SrFeO2.50 there are 20 oxygen atoms distributed over
24 possible sites. This gives a total of 10 626 configurations
even for such a small cell. Nevertheless, given the computa-
tional efficiency of the structural optimisation, within the
pair-potential model, it is possible to optimise all these config-
urations. Eqns. (1)–(3) can then be used directly to obtain the
thermodynamic properties for the disordered phase. An
advantage is that the consequences of using only a subset of
configurations can then also be assessed.
We have optimised all 10 626 configurations in the static

limit. For many configurations and especially those high in
energyz this proved to be a far from trivial task. The relaxation
of the structure around the oxygen vacancies is extensive—
much more so than in the solid solutions containing two
different cations that we have considered previously using con-
figurational averaging. Large structural reconstructions such
as the formation of a tetrahedron from the initial geometrical
arrangement formed by the removal of one equatorial and one
apical oxygen atom from a FeO6 octahedron often converged
slowly. Problems also arose due to the tendency of oxy-
gen atoms to migrate from one coordination sphere to
another. A second order optimisation method (Hessian update
at every iteration)22 with a step size of 0.3 was used. It proved
helpful to vary the initial volume of the supercell in a systema-
tic manner in order to achieve convergence of the different con-
figurations. As an example Fig. 2 shows the norm of the energy
gradient (implemented in GULP as the sum of the gradients of
all variables squared, divided by the number of variables22) as
a function of the number of optimisation iterations for a ‘well-
behaved’ configuration and for a ‘problem’ configuration.
During the optimisation of the ‘problem’ configuration the
norm of the gradient passes through two minima and the total
number of iterations necessary for an apparently successful
optimisation is large. The energy surface is flat which facilitates
migration of oxygen atoms and/or vacancies and thus changes
in the coordination number of specific iron atoms from those
in the initial configuration. We define somewhat arbitrarily
the radius of the first coordination sphere around a Fe atom
to be 2.9 Å, which is about 1 Å longer than a typical Fe(III)–
O bond length. The problem configuration of Fig. 2 corre-
sponds to one in which the coordination number has changed
at the end of the optimisation. In such cases the energy of a
given ‘‘problem’’ configuration is assigned from the plots as
the energy which corresponds to the last minimum in the norm
of the gradient whilst retaining the initial Fe coordina-
tion number. The facile oxygen migration in perovskite-type
systems at higher temperatures is well known and there are

several good oxygen ion conductors of composition ABO2.5 ,
e.g. Ba2In2O5 ,

23,24 known. High ionic conductivity is consis-
tent with the oxygen diffusion coefficient obtained from a short
series of molecular dynamics simulations on a number of con-
figurations at 1500 K, using the same set of potentials as
here.25

Using all 10 626 configurations to calculate the Gibbs energy
of the disordered cubic phase via eqn. (2) and comparing this
with the energy of the ordered brownmillerite structure leads
to a calculated phase transition at Ttrs� 3500 K. While this
is acceptable for such a simple model, it is still markedly higher
than the observed transition temperature (1120 K). There are a
number of possible reasons for this discrepancy. Most impor-
tantly, the supercell is still relatively small. In addition to the
effect of periodic symmetry on the energies, the degeneracies
of low-lying excited states will be greater in a larger cell. Ther-
mal expansion, which would be expected to assist the orthor-
hombic–cubic transition by enabling mutual rotation of the
FeO6 octahedra, is ignored. The potential model is also rela-
tively crude; the difference between kBT at 1120 K and 3500
K is only �20 kJ mol�1. The discrepancy is relatively unimpor-
tant for our present purpose of examining a suitable model
system.
The variation of the entropy with temperature for the low-

and high-temperature phases is shown in Fig. 3. Note however
that the entropy in the disordered phases is well below the ideal
limit; it is only 93% of the ideal value for a 2� 2� 2 cell even at
T/Ttrs ¼ 2.5, where the system still shows a significant degree
of vacancy ordering. We have therefore examined in detail the
local structures of the various configurations of the disordered

z Since we work at zero pressure throughout, all energies in this and
later sections are strictly enthalpies.

Fig. 2 The norm of the energy gradient as a function of the number
of optimisation iterations for a ‘‘well-behaved’’ configuration (dashed
line) and for a ‘‘problem’’ configuration (solid line). See text for
further explanation.

Fig. 3 Configurational entropy of SrFeO2.50 as a function of T/Ttrs

for a 2� 2� 2 cell. The dotted line shows the configurational entropy
of the disordered modification at metastable conditions.

2240 Phys. Chem. Chem. Phys., 2003, 5, 2237–2243



phase. The information gained is summarized in Fig. 4, where
we plot the fraction of four, five and six-coordinate Fe atoms
as a function of temperature. Low energy configurations of the
cubic phase, i.e. those significant at the transition temperature,
contain a mixture of octahedra (six-coordinate Fe), square
pyramids (five-coordinate Fe) and tetrahedra (four-coordinate
Fe). Configurations containing lower-coordinate Fe or square
planar FeO4 entities are much higher in energy. The low tem-
perature brownmillerite orthorhombic phase contains an
ordered arrangement of octahedra and tetrahedra; the high
temperature phase is largely comprised of the same units plus
square pyramids but in a more random arrangement. A useful
picture of the disorder, preferable to that of a random arrange-
ment of oxygen vacancies, is thus one involving a distribution
of structural entities—octahedra, tetrahedra and square pyra-
mids. The probabilities of octahedral, tetrahedral/square
planar entities and square pyramids for a purely a random dis-
tribution of vacancies on the oxygen sub-lattice is 33.5, 20.1
and 40.2%. The simulations thus indicate that there is an
increased probability for finding coordination numbers of 5
and 4 for the disordered modification when defect–defect ener-
getics are taken into account. The importance of defect–defect
interactions is clear.

3.3. Larger supercells and rdf-generators

With larger supercells it is not feasible to optimise each indivi-
dual configuration. For example, for a 4� 4� 4 cell the total
number of configurations is 3� 1036 and it will only be possible
to optimise a small fraction of the total number. Also explicit
optimisation of even as small a number as 10,000 configura-
tions is an operation that will be very CPU-expensive for so
large a cell as 4� 4� 4. Methods for choosing a small number
of low energy configurations are required, which can be tested
against the results for the 2� 2� 2 cell.
The simplest approach is to select a small number of ran-

domly selected configurations for use in eqn. (4). Fig. 5 shows
two calculations for the 2� 2� 2 cell using different random
sets of only 10 out of the total 10 626 configurations. Both sets
give transition temperatures and entropies similar to those
obtained from the full number of configurations. The transi-
tion temperatures differ by typically 10%, and the configura-
tional entropy of the cubic disordered phase at T/Ttrs ¼ 2.5
differ by 2%. Still, the random sets miss the fall in the entropy
with decreasing T of the high temperature phase (close to Ttrs)
as the low energy configurations are preferentially occupied.
Even more importantly, the structural information obtained
from such a small number of random configurations is inade-
quate, as shown in Fig. 6. The choice of configurations is thus

crucial for the representation of the disordered structure and
for larger supercells more efficient schemes are needed.
Evidently many configurations are related by symmetry, so

we need only to evaluate the number of crystallographically
distinct configurations and their associated degeneracies. We
refer to these distinct configurations as ‘generators ’. For our
2� 2� 2 supercell, symmetry reduces the 10 626 configurations
to 78 generators. The energy vs. degeneracy for the 2� 2� 2
cell is given in Fig. 7, where each open circle refers to a sepa-
rate generator (some overlapping). This reduction from 10 626
to 78 gives a reduction in CPU time by over two orders of
magnitude. However, we need to develop a computational
method for the derivation of generators and their degeneracies
before this can be done for larger cells.
We have therefore investigated a simpler, approximate,

scheme based on the calculation of the VO�VO radial distribu-
tion function (rdf) of the cubic input geometry for each config-
uration, obtained by removing oxygen atoms from
stoichiometric SrFeO3 . We refer to a set of initial configura-
tions all with the same radial distribution function as an rdf-
generator. The number of such rdf-generators, each with an
associated degeneracy, is readily obtained; for the 2� 2� 2 cell
there are 38 rdf-generators.x All configurations that belong to
the same symmetry generator thus have the same rdf, but an
rdf-generator may contain non-equivalent symmetry-genera-
tors which will, in general, lead to different final energies.
The energies and degeneracies of the 38 rdf-generators are
shown in Fig. 8.
Our approximation is to take just one configuration chosen

at random from each of the 38 rdf-generators. The entropy
and the fraction of the different structural entities obtained
from these configurations and the associated degeneracy of
each generator are given by dashed lines in Figs. 5 and 6.
The energetic and structural properties are reproduced rather
well, and relatively little thermodynamic or structural informa-
tion is lost.
In order to see if a similar method can be used with larger

super cells, we have tested a simplified approach. Again, we
take one configuration at random to represent each rdf-genera-
tor and the same initial volume is used at the start of each
minimisation; but now only the configurations that converge
readily, with their associated degeneracies, are used in the
thermodynamic averaging (so that eqn. (4) is used with K0

equal to the sum of the degeneracies of the rdf-generators
used). The entropy and fractions of square pyramids and

Fig. 4 Fraction of four (CN 4), five (CN 5) and six (CN 6)-coordi-
nate Fe atoms in SrFeO2.50 as a function of T/Ttrs for a 2� 2� 2 cell.
The grey lines represent the ordered low-temperature phase, the solid
lines the disordered high-temperature modification.

Fig. 5 Configurational entropy of disordered SrFeO2.50 as a function
of T/Ttrs for a 2� 2� 2 cell. The solid and dashed lines show results
obtained using the symmetry and rdf-generators and the appropriate
degeneracy of each generator. The remaining two curves represent
values obtained using eqn. (4) and 10 configurations selected at
random.

x Alternatively, for our particular case, where the defects (the oxygen
vacancies) have charge different from that of the host ions, the degen-
eracy of the rdf-generator is (within a pair-potential model) found by
grouping together configurations with the same initial energy.
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four-coordinate Fe at T/Ttrs ¼ 2.5 are then given as 8.2 J K�1

mol�1, 0.497 and 0.251% respectively, compared to values of
8.9 J K�1 mol�1, 0.503 and 0.248% obtained using all 10 626
configurations.
Since this simplified approach works well for the 2� 2� 2

cell, we have in a preliminary study applied the same rdf-
method to a somewhat larger supercell. For a 2� 2� 3 super-
cell, with �2� 106 configurations in total, the total number of
rdf-generators is 5830. Configurations from many of these
gave migrating oxygen atoms and thus change in the coordina-
tion numbers during optimization. After these were discarded,
approximately 2000 rdf-configurations remained, all of which
converged rapidly without changes in the coordination num-
bers. This gave results, which can be compared with those
obtained for the 2� 2� 2 cell. The presence of a relatively
greater proportion of lower-energy configurations reduces
the transition temperature to 1720 K, and the enthalpy and
entropy of the transition are also reduced. The configurational
entropy (again at T/Ttrs ¼ 2.5) as a percentage of the ideal
value is reduced from 85% for the rdf-generators and the
2� 2� 2 cell to 75% for the 2� 2� 3 cell, while the fractional
occurrence of square pyramids and four-coordinate Fe
changes from 0.50 and 0.25 to approximately 0.40 and 0.30.
The qualitative picture is unchanged. Further work is required
here with substantially larger cell sizes, so as to obtain detailed
quantitative information as well as largely qualitative insight.

3.4. Structural and energetic aspects of the order–disorder
transition in SrFeO2.50

Despite the crudity of the model, the entropy of transition (6.0
J K�1 mol�1 for the 2� 2� 3 cell) is in good agreement with
two recent experimental determinations (6.713 and 7.6� 1.26

J K�1 mol�1). The entropy associated with the transition for
the 2� 2� 2 cell is much closer to its maximum possible value
since there is a smaller number of configurations where more
than 2 vacancies in an octahedron is possible here than for
the larger cell. The negative volume change (�0.3%) observed
experimentally13 was reproduced in the simulations using the
2� 2� 2 cell (�0.3%) while the volume change was close to
zero for the limited number of configurations treated for the
2� 2� 3 cell. As we have seen, the ordered low temperature
phase consists of 50% octahedra and 50% tetrahedra while in
the high-temperature phase the fraction of five-coordinated
iron atoms is large. The decrease in the number of six-coordi-
nate Fe ions with temperature is equal to that for four-coordi-
nate Fe, since the dominant generating process involves the
simultaneous transformation of one octahedron and one tetra-
hedron into two square pyramids and the number of two- and
three-coordinate Fe atoms is negligible. Configurations with
octahedra containing three or more oxygen vacancies are high
in energy and do not contribute to the energetics except at the
highest temperatures studied. Most of the four-coordinate Fe
is tetrahedral rather than square planar at Ttrs . The fraction
of square planar entities increases at higher temperatures. It
is worth stressing that in the dilute limit two Fe ions with coor-
dination number five have a lower energy than one with four
and one with six (see Fig. 1).
While the local symmetries of selected low energy configura-

tions are quite high, as shown in Fig. 9 for octahedral, square
pyramidal and tetrahedral environments, some entities present
in higher energy configurations are less symmetric. The
average Fe–O bond length and angles for selected entities

Fig. 6 Fraction of four (CN 4), five (CN 5) and six (CN 6)-coordi-
nate Fe atoms in SrFeO2.50 as a function of T/Ttrs . The solid
and dashed lines show results obtained using the symmetry and rdf-
generators and the appropriate degeneracy of each generator. The
remaining two curves represent values obtained using eqn. (4) and 10
configurations selected at random.

Fig. 7 Degeneracy versus relaxed enthalpy for the 78 symmetry
generators that represent all 10 626 configurations of the 2� 2� 2
super cell of SrFeO2.50 . Each open circle refers to a separate generator
(some are overlapping).

Fig. 8 Degeneracy versus relaxed enthalpy for the 38 rdf-generators
for the 2� 2� 2 super cell of SrFeO2.50 optimising one configuration
from each set of rdf’s. Note that all configurations that belong to
the same symmetry generator (shown in Fig. 7) have the same rdf,
but an rdf-generator may contain non-equivalent symmetry-generators
which will, in general, lead to different final energies.

Fig. 9 Local symmetries of selected low energy configurations for
octahedral, square pyramidal and tetrahedral environments.
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present in some different low and intermediate-energy con-
figurations are given in Table 3. The structural entities are
deformed to a significant degree even below the transition
temperature. Experimental data for orthorhombic SrFeO2.5

for T ¼ 1148 K are given in Table 3, and the structure is
significantly deformed even at room temperature. The cal-
culated averaged data presented in this table are thus in good
agreement with experiment.

4. Conclusions

In this paper we have considered oxygen vacancy disorder in a
crystal far from the dilute limit. We have shown that defect–
defect interactions are considerable and that the high-tempera-
ture structure of SrFeO2.5 may be described as a disordered
mixture of tetrahedra, square pyramids and octahedra. Fe
atoms with coordination numbers lower than four are negligi-
ble. The assumption of an ideal solution of oxygen vacancies in
such systems, commonly made in standard thermodynamic
treatments, is questionable.
Such highly non-ideal disordered systems present many

challenges for the methodology and there remains much to
do. We have been restricted to small cell sizes, which has pre-
vented us from obtaining an accurate transition temperature
between the ordered low and disordered high temperature
phases. Improvements in method, such as the automatic calcu-
lation of the weights of individual configurations via their sym-
metry properties and novel Monte Carlo techniques,19 are
under development. Mixed valence oxides pose additional
challenges because of the mixture of formal oxidation states.
We hope to obtain an alternative general description of the
solid state chemistry of this and related systems in terms of a
small number of structural entities such as octahedra, square
pyramids and tetrahedra.
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