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Abstract

We have used computer simulation techniques to study the mechanisms of trace element incorporation into the large
sites of MgSiO3 and CaSiO3 perovskites on the atomistic level. Both relaxation and solution energies corresponding to
the incorporation of isovalent and heterovalent defects can be fitted using the ‘lattice strain’ model. This underlines the
importance of crystal chemistry in the partitioning of trace elements between perovskite and melt. As expected, solution
energies, which take some account of possible melt components, approximate more closely experimental perovskite–melt
partitioning observations than do relaxation energies. With calculated solution energies we find that the optimum site radiusr0

decreases with increasing defect charge while the apparent Young’s modulusEα of the large site increases with charge in both
perovskites, consistent with experimental perovskite–melt partitioning data. For a given trace element charger0 is smaller for
MgSiO3 than for CaSiO3, as observed experimentally. For a given trace element the difference in calculated solution energy
between the two perovskites is reflected in the difference in experimental partition coefficients. For all the charge balancing
mechanisms we have considered the solution energies for REE3+, and 4+ cations (including U4+ and Th4+) are much lower
in CaSiO3 perovskite than in MgSiO3 perovskite, which provides an explanation for the observed ease with which CaSiO3

perovskite accommodates 3+ and 4+ cations.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The earth is generally considered to have accreted
from planetesimal-sized bodies whose impact ener-
gies increased as the earth grew, culminating with the
giant impact which led to the moon formation (e.g.,
Hartmann and Davis, 1975). Under most scenarios the
energy of accretion and differentiation was sufficient
to generate a deep magma ocean (e.g.,Herzberg and
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O’Hara, 1985; Ohtani, 1985), and perhaps to melt
the entire silicate earth. Crystallisation of such a deep
magma ocean has been suggested as a mechanism for
enriching the lower mantle in Si by the gravitational
settling of perovskite (Ringwood, 1979). But the dif-
ficulty with this hypothesis is that it is required to
take place without significantly changing the ratios of
relative abundance of refractory lithophile elements
in the primitive upper mantle. Recent partitioning
experiments (Corgne and Wood, 2002; Hirose et al.,
in press) have shown that a mixture of CaSiO3 and
MgSiO3 perovskites fractionated during early earth
history must represent only a few percent of the mantle
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volume to maintain chondritic ratios of refractory
lithophile elements in the primitive upper mantle. De-
pending on the proportion of CaSiO3 perovskite, the
corresponding perovskitic reservoir could be enriched
in U and Th and thus contribute to the earth’s heat
budget, but in any case it would not be large enough to
explain the observed Si depletion of the primitive up-
per mantle. Although these estimates do not account
for the fractionation of magnesiowüstite, which is the
liquidus phase in the upper part of the lower man-
tle, it seems highly improbable that there is a large
perovskitic layer hidden in the deep lower mantle.

As underlined by these conclusions, the partition-
ing of trace elements between perovskite and melt are
of considerable importance to the understanding of
the geochemical differentiation of the earth. A proper
evaluation of the role of perovskite in the distribution
of trace elements in the deep mantle requires detailed
knowledge of the physico-chemical factors controlling
perovskite–melt partitioning. In this paper, we report
atomistic computer simulations of trace element in-
corporation in MgSiO3 and CaSiO3 perovskites. As
undertaken for other silicates in previous studies (e.g.,
Purton et al., 1996, 1997; Van Westrenen et al., 2000),
such simulations provide insight into the energetics of
substitution into perovskites on an atomic scale. We
compare results from our simulations with recent ex-
perimental observations in order to obtain a detailed
understanding at the atomistic level of the controlling
factors in perovskite–melt partitioning.

2. Theoretical and experimental background

As shown in Fig. 1, CaSiO3 and MgSiO3 per-
ovskites have different structures. CaSiO3 perovskite
adopts the cubicPm3̄m structure at least up to
depths of 2300 km (Shim et al., 2000). This high-
symmetry structure contains two cation sites, an oc-
tahedral B-site occupied by Si (6-fold coordinated)
and a regular dodecahedral A-site occupied by Ca
(12-fold coordinated). X-ray diffraction patterns of
temperature-quenched samples confirm MgSiO3 per-
ovskite has a distorted orthorhombicPbnmstructure at
pressures up to 127 GPa (Knittle and Jeanloz, 1987).
This orthorhombic structure is associated with tilting
of the BO6 octahedra in the cubic structure, such that
8 of the 12 A-site nearest-neighbours in the cubic

Fig. 1. Crystal structure of (a) CaSiO3 perovskite and (b) MgSiO3
perovskite. Note the distortion from a cubic (Pm3̄m) to an or-
thorhombic (Pbnm) structure.

structure are closer to the Mg ion than the remaining
four.

The ‘lattice strain’ model ofBrice (1975)(see also
Blundy and Wood, 1994) relates the lattice strain en-
ergy Ustrain associated with the insertion of an isova-
lent misfit cation of radiusr i into a spherical site with
radiusr0, to the elasticity of the site (apparent Young’s
modulus,Eα) and the size misfit (ri − r0) between de-
fect and host cations:

Ustrain = 4πEαNA[ 1
2r0(ri − r0)

2 + 1
3(ri − r0)

3] (1)

whereNA is the Avogadro’s number. The larger the
size misfit, or the lower the site elasticity (the higher
Eα), the higher the strain energy associated with a
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substitution, and the lower the affinity of the host
structure for a particular trace element. Because crys-
tals are far more rigid than melts, the energy involved
in the melt–crystal exchange reaction is dominated
by the strain energy in the crystal. Thus the substitut-
ing trace element which produces the highest strain
energy is the most incompatible. For heterovalent
substitution, expressions of the form ofEq. (1) also
fit experimental trace element partitioning data, the
fitted values ofEα and r0 being generally different
from those derived from isovalent substitution.

Following previous work on a range of silicates
(e.g.,Blundy and Wood, 1994; Van Westrenen et al.,
1999; Hill et al., 2000), Corgne and Wood (2002)suc-
cessfully applied the ‘lattice strain’ model to CaSiO3
perovskite–melt partitioning of a wide range of trace
elements and we present here similar preliminary re-
sults for MgSiO3 perovskite–melt partitioning (Fig. 2,
Table 1). For the large site (A-site: Ca- or Mg-site)
of both perovskites, the optimum radiusr0 decreases
as the charge of the incorporated cation increases.
Such a variation had already been observed for gar-
nets and wollastonite (Van Westrenen et al., 1999;
Law et al., 2000). While for the large site of MgSiO3

Fig. 2. ‘Lattice strain’ model fits to experimental data (25 GPa and 2300◦C) of (a) CaSiO3 perovskite–melt partitioning (data fromCorgne
and Wood, 2002) and (b) MgSiO3 perovskite–melt partitioning (preliminary data, seeTable 1). Ionic radii used in this study are taken
from Shannon (1976). Since ionic radii are not available for the whole set of elements in 12-fold coordination, we have taken values
corresponding to a 8-fold coordinated site for CaSiO3 perovskite. The radius of Al in 8-fold coordination (0.67 Å) was estimated by
extrapolation of values available for lower coordination.

Table 1
MgSiO3 perovskite–melt partition coefficientsa

Mg 1.19 (4)
Ca 0.27 (3)
Sr 0.0091 (69)
Ga 0.55 (9)
Sc 2.14 (48)
Lu 0.98 (8)
Yb 0.93 (7)
Er 0.50 (5)
Y 0.42 (5)
Ho 0.37 (5)
Gd 0.18 (5)
Eu 0.10 (2)
Sm 0.062 (26)
Nd 0.038 (18)
Pr 0.031 (7)
Ce 0.015 (7)
La 0.0086 (64)
Hf 0.94 (14)
Zr 1.19 (19)
U 0.027 (7)
Th 0.021 (8)

a The preliminary data are from a melting experiment on a
peridotite composition at 25 GPa and 2300◦C. Values in paren-
theses are two standard errors in terms of least units cited.
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perovskiteEα increases as the charge on the defect
cation increases, for CaSiO3 perovskite Eα shows
no significant variation with trace element charge.
Another interesting observation is that the optimum
partition coefficientsD0

3+ andD0
4+ for the large site

differ substantially between MgSiO3 and CaSiO3 per-
ovskites. The main goal of this study is therefore to ex-
plain the differences between the experimental results
in terms of the energetics involved in trace element
partitioning.

3. Simulation methodology

The details of atomistic simulation techniques,
which are based on energy minimisation procedures,
have been described elsewhere (e.g.,Catlow and
Mackrodt, 1982; Allan et al., 2001, 2003) and we
only present a short summary. All atomistic sim-
ulations were performed in a static system (zero
pressure, zero temperature) using the general utility
lattice program (GULP,Gale, 1997). Calculations
used a Born ionic model, in which formal charges
are assigned to spherical ions based on accepted
chemical valence and electron counting (e.g., 2+ for
Ca and Mg, 4+ for Si, 2− for O). The lattice en-
ergy Ulat is partitioned into a Coulombic term, cor-
responding to long-range electrostatic interactions
between atoms, and a non-Coulombic term, corre-
sponding to short-range repulsions produced by the
overlap of nearest-neighbour electron clouds. To de-
scribe non-Coulombic interactions between adjacent
ions we used the set of potentials given inTable 2.
Cation–oxygen interactions are described by 2-body
Buckingham potentials. The shell model ofDick and
Overhauser (1958)was used to take account of the
oxide ion polarisation and a 3-body O–Si–O bond
bending term was incorporated. Previous studies have
shown the applicability of these potentials for simu-
lation of oxides and silicates (e.g.,Wright and Price,
1993; Purton et al., 1996, 1997; Van Westrenen et al.,
2000; Watson et al., 2000). Simulated structures for
MgSiO3 and CaSiO3 perovskites, the calculated lat-
tice parameters of which were reproduced to within
1% of the experimental values (Table 3), were used as
a basis for defect energy calculations. In every com-
putational run, one or more defects were introduced
into the ASiO3 crystal lattice. Initial, unrelaxed defect

energiesUdef,i were calculated without allowing any
atoms to move. The total energy of the defective sys-
tem was then minimised by allowing the surrounding
ions to relax to accommodate the misfit cation(s).
Positions of cores and shells of atoms around the de-
fect(s) were optimised using the customary two-region
approach (Catlow and Mackrodt, 1982). In the inner
region (9 Å radius), the lattice relaxation is largest
and the elastic force equations are solved requiring
that the force on all ions in this region must be zero.
In the outer region (16 Å radius), the lattice relaxation
was assumed to be smaller and was estimated using
the Mott–Littleton approximation (Mott and Littleton,
1938). The number of ions used for each structure
is sufficient to ensure convergence of defect energies
with region size. At convergence, final, relaxed defect
energiesUdef,f were obtained. The energy released as
the surrounding ions move to accommodate the substi-
tuting cation, the relaxation energyUrel, is defined as
Udef,i −Udef,f . Urel, which is always positive, is equiv-
alent toUstrain in Eq. (1). Although our simulations
are in the static limit, defect energies in this limit have
been shown to be a good approximation to defect en-
thalpies at elevated temperatures (Taylor et al., 1997).

Relaxation energies are a function of the crystal
properties only. In a crystal–melt system, however,
partitioning of a particular trace element schemati-
cally involves: (1) the removal of the element from
the melt; (2) its incorporation into the crystal struc-
ture by a substitution mechanism; (3) the insertion
of the host cation into the melt. The calculation of
solution energies, in which some attempt is made
to assess the influence of the melt, should therefore
provide a better representation of the energetics in-
volved in mineral–melt trace element partitioning
than the relaxation energies alone. For isovalent sub-
stitutions into ASiO3 perovskite, stages (1)–(3) can
be described by the following reaction, using the con-
ventional Kröger–Vink notation (Kröger and Vink,
1956; see alsoAllan et al., 2003):

MO + AA ⇔ MA + AO (2a)

Usol = Udef,f (MA) + Ulat(MO) − Ulat(AO) (2b)

Solution energies have been approximated by assum-
ing that, in the melt, the host and defect cations have
environments similar to those in the corresponding
solid simple oxides (Purton et al., 1996). Explicit
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Table 2
Interatomic potentials parameters and calculated lattice energiesa

Interactions Ref. A (kJ mol−1) ρ (Å) C (kJ mol−1) Ulat
b (kJ mol−1)

Li+–Oshell Purton et al. (1997) 25331 0.3476 −2868
Na+–Oshell Purton et al. (1997) 122231 0.3065 −2533
K+–Oshell Purton et al. (1997) 65652 0.3798 −2171
Rb+–Oshell Purton et al. (1997) 88706 0.3772 −2090
Ni2+–Oshell Lewis and Catlow (1985) 152688 0.2882 −4022
Mg2+–Oshell Lewis and Catlow (1985) 137829 0.2945 −3986
Co2+–Oshell Lewis and Catlow (1985) 143927 0.2951 −3948
Fe2+–Oshell Lewis and Catlow (1985) 116515 0.3084 −3880
Mn2+–Oshell Lewis and Catlow (1985) 97199 0.3262 −3743
Ca2+–Oshell Lewis and Catlow (1985) 105207 0.3437 −3469
Eu2+–Oshell Purton et al. (1996) 120462 0.3556 −3258
Sr2+–Oshell Purton et al. (1996) 132667 0.3500 −3269
Ba2+–Oshell Lewis and Catlow (1985) 89895 0.3949 −3023
Al3+–Oshell Lewis and Catlow (1985) 107572 0.3118 −15534
Cr3+–Oshell Lewis and Catlow (1985) 167315 0.3010 −14886
Fe3+–Oshell Lewis and Catlow (1985) 106365 0.3299 −14509
Sc3+–Oshell Lewis and Catlow (1985) 125373 0.3312 −14017
Lu3+–Oshell Lewis and Catlow (1985) 129975 0.3430 −13341
Yb3+–Oshell Lewis and Catlow (1985) 126357 0.3462 −13262
Ho3+–Oshell Lewis and Catlow (1985) 130274 0.3487 −13073
Gd3+–Oshell Lewis and Catlow (1985) 128981 0.3551 −12813
Eu3+–Oshell Lewis and Catlow (1985) 131027 0.3556 −12754
Nd3+–Oshell Lewis and Catlow (1985) 133140 0.3601 −12527
Pr3+–Oshell Buscaglia et al. (2001) 139440 0.3608 −12382
La3+–Oshell Lewis and Catlow (1985) 138910 0.3651 −12228
Si4+–Oshell Sanders et al. (1984) 123878 0.3205 1028 −12419
Ge4+–Oshell Lewis and Catlow (1985) 99910 0.3464 −11640
Ti4+–Oshell Lewis and Catlow (1985) 72769 0.3879 −10856
Sn4+–Oshell Lewis and Catlow (1985) 90570 0.3813 −10542
Tb4+–Oshell Lewis and Catlow (1985) 87348 0.3949 −10143
Ce4+–Oshell Lewis and Catlow (1985) 97797 0.3949 −9908
U4+–Oshell Lewis and Catlow (1985) 101840 0.3949 −9827
Th4+–Oshell Lewis and Catlow (1985) 110736 0.3949 −9665
Oshell–Oshell Sanders et al. (1984) 2196384 0.1490 2690
Ocore–Oshell Purton et al. (1996) Spring constantk = 7229 kJ mol−1 Å−2

Oshell–Si–Oshell Sanders et al. (1984) Spring constantKB = 202 kJ mol−1 rad−2

a Interatomic potentials are of the formV(r) = A exp(−r/ρ) − C/r6, where r is the interionic distance (2-body) andV(θ) =
[KB(θ−π/2)2]/2, whereθ is the O–Si–O bond angle (3-body). Oxygen core–shell interactions are given bykx2/2, wherex is the core–shell
separation. Core charge and shell charge for O are+0.86902 and−2.86902, respectively. A short-range cutoff of 12 Å was used throughout.

b Calculated lattice energies are for corresponding binary oxides.

inclusion of the heats of fusion of these oxides
(Aylward and Findlay, 1994) makes little difference.
Clearly, the calculation of solution energy (Eq. (2b))
involves the final defect energy (Udef,f ) and the dif-
ference in lattice energy (Ulat) of the trace and host
element oxides. Lattice energies of oxides calculated
using GULP are listed inTable 2. For heterovalent
substitutions, reactions corresponding to (2a) and (2b)
are made more complex by the presence of charge bal-

ancing substitutions, which are required to maintain
electroneutrality. In this case, one or more defects were
introduced simultaneously into the crystal, as near as
possible to the first defect.Purton et al. (1997)have
demonstrated the importance of defect association in
forsterite and diopside, and have shown that defect
energies are not additive and cannot be predicted sim-
ply from the separate defect energies for the isolated
defects. Therefore, we present results here only for
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Table 3
Comparison between calculated and experimental lattice parameters

Perovskite Structure Source a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

MgSiO3 Pbnm Simulation 4.8244 4.8454 6.8416 90.0 89.9 90.5
Experimenta 4.7787 4.9313 6.9083 90 90 90

CaSiO3 Pm3̄m Simulation 3.599 90.0
Experimentb 3.572 90

a Horiuchi et al. (1987).
b Wang et al. (1996).

associated defects. The exact position in the crystal lat-
tice of the surrounding charge balancing defect(s) was
varied in order to find the lowest final defect energy.

For monovalent cations substituting at the large
A-site, the envisaged compensation mechanisms are
formation of oxygen vacancies (Eq. (3)) and associ-
ated substitution into the A-site involving a trivalent
defect (Eq. (4)):
1
2M2O + AA + 1

2OO ⇔ M′
A + 1

2V••
O + AO (3a)

Usol = 1
2Udef,f (2M′

A + V••
O ) + Ulat(AO)

− 1
2Ulat(M2O) (3b)

1
2M2O + 1

2J2O3 + 2AA ⇔ M′
A + J•

A + 2AO (4a)

Usol = Udef,f (M
′
A + J•

A) + 2Ulat(AO)

− 1
2Ulat(M2O) − 1

2Ulat(J2O3) (4b)

For trivalent substitutions at the large site, four differ-
ent incorporation mechanisms have been investigated.
In the first type, the trivalent defect is compensated by
a monovalent defect (Eq. (4)). In the second and third
types (Eqs. (5) and (6)), charge compensation occurs
by formation of A- and Si-vacancies, respectively. In
the fourth type (Eq. (7)), the trivalent defect at the
A-site is associated with Al-substitution at the Si-site:
1
2M2O3 + 3

2AA ⇔ M•
A + 1

2V′′
A + 3

2AO (5a)

Usol = 1
2Udef,f (2M•

A + V′′
A) + 3

2Ulat(AO)

− 1
2Ulat(M2O3) (5b)

1
2M2O3 + AA + 1

4SiSi ⇔ M•
A + 1

4V′′′′
Si

+ AO + 1
4SiO2 (6a)

Usol = 1
4Udef,f (4M•

A + V′′′′
Si ) + Ulat(AO)

+ 1
4Ulat(SiO2) − 1

2Ulat(M2O3) (6b)

1
2M2O3 + 1

2Al2O3 + AA + SiSi

⇔ M•
A + Al ′Si + AO + SiO2 (7a)

Usol = Udef,f (M
•
A +Al ′Si) + Ulat(AO) + Ulat(SiO2)

− 1
2Ulat(M2O3) − 1

2Ulat(Al2O3) (7b)

In the case of tetravalent substitutions, we envisaged
four mechanisms of charge compensation. The first
two mechanisms involve the formation of A- and
Si-vacancies, respectively (Eqs. (8) and (9)), whereas
the third and fourth mechanisms involve the substitu-
tion of Si by a divalent cation (Ca for CaSiO3 and Mg
for MgSiO3) and Al, respectively (Eqs. (10) and (11)):

MO2 + 2AA ⇔ M••
A + V′′

A + 2AO (8a)

Usol=Udef,f (M
••
A +V′′

A) + 2Ulat(AO) − Ulat(MO2)

(8b)

MO2 + AA + 1
2SiSi ⇔ M••

A + 1
2V′′′′

Si + AO + 1
2SiO2

(9a)

Usol = 1
2Udef,f (2M••

A + V′′′′
Si ) + Ulat(AO)

+ 1
2Ulat(SiO2) − Ulat(MO2) (9b)

MO2 + AA + SiSi ⇔ M••
A + A ′′

Si + SiO2 (10a)

Usol = Udef,f (M
••
A + A ′′

Si) + Ulat(SiO2)

− Ulat(MO2) (10b)
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MO2 + Al2O3 + AA + 2SiSi

⇔ M••
A + 2Al ′Si + AO + 2SiO2 (11a)

Usol = Udef,f (M
••
A +2Al ′Si)+Ulat(AO) + 2Ulat(SiO2)

−Ulat(MO2) − Ulat(Al2O3) (11b)

4. Relaxation energies

Initial and final defect energies (Udef,i andUdef,f )
and relaxation energies (Urel) for all the envisaged sub-
stitutions are listed inTable 4. As noted byPurton et al.
(1996, 1997)andVan Westrenen et al. (2000), there is
an approximately linear increase inUdef,f for a given
valence with increasing trace element radius. The
lowest relaxation energies are plotted against trace ele-
ment radius inFig. 3. We caution that the lowest relax-
ation energies are not necessarily those associated with
the lowest energy substitutions. For each isovalent
series of trace elements,Urel exhibits a near-parabolic
dependence on the ionic radius. Since GULP simu-
lations do not involve the use of any concept of ionic
radius, such an observation provides evidence for the
general applicability of the ‘lattice strain’ model equa-
tion (Eq. (1)) to relaxation energies in defective per-
ovskite lattices. Thus each series was fitted using this
equation. Regression parametersEα and r0 are pre-
sented inTable 4. As expected from crystal chemistry
considerations,r0(CaSiO3) > r0(MgSiO3), with r0

2+
being almost equal to the radius of the host cation,
i.e., rCa for CaSiO3 perovskite andrMg for MgSiO3
perovskite. As found for other minerals and oxides
(Purton et al., 1996, 1997; Van Westrenen et al., 2000),
r0 increases with defect charge. This trend is opposite
to that observed in mineral–melt partitioning experi-
ments. The variation of relaxation energy with charge
has been discussed byVan Westrenen et al. (2000).

From the viewpoint of site elasticity, the fits to
the lattice strain model suggestEα(MgSiO3) >

Eα(CaSiO3) for a given valence, which is expected
because the Ca–O bond is more compressible than the
Mg–O bond. Liker0, Eα increases with defect charge
in both perovskites. The trend inEα is consistent
with the experimental work on MgSiO3 perovskite.
However, given our findings regarding the incorrect
variation of r0 with defect charge, we now turn to
consider calculated solution energies which, unlike

Fig. 3. Calculated relaxation energies for trace element incor-
poration in (a) MgSiO3 and (b) CaSiO3 perovskite. Curves are
least-squares fits to data of the ‘lattice strain’ model (Eq. (1)).
Data and regression parametersEα and r0 are listed inTable 4.

relaxation energies, do take some account of the melt
environment.

5. Solution energies

5.1. Favoured substitution mechanisms

Solution energies (Usol) for all the envisaged sub-
stitutions are listed inTable 4. The preferred substi-
tution mechanism (i.e., the one leading to the lowest
Usol values) for monovalent incorporation at the large
A-site is coupled trivalent substitution at the A-site
for both perovskites, except for K and Rb which
have lowest solution energy associated with oxygen
vacancy in MgSiO3. For trivalent incorporation into
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Table 4
Defect, relaxation and solution energies in MgSiO3 and CaSiO3 perovskitesa

Substitution

at the A-site

MgSiO3 perovskite CaSiO3 perovskite

Udef,i Udef,f Urel Usol Udef,i Udef,f Urel Usol

1 + defects

Li+A + 1
2VO 3094 2706 388 154 2578 2182 396 147

Na+
A + 1

2VO 3384 2920 464 201 2726 2333 393 131

K+
A + 1

2VO 4179 3491 688 591 3295 2847 448 464

Rb+
A + 1

2VO 4587 3753 834 812 3556 3052 504 628

r0 (Å) 0.84 (15) 0.99 (1) 1.11 (6) 1.06 (4)

Eα (GPa) 145 (46) 321 (7) 83 (24) 317 (45)

M3+ = Sc M3+ = Lu

Li+A + M3+
A −54 −337 282 134 −956 −1154 198 12

Na+
A + M3+

A 275 −116 391 187 −794 −1008 214 −9
K+

A + M+
3A 1164 527 637 649 −175 −469 293 349

Rb+
A + M+

3A 1623 791 831 873 110 −246 356 531
r0 (Å) 0.81 (30) 0.97 (3) 1.00 (10) 1.07 (3)

Eα (GPa) 163 (98) 345 (34) 76 (24) 351 (44)

2 + defects

Ni2+
A −37 −37 0 −1 −506 −546 40 7

Mg2+
A 0 0 0 0 −482 −518 36 −1

Co2+
A 34 33 0 −5 −464 −496 32 −17

Fe2+
A 113 111 2 5 −409 −434 25 −23

Mn2+
A 284 272 12 29 −295 −308 13 −34

Ca2+
A 751 666 85 149 0 0 0 0

Eu2+
A 1322 1092 229 364 364 347 17 136

Sr2+
A 1306 1071 235 354 343 326 16 126

Ba2+
A 2294 1766 527 803 971 890 81 444

r0 (Å) 0.88 (1) 0.86 (2) 1.12(−) 1.00 (1)

Eα (GPa) 385 (8) 543 (30) 176 (7) 557 (24)

3 + defects

M+ = Li+ M+ = Na+

Al3+
A + M+

A −590 −1011 421 218 −1367 −1828 461 268

Fe3+
A + M+

A −265 −580 315 136 −1163 −1479 316 104

Sc3+
A + M+

A −54 −337 283 133 −1040 −1312 272 25

Lu3+
A + M+

A 332 50 281 183 −794 −1008 214 −9

Yb3+
A + M+

A 388 104 284 197 −755 −962 208 −3

Ho3+
A + M+

A 523 228 295 226 −669 −862 193 3

Gd3+
A + M+

A 731 414 317 283 −530 −706 176 29

Eu3+
A + M+

A 782 457 325 296 −498 −670 172 35

Nd3+
A + M+

A 993 635 358 360 −359 −520 161 72

Pr3+
A + M+

A 1129 743 386 396 −274 −430 156 90

La3+
A + M+

A 1309 888 421 464 −152 −304 152 139

r0 (Å) 0.93 (1) 0.84 (1) 1.16 (3) 0.97 (1)

Eα (GPa) 688 (18) 837 (28) 366 (45) 977 (17)
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Table 4 (Continued)

Substitution

at the A-site

MgSiO3 perovskite CaSiO3 perovskite

Udef,i Udef,f Urel Usol Udef,i Udef,f Urel Usol

Al 3+
A + 1

2VA −938 −1512 574 276 −1763 −2202 439 362

Fe3+
A + 1

2VA −612 −1068 456 208 −1559 −1844 285 207

Sc3+
A + 1

2VA −401 −821 420 208 −1436 −1659 223 146

Lu3+
A + 1

2VA −16 −432 416 260 −1190 −1353 164 114

Yb3+
A + 1

2VA 40 −378 418 274 −1150 −1308 158 120

Ho3+
A + 1

2VA 176 −254 430 303 −1065 −1208 143 125

Gd3+
A + 1

2VA 384 −68 452 360 −925 −1043 117 160

Eu3+
A + 1

2VA 435 −25 460 373 −894 −1008 115 165

Nd3+
A + 1

2VA 645 152 493 436 −755 −861 106 199

Pr3+
A + 1

2VA 782 259 523 471 −670 −772 103 215

La3+
A + 1

2VA 962 403 559 538 −548 −663 116 247

r0 (Å) 0.94 (1) 0.83 (1) 1.13 (2) 0.96 (1)

Eα (GPa) 737 (21) 786 (24) 460 (43) 881 (36)

Al3+
A + 1

4VSi 585 −428 1014 248 393 −915 1308 278

Fe3+
A + 1

4VSi 911 12 899 176 597 −557 1154 124

Sc3+
A + 1

4VSi 1121 250 871 168 721 −377 1098 58

Lu3+
A + 1

4VSi 1507 616 891 196 966 −96 1063 0

Yb3+
A + 1

4VSi 1563 666 897 206 1006 −56 1061 2

Ho3+
A + 1

4VSi 1698 780 918 226 1091 34 1057 −3

Gd3+
A + 1

4VSi 1907 953 954 268 1231 174 1057 7

Eu3+
A + 1

4VSi 1957 992 966 278 1262 204 1059 7

Nd3+
A + 1

4VSi 2168 1155 1013 327 1401 337 1064 27

Pr3+
A + 1

4VSi 2305 1253 1052 353 1486 414 1073 31

La3+
A + 1

4VSi 2485 1385 1099 409 1608 518 1090 58

r0 (Å) 0.90 (1) 0.86 (1) 1.03 (1) 1.02 (1)

Eα (GPa) 843 (27) 683 (17) 606 (40) 731 (19)

Al3+
A + Al3+

Si 1634 1119 515 248 1199 585 614 231
Fe3+

A + Al3+
Si 1959 1552 407 168 1403 933 470 67

Sc3+
A + Al3+

Si 2170 1796 374 167 1527 1096 431 −17
Lu3+

A + Al3+
Si 2582 2186 395 219 1772 1392 380 −58

Yb3+
A + Al3+

Si 2612 2236 375 229 1812 1437 375 −53
Ho3+

A + Al3+
Si 2747 2360 387 258 1897 1534 363 −50

Gd3+
A + Al3+

Si 2981 2547 434 316 2037 1686 350 −28
Eu3+

A + Al3+
Si 3032 2590 442 329 2068 1721 348 −23

Nd3+
A + Al3+

Si 3243 2766 477 391 2207 1866 341 9
Pr3+

A + Al3+
Si 3353 2871 482 424 2293 1954 339 24

La3+
A + Al3+

Si 3533 3015 518 491 2414 2075 339 68
r0 (Å) 0.92 (1) 0.84 (1) 1.12 (2) 0.98 (1)

Eα (GPa) 671 (52) 809 (29) 396 (47) 942 (16)

4 + defects

Ti4+
A + VA −967 −2339 1372 545 −2645 −3372 727 546

Sn4+
A + VA −731 −2023 1292 547 −2508 −3191 684 413

Tb4+
A + VA −305 −1558 1253 613 −2205 −2802 597 403

Ce4+
A + VA 9 −1237 1246 699 −2002 −2545 543 425
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Table 4 (Continued)

Substitution

at the A-site

MgSiO3 perovskite CaSiO3 perovskite

Udef,i Udef,f Urel Usol Udef,i Udef,f Urel Usol

U4+
A + VA 131 −1119 1250 736 −1923 −2447 523 442

Th4+
A + VA 398 −873 1271 820 −1751 −2244 494 483

r0 (Å) 0.95 (1) 0.69 (5) 1.25 (16) 0.91 (1)

Eα (GPa) 952 (90) 637 (137) 333 (158) 1468 (329)

Ti4+
A + 1

2VSi 1916 −212 2128 448 1577 −944 2522 233

Sn4+
A + 1

2VSi 2103 97 2006 443 1715 −687 2402 177

Tb4+
A + 1

2VSi 2529 533 1996 481 2018 −330 2348 134

Ce4+
A + 1

2VSi 2843 832 2011 545 2221 −100 2320 130

U4+
A + 1

2VSi 2965 940 2025 571 2299 −21 2320 128

Th4+
A + 1

2VSi 3232 1163 2069 632 2472 157 2314 144

r0 (Å) 0.92 (1) 0.74 (2) 0.99 (2) 0.96 (1)

Eα (GPa) 1378 (278) 558 (84) 1093 (223) 692 (64)

Ti4+
A + ASi 3817 2022 1795 459 4438 1855 2584 292

Sn4+
A + ASi 4053 2339 1715 462 4576 2039 2537 162

Tb4+
A + ASi 4479 2793 1687 517 4879 2398 2481 122

Ce4+
A + ASi 4794 3103 1690 592 5082 2630 2451 119

U4+
A + ASi 4915 3216 1699 624 5160 2716 2445 124

Th4+
A + ASi 5183 3452 1731 698 5333 2900 2433 146

r0 (Å) 0.93 (1) 0.70 (4) 1.06 (3) 0.95 (1)

Eα (GPa) 1024 (105) 563 (107) 455 (76) 1344 (250)

Ti4+
A + 2Al3+

Si 3997 2892 1105 458 3072 2147 925 230
Sn4+

A + 2Al3+
Si 4233 3207 1026 459 3209 2349 860 118

Tb4+
A + 2Al3+

Si 4659 3667 992 520 3512 2719 793 89
Ce4+

A + 2Al3+
Si 4974 3983 991 601 3715 2962 753 97

U4+
A + 2Al3+

Si 5095 4098 997 635 3794 3053 741 107
Th4+

A + 2Al3+
Si 5363 4339 1023 714 3967 3243 723 135

r0 (Å) 0.94 (1) 0.70 (4) 1.08 (3) 0.93 (1)

Eα (GPa) 978 (97) 607 (128) 545 (81) 1249 (224)

a Values in parentheses are one standard deviation. Energies are given in kJ/mol. Favoured mechanisms are in bold.

the A-site, in MgSiO3 perovskite, coupled monova-
lent substitution at the A-site is lowest in energy for
heavy REE3+, Al3+, Fe3+, and Sc3+, whereas for
light REE3+, Si-vacancy formation is favoured. For
CaSiO3 perovskite, trivalent cation incorporation cou-
pled to Al-substitution at the Si-site is preferred. For
tetravalent incorporation, the lowest energy mecha-
nism is Si-vacancy formation in MgSiO3 perovskite,
and, as for trivalent cations, coupled Al-substitution
at the Si-site for CaSiO3 perovskite. Nevertheless the
difference in solution energy between the envisaged
substitution mechanisms is often small (Table 4),

which suggests that in both perovskites a range of dif-
ferent charge balancing mechanisms for 1+, 3+ and
4+ cations are possible. It is therefore difficult to con-
clude in favour of only one mechanism. Compensation
via Ca-vacancy formation seems unlikely for incorpo-
ration of 3+ and 4+ cations into CaSiO3 perovskite.

An important observation is that, whatever the
substitution mechanism we consider, rare earth ele-
ments (REE3+), U4+ and Th4+ have solution ener-
gies which are much lower for CaSiO3 perovskite
than for MgSiO3 perovskite. This is a consequence
both of Udef,f (CaSiO3) being more negative than



A. Corgne et al. / Physics of the Earth and Planetary Interiors 139 (2003) 113–127 123

Fig. 4. Calculated solution energies for trace element incorporation
in (a) MgSiO3 and (b) CaSiO3 perovskite. Curves are least-squares
fits to data of the ‘lattice strain’ model (Eq. (1)). Data and regres-
sion parametersEα and r0 are listed inTable 4. Two substitution
mechanisms have been considered for monovalent incorporation in
MgSiO3 perovskite. Depending on ionic radius, coupled trivalent
substitution at the Mg-site (crossed square) or O-vacancy forma-
tion (open square) is preferred. Similarly, two substitution mecha-
nisms have been considered for trivalent incorporation in MgSiO3

perovskite. Depending on ionic radius, coupled monovalent substi-
tution at the Mg-site (open circle) or Si-vacancy formation (open
triangle) is preferred.

Udef,f (MgSiO3) and the difference in lattice ener-
gies between CaSiO3 and MgSiO3. Interestingly, this
result is consistent with experimental observations,
which show that REE3+, U4+ and Th4+ are prefer-
entially incorporated into CaSiO3 perovskite relative
to MgSiO3 perovskite (Fig. 2). Such a conclusion,
which could not be drawn from the consideration
of relaxation energies alone, underlines the general
agreement between simulated solution energies and
experimental partitioning data.

5.2. Crystal chemistry considerations

Solution energies associated with the lowest energy
substitutions are plotted against trace element radius
in Fig. 4. As for relaxation energies, solution energies
show clearly a near-parabolic dependence on ionic ra-
dius, stressing the control of local crystal environment
on trace element partitioning. Regression parameters
for fitted Usol data to the ‘lattice strain’ model equa-
tion are given inTable 4. For each perovskite,Eα

still increases with defect charge, and interestingly,
now r0 follows the experimental trend observed in
the partition coefficients (D), i.e., it decreases with
increasing defect charge (Fig. 5). Although the order
r0(MgSiO3) < r0(CaSiO3) expected from crystal
chemistry is observed and the experimental trend in the
D values now followed, simulatedr0 values are some-
what smaller than the ones derived from experiment
(Fig. 5). The experimental work was carried out on
(Mg, Fe)SiO3 perovskite rather than pure MgSiO3 per-
ovskite and this could have contributed to this discrep-
ancy, Fe2+ being slightly larger than Mg. It is clear that
more similarities are found between simulation and ex-
perimental approaches when considering solution than
relaxation energies. This observation, seen previously
for other silicates (e.g.,Van Westrenen et al., 2000),
suggests a non-negligible contribution made by melt
in the partitioning of trace elements. Experimental
results for CaSiO3 perovskite suggest thatEα remains
constant with increasing cation charge (Fig. 5). This
observation contrasts with the results of our simula-
tions and the experimental trend reported for MgSiO3
perovskite (this study), garnet (Van Westrenen et al.,
1999) and wollastonite (Law et al., 2000). Confirma-
tion or rejection of this discrepancy will be possible as
more experimental partitioning data become available.

5.3. Effect of trace element environments in melt

To estimate solution energies above, we made the
particularly simple assumption that the local envi-
ronment of the trace and host cations in the melt is
equivalent to their environment in the corresponding
simple oxides. As previously done byVan Westrenen
et al. (2000), we decided to study the effect a different
melt environment could have onU3+

sol by assuming
a YAG-type (yttrium-aluminium-garnet: Y3Al5O12)
environment for trivalent trace elements in the melt.
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Fig. 5. Fitted values of (a–b)r0 and (c–d)Eα as a function of defect charge for relaxation and solution energies in CaSiO3 and MgSiO3

perovskite. Data are taken fromTable 4. Fits to experimental data are also shown for comparison.

We considered the following exchange reactions:

1
3M3Al5O12 + 1

2Li2O + 2MgMg

⇔ Li ′Mg + M•
Mg + 2MgO+ 5

6Al2O3 (12a)

Usol = Udef,f (M
′
Mg + Li •Mg) + 2Ulat(MgO)

+ 5
6Ulat(Al2O3) − 1

2Ulat(Li2O)

− 1
3Ulat(M3Al5O12) (12b)

1
3M3Al5O12 + CaCa + SiSi

⇔ M•
Ca + Al ′Si + CaO+ SiO2 + 1

3Al2O3 (13a)

Usol = Udef,f (M
•
A + Al ′Si) + Ulat(CaO) + Ulat(SiO2)

+ 1
3Ulat(Al2O3) − 1

2Ulat(M3Al5O12) (13b)

The coordination number of M3+ in the melt com-
ponent is now 8, as compared with 6 in the case of
the simple oxide environment. This is obviously an
extreme case, and we do not propose that trivalent
cations normally have this environment in silicate
melt. Lattice energies for YAG-type components,
corresponding solution energies and regression pa-
rametersEα and r0 of the ‘lattice strain’ model
fits are given inTable 5. As shown inFig. 6, the
near-parabolic dependence ofUsol on ionic radius is
preserved. However,E3+

α values are lower by a factor
of two. In addition,r0

3+ for MgSiO3 perovskite is
significantly lower when assuming a YAG-type melt
environment rather than a simple oxide environment.
It is clear that, although trends of apparentEα andr0
are directly related to the crystal chemistry, their abso-
lute values do depend on the nature and coordination
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Table 5
Solution energies assuming a YAG-type environment in melta

Defect Ulat(M3Al5O12) Solution energy,Usol

MgSiO3 CaSiO3

Al3+
A −61781 75 113

Fe3+
A −60534 95 45

Sc3+
A −59855 115 −19

Lu3+
A −58859 177 −54

Yb3+
A −58731 188 −52

Ho3+
A −58432 215 −54

Gd3+
A −58001 261 −46

Eu3+
A −57904 272 −44

Nd3+
A −57511 321 −29

Pr3+
A −57278 354 −20

La3+
A −56975 400 1

r0 (Å) 0.69 (1) 1.00 (1)
Eα (GPa) 389 (20) 489 (27)

a Energies in kJ/mol.

of the phase with which the trace element is being
exchanged, asVan Westrenen et al. (2000)suggested
for end-member garnets. Considering theE3+

α and
r3+
0 values, it appears that, of the two assumptions

of melt environment, here the binary oxide assump-
tion shows the best agreement with the experimental
observations.

Fig. 6. Calculated solution energies for trivalent cation incorpora-
tion in MgSiO3 and CaSiO3 perovskite assuming two types of lo-
cal melt environment (M2O3 and M3Al5O12). Data for YAG-type
melt environment are given inTable 5.

5.4. Relationship between solution energies and
partition coefficients

An important issue is the relationship between par-
tition coefficients and solution energies. Equations of
the form ofEq. (1)can be applied with success to the
variation of both partition coefficients and solution en-
ergies with ion size for a given charge. Furthermore,D
andUsol values are consistent when comparing the in-
corporation of a given element in the two perovskites.
As an illustration, we find, whatever the substitution
mechanisms envisaged, the orderUsol(MgSiO3) >

Usol(CaSiO3) for U4+, Th4+, REE3+, Sr2+ and Ca2+
which agrees withD(MgSiO3) < D(CaSiO3) for all
these elements. This relationship is true for all ele-
ments for whichD andUsol are available. Thus, since
Usol(MgSiO3) > Usol(CaSiO3) for Li+, Na+, K+
and Rb+, we would expect to haveD(MgSiO3) <

D(CaSiO3) for these elements also.
ComparingD values in a given perovskite for ions

of different charge is more problematic. Calculated
solution energies reflect small differences between a
number of large quantities. Many of these quantities
(e.g., binary lattice energies) do not differ with trace
element size for a given charge but do vary with trace
element charge since the solution mechanism changes.
Calculated variations in solubility with size for a given
charge are therefore expected to be more reliable
than those with charge for a given size. For example,
in MgSiO3 perovskite,Usol(Mg2+) < Usol(Sc3+),
leading to anticipatedDMg > DSc, whereas experi-
mentallyDMg < DSc.

6. Conclusions

The successful application of the ‘lattice strain’
model to our simulated relaxation and solution ener-
gies underlines the important contribution made by the
crystal chemistry to the partitioning of trace elements
between both perovskites and melt. This is in good
agreement with the experimental perovskite–melt par-
titioning observations. As noted byVan Westrenen et
al. (2000)in simulations of trace element incorpora-
tion in garnet, solution energies are more consistent
with the experimental observations than relaxation
energies. For example,r0 values derived from the
fitting of solution energies in perovskite decrease
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with increasing defect charge. This trend, contrary
to the one observed from consideration of relaxation
energies, is consistent with experiment, and so far
appears to be a general feature of element partition-
ing into minerals. Considering solution energies, our
conclusions are:

(1) For a given trace element charger0(MgSiO3) <

r0(CaSiO3), as observed experimentally.
(2) Eα values increase with increasing trace element

charge, as observed experimentally for MgSiO3
perovskite–melt partitioning.

(3) Solution energies and thusr0 and Eα values de-
rived from the fitting of solution energies are sen-
sitive to the local environment of trace elements
in the melt.

(4) For trivalent and tetravalent cation incorporation
in the large site of both perovskites, solution en-
ergies for envisaged substitution mechanisms are
close to one other, and it is therefore difficult to
conclude in favour of only one mechanism.

(5) Whatever the mechanism of charge compensa-
tion considered, solution energies for REE3+, and
tetravalent cations (including U4+ and Th4+) are
much lower in CaSiO3 perovskite than in MgSiO3
perovskite. This feature alone could explain the
large difference in optimum partition coefficients
D3+

0 andD4+
0 for the large site between the two

perovskites. Different substitution mechanisms for
the two perovskites are not required.

(6) D andUsol values are consistent when comparing
the incorporation of a given element in the two
perovskites. For example,Di(CaSiO3) > Di
(MgSiO3) ⇔ Usol,i(CaSiO3) < Usol,i(MgSiO3).
However, further refinement of the theoretical
model is required to investigate accurately differ-
ences in solution energies in a given mineral for
ions of the same size but different charge.

Further work should be directed towards: (1) im-
proving the partitioning data set for both MgSiO3 and
CaSiO3 perovskite–melt which would enable us to
constrainEα andr0 values better over a range of melt
compositions; this will also allow us to resolve the
apparent discrepancy for CaSiO3 in the variation of
Eα with charge between theory and experiment; (2)
explicit calculation of defect and solution energies via
supercell technique rather than the Mott–Littleton ap-
proach in order to assess the effects of high pressure

on these quantities; (3) performing direct simulation
at high temperatures of trace element partitioning
using Monte Carlo calculations (Purton et al., 2000;
Allan et al., 2001, 2003).
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