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For crystals in which relative positions of atoms within the unit cell are not wholly determined by
symmetry, a complete application of the quasiharmonic approximation requires the minimization of
the free energy with respect to both exterfw|) and internal(¢;) strains. The zero static internal
stress approximation first minimizes the static lattice energy with respect tg theeach state of
external strain; the total free energy is then minimized only with respect teyth&ve show that
although this gives an incorrect internal strain, to the first order it gives the correct external strain
at each temperature; in principle, errors are thus of the same order as those due to the use of the
guasiharmonic approximation. In particular, recent calculations by LEBkd. Lacks, J. Chem.
Phys.103 5085(1999] of the effect of deuteration on the molar volume of polyethylene are shown

by the present analysis to include indirectly the effect of vibrational stretching of thé)-Hdnds,

and their reasonable agreement with room temperature measurements may after all not be fortuitous.
© 1996 American Institute of Physids$0021-960806)50442-3

I. INTRODUCTION fect of deuteration on the molar volume of orthorhombic
polyethylene; he found isotopic effects in taeandb lattice
In harmonic lattice dynamics, the vibrational frequenciesparameters to which the C—H/D stretching vibrations con-
of a solid are obtained by expanding the potential energy agibuted strongly. He argued that these were additional to the
a Taylor series in terms of the displacements of the atomsgiready known effects due to the vibrational stretching of the
from their reference sites, and then taking the normal mode—_H/D bond<€ because this stretching is an internal strain
frequencies given by the quadratic terms only. But becausgnd is therefore treated by ZSISA only in the static lattice
the potential energy of a solid is always anharmonic, thesgpproximation; the internal vibrational stress is neglected.
frequencies vary with the choice of reference sites. For gve shall see, however, that this argument is incomplete. Us-
perfect crystal, this choice depends upon the exteimak-  ing ZSISA corresponds to a state of the crystal in which not
roscopig state of strain of the crystal, and, unless determinegnly the internal stress but also the external stress is nonzero:
by symmetry, also on the relative positions of atoms withinand it turns out that when both these stresses are taken into
the primitive cell (constituting the state of internal str@in  account, to the first order there is no net effect on the exter-
The quasiharmonicapproximation takes the vibrational free nal strain. At high temperatures, or for large zero-point en-
energy of the crystal at each such state of strain to be that @frgy, ZSISA may entail errors of the same order as those
a set of harmonic oscillators with these frequencies. It thugntailed by the quasiharmonic approximation.
allows for the anharmonicity of the crystal potential energy
only through the strain dependence of the normal mode fre-
guencies. Nevertheless, it can be shown that to the first ord(ﬁr_ FUNDAMENTAL THEORY
in the anharmonicity this procedure gives the correct vibra-
tional contribution to the pressure, and hence the correct It is convenient to use thgeneral regimé in which
thermal expansiofisee, for example, Ref.)1 both internal and external strains are treated as thermody-
In a full application of the quasiharmonic approximation, namic variables on the same footing. We denote the external
the free energy is minimized at each temperature with restrain by 5, comprising a set of coordinateg (with Greek
spect to both external and internal strain. To reduce the comsubscripts\, u, etc), and the internal strain by, comprising
putational effort required, a further approximation is some-a set of coordinates; (with Roman subscript$, k, etc).
times used in which the static lattice energy is minimizedLattice dynamics gives the Helmholtz free energy as a func-
with respect to internal strain, so that the total free energyion of these strains,
has to be minimized only with respect to the external :
strain?~” We call thisthe zero static internal stress approxi- F(n.eT)=EXn,e)+F(7.eT), 2D
mation abbreviated to ZSISA. In this paper we examine itswhere st and vib denote static lattice and vibrational contri-
validity. The impetus for this work stems from a recent papetbutions, respectively. Conjugate external and internal
by Lacks! who used the approximation to calculate the ef-stresses are then given by
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1/( 9F S i third, internal, regime in which the external straiis held
L= |7~ =R+ constant. The stiffnesses in this regime are identical to the
\ ‘97])\ ’ . . . .
et ik In the internal submatrix of the general regime, and the
1/ 9F i (2.2 compliancesS;, can therefore be obtained by inverting this
- =r+7", submatrix,
7.€.T

(96]
. 71 6= S .
where the subscriptg’ or € denote that all the; or € are 711 G1c= ik 28
kept constant except for the differentiation variable. When  We can now return to the second of E¢®.3). By ma-
the crystal is in internal equilibrium the are all zero and nipulation of partial differentialgsee, e.g., Appendix 2 of
thet, are the macroscopic stresses. Otherwise, both extern&ef. 9 it becomes

Tj Vi

and internal stresses depend upon the coordinate system cho-
. : JF JF dex
sen to represent the internal strdgee Sec. ). - 4| — — =0. (2.9
At the true minimum of the free energy battand r are Iy 2T Ie€ e T In, ! ST

zero; in contrast, the state selected by ZSISA is given by th%he derivative {e/37,), .7 is purely a property of the

conditions static lattice, and so the condition of constahtcan be
\ JF dropped. Equatiori2.9) then gives
=0, . =0. (2.3
r st Je
| cr | RERTEET o B (210
The first of these conditions shows that the internal stress is Il st

given by, = 7. The external stress must be derived from
the second condition.
Before doing this we must first distinguish between elas- ( 0ek) ( 0ek)

tic constants in different thermodynamic regimes. In the gen-

where the last derivative can be expanded in the form

art
J _ _ @Stcest
! e

i, , R N\ dn
eral regime elastic constants are denoted by script capitals. Mot ot Him (2.19)
The isothermal stiffnesses can be obtained by differentiating '
the computed free energy ZSISA is thus seen to correspond to a state under external
5 ) stresses

T 1 JIF T 1( oF T ot
o =— A= =¥ _ Vb ~st s

e v (977)\(977# 7' ET’ M v (977}\(96k n',€ T e t'u‘_ Tk ij gj# (212

1 e since Egs(2.2) and(2.3) give 7, = 74°. If the solid is now

oL d ) . (2.4  allowed to relax to the true equilibrium, so that the external

V| dejdeq e T stress changes byt ,, and the internal stress by, then to

. . . . the first order the resultant change in external strain is
Compliances in the general regime are defined by

o~ ezl

(/,//T (07])\) . yT ((97])\) a&'k) ot A’I])\"" /)\,U«t# (/)\|7'| (213)
TVt M o Lo, T ~ = SH =T (2.1
L [ o€ Since 7/* is already of the first order, we can neglect the
f/”jﬁ(ﬁ . (2.5  difference between static and isothermal elastic constants,

KT and drop the superscriptsand st. The matrices”and.”” are
They can be computed by inverting tlfisymmetri¢ total ~ symmetric by definitionEgs. (2.4)] and so the second of
stiffness matrixz"; thus Egs. (2.6) enables us to substitute.,,7;, for .., 7, .

Using also Eq(2.8) and the symmetry o&;, , we find

o A~ TG — AP = (B = 7/*) =0
({;Lkdl—"%“élk:&jk; (26) ! Ik ! K : (215)
here and throughout this paper repeated suffices imply SUMkonfirming that to first order the true equilibrium external

mation. Themacroscopic regimeescribes laboratory condi- srain is the same as that given by ZSISA. However, ZSISA
tions, in which the internal stress is constéar#rg. In terms  goes not give the correct internal strain, for which a similar
of the general regime, the macroscopic stiffnesses and comygument, using the third of Eq2.6), gives

pliances are therefore given by

;1 °F
RY; IMInN,

Nl vt NC1H= 000 Wl TG =0;
N

o~
m

37] AEJ':—ijTXib. (21@
A
; SI;F(y)ﬂ . 2.7 These results are illustrated graphically in Fig. 1. The

® contours ofE! (dotted andF (continuougin z— e space are
The first of Egs.(2.5 show that the macroscopic compli- shown for a system with one external and one internal strain
ancesS, , are identical to the compliances, , in the general  coordinate. The continuous line shows the states of strain
regime. Inverting the submatrix’, , thus gives the macro- allowed by ZSISA, joining points on static contours with
scopic stiffnesseg, ,. Finally,1° we use gothic letters for a vertical tangents. The point where this line touches a contour

7', 7T
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FIG. 2. Linear chain of diatomic molecules.
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strain, but the choice of internal coordinate is arbitrary; here
we choose it to be the dilation of a molecule. The strain
coordinates are then

n=(a—ag)lag, €=(r—rg)lry, (3.1

wherea, andr g are the dimensions at the static lattice energy
" minimum. To the lowest order the intermolecular and in-
tramolecular tensions in the static lattice are then
FIG. 1. Energy contours for a system with one external and one internal st st
strain.--- , E: —, F. The continuous line shows the states of strain allowed Ty=MA@on—roe), T,=pu(ree), (3.2

by ZSISA. The pointA marks the equilibrium state of strain of the static , . .
lattice, the point the true equilibrium at temperatuffeand the point¢ the where\ and u are Hooke’s Law constants. The static lattice

state of strain given by ZSISA. energy per unit length is

1
> [M(@gn—T0€)?+ p(roe)?] 3.3
of F is the state obtained by then minimizifg To a first 2a9 ° 0 0
approximation the contours are identical sets of similar conys jllustrated by the dotted elliptical contours of Fig. 1. The
centric ellipses, but with different minima, and the continu-siatic stressesst and 7 (which for a one-dimensional model
ous line is straight. From this it is straightforward to show haye the dimensions of forgare obtained by differentiating

analytically, and very easy to show geometrically pro-  this expression with respect tpand e, respectively,
jecting the figure on to a plane such that the ellipses become

circles, that the true minimum oF lies directly above this t"=N(agn—roe) =Ty, (34
point, giving the same external strain. 1 fo

The effect that higher order terms will have on the va- TSt:a— [—\ro(agn—roe)+ urie]= X (Tff— .
lidity of ZSISA is not obvious. We may indeed expect the 0 0 3.5
elasticity of the crystal in its equilibrium state of strain to be '
softer than that of the static lattice in equilibrium, but pro-We see immediately that the ZSISA conditiafi=0 is
vided that all stiffnesses soften proportionately the shape ofquivalent toT; = T3', an obvious condition for internal
the contours in Fig. 1 will not alter. The argument remainsequilibrium, requiring
valid, as can be seen al_so from Eea.lé?), where the iso_ther_— e={\ag/[(\+ )Tl 7 (3.6)
mal stiffnesses will be simply proportional to the static stiff-
nesses and the Comp"ances will be proportiona| by a recipand that when the condition is SatiSﬁeat,giveS the correct
rocal factor. In general, however, stiffnesses will not softenMacroscopic static stress. However, wiéh T;'the values
proportionately, so that the ellipses will change shape an@ot only of 7 but also oft™ depend on our original choice of
orientation; furthermore, contours will depart from elliptical internal strain coordinate; for example, if we had chosén
Shape with increasing distance from the minima. Computabe the dilation of the intermolecular Springs, the roles\of
tions on specific models are needed to investigate when thnd « would have been interchanged, givitijequal toT;,

consequent inaccuracy of ZSISA becomes significant. instead ofT}". It follows thatt* has a simple physical mean-
ing only if there is internal equilibrium, when the model

corresponds to laboratory conditions. Otherwise, the dis-
placement from internal equilibrium must be maintained by
The formal analysis given above raises questions oadditional applied forcegsumming to zerp acting on the
physical interpretation. In particular, what is the nature of theatoms in each unit cell; the external applied forces then de-
external and internal stressgsand . , and why can they be pend on where and how the internal forces are applied. These
relaxed from the ZSISA state towards true equilibrium with-unphysical stresses arise in calculations either when an ap-
out disturbing the external strain? Such questions are convgroximation like ZSISA is used that forbids the lattice to
niently addressed by taking a specific model. reach its true internal equilibrium, or when separate stresses
Consider then the linear chain of diatomic moleculesare derived from different components of a total free energy.
shown in Fig. 2. To relate this model to the energy contours  We next consider the expansion of the lattice caused by
in Fig. 1, we must first define external and internal strainthe lattice vibrations, and in agreement with Fig. 1 suppose
coordinates. The external coordinate is the macroscopithat the anharmonicity of the springs is such that at the new

Ill. A ONE-DIMENSIONAL MODEL
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equilibrium both springs are extended from their original Finally, we should emphasize that in polyethylene the
lengths. At the old static lattice equilibriufy=€e=0) both  effect of deuteration involves additional mechanisms besides
springs are now under compression, but the ZSISA conditiothe simple change of C—H/D bond length suggested by Bar-
[Eq. (3.6)] allows them to relax together until the thrust in tell and Rosko$.In addition to possible effects arising from
one of the springs becomes zero. If the thrust in the othethe larger polarizability of the C—H bond, Lacksas drawn
spring also becomes zero at this point, the true equilibriunattention to the strong temperature dependence of the molar
has been reached, but in general this will not be so. In Fig. Ivolume isotope effect at temperatures where the C—H/D
it is the intermolecular springs that lose their compressiorbond lengths would not be expected to vary appreciably.
first, leaving the intramolecular springs still compressed. Thé& hat this is so should not be surprising, for several reasons.
ZSISA free energy can then be reduced further by addition
expansion, because initially the work required to stretch th
\-springs will be less than the work obtained from the
u-springs. ZSISA thus finally gives a state in which the mol-
ecules are compressed while the intermolecular bonds are
under tension. Clearly, when the ZSISA condition is no,..
longer imposed, it is possible for both springs to be at IeasE")
partly relaxed without alteringy. The analysis of Sec. Il
shows that to the first order the relaxation is complete.

Finally, it is worth noting that if instead of we take an
internal strain coordinafe that is a measure of the departure
from the ZSISA condition, e.g.,

i) Although the C—H stretching and bending vibrations

will be most affected by deuteration, lower frequency

vibrations involving chiefly interchain forces may

have larger amplitudes, thus enhancing the effect on

interatomic distances.

Many of the C—H bonds do not point towards the

nearest atom in a neighboring chain, making suspect

the assumption by Bartell and RosRdkat the radius

of a cylindrical polymer chain is increased by the in-

crease in bond length.

(i) The C—H bending vibrations cause the bond to li-
brate, and hence decrease the distance between the

e=e—{Nag/[(N+u)rol} 7, (3.7 mean positions of the C and the H atohs.

the second order expression for the static lattice energy is Thus not only is the effect of the change in C—H/D bond
now diagonal ine and 5, and there is then no elastic cou- length on crystal dimensions calculated by ZSISA to a first
pling between internal and external strainszin’e space the approximation, but also this effect may not be so great as has
principal axes of the ellipses become horizontal and verticalhitherto been supposed.

and the line for the ZSISA condition becomes horizontal

(e=0). It is then immediately obvious that the point giving

the true minimum ofF lies directly above the point giving ACKNOWLEDGMENTS
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