
Introduction

A polydisperse mixture of hard spheres with a contin-
uous range of sizes is a simple model of many colloidal
suspensions. A well-known example [1] is poly(methyl
methacrylate) (PMMA) stabilised by a thin polymeric
layer of poly(12-hydroxystearic acid) and dispersed in a
good solvent such as decalin. The colloidal particles in
this suspension interact via a short-range repulsion,
which is well represented by a hard-sphere interaction.
While many of the properties of uniform hard spheres
have been known for at least 30 years our understand-
ing of polydisperse mixtures is much less developed.
Most of the theoretical e�ort to date has concentrated
on exploring the consequences of polydispersity for
scattering [2]. In contrast, virtually no theoretical work
on polydisperse phase diagrams has been reported (until
recently [3±9]) despite the fact that many industrial
products are frequently very polydisperse. It is, how-
ever, clear that as soon as a suspension is allowed to
enjoy a signi®cant degree of polydispersity several
interesting new phenomena arise. First, increasing
polydispersity can suppress certain phase transitions.

For instance, the ¯uid±crystal phase transitions report-
ed in dispersions of latex particles of PMMA are only
found if the particles have a narrow range of sizes.
Pusey reported [1] that while PMMA spheres with a
polydispersity, r, of about 0.075 displayed a ¯uid±
crystal transition similar to that reported for identically
sized hard spheres, on increasing r to about 0.12 no
crystallites were found even after several months of
observation. Second, those transitions which still re-
main in polydisperse systems are frequently accompa-
nied by a fractionation of the particle size distribution
between coexisting phases [7]. Finally, polydispersity
can induce new transitions, not found for monodisperse
systems [8].

Despite both the practical importance and the
potential richness of polydisperse phase behaviour, the
mathematical complexity of treating a mixture with
essentially an in®nite number of components makes a
®rst-principles determination of a polydisperse phase
diagram a formidable task. We examine a simple model
for a system of polydisperse hard spheres with the aim of
developing some generic insight into the thermodynam-
ics of polydisperse transitions. We calculate the phase
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behaviour in two limits: the quenched limit, where
the size distribution in each phase is ®xed, and the
corresponding annealed limit, where particles redistrib-
ute so as to minimise the total free energy. The physical
signi®cance of these two limits is clear if we remember
that in a dense colloidal suspension collective di�usion is
appreciably faster than self-di�usion [1], so fractionation
will be slow. This di�erence in time scales implies that
freezing could occur in two stages in a polydisperse
suspension. First, a metastable suspension will relax its
density rapidly to equilibrium by growing a crystal
without fractionation (quenched behaviour). Then, over
much longer times, self-di�usion will occur and the size
distributions will relax towards the completely annealed
state [9]. We ®nd very di�erent results for the phase
behaviour in these two limits. In the quenched situation,
the polydisperse crystal is stable at low polydispersities
with the ¯uid±crystal transition only vanishing at
polydispersities above a certain terminal level, rt. In
contrast, in the annealed limit, the polydisperse crystal is
thermodynamically unstable and separates into several
solid phases, the number of which grows without limit as
the polydispersity increases.

The model

The size of each particle in a polydisperse mixture can
take any one of a set of essentially continuous values
distributed according to a distribution function x�R�.
The number density of spheres with diameter R is then
qx�R�dR, where q is the total number density. Since we
do not expect our ®nal results to depend signi®cantly on
the exact form of x�R� we choose a speci®c function for
de®niteness. The generalised-exponential distribution is
widely used to describe suspensions and is de®ned by
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where �R is the mean diameter and r is the standard
deviation in units of �R.

The polydisperse phase equilibrium is calculated using
the ®nite-moment approximation introduced by Sollich
and Cates [3] and Warren [4]. The justi®cation for this
approximation is the recognition that the excess free
energy in a polydisperse hard-sphere mixture depends
only on a limited set of moment densities, quantities such
as /n � qmn, where the nth moment mn is de®ned byR

Rnx�R�dR, rather than by the explicit form of x�R�. The
central idea is to treat the /n as independent thermo-
dynamic density variables. Since the moment variables
are simply linear combinations of species densities they
acquire many of the properties of conventional particle
densities. So, for instance, at equilibrium the moment
chemical potentials (de®ned by analogy to the particle
potentials), ln � of =o/n ( f � F =V ), are equal in all
coexisting phases. The accurate equation of state (EOS)
suggested by Boublik and Mansoori et al. [10] is used for
the polydisperse ¯uid, while the crystal is approximated
by a recently introduced EOS [11].

Quenched phase behaviour

In the quenched limit there is no size fractionation. The
polydisperse system now behaves essentially as a one-
component system with e�ective properties ®xed by the
polydispersity. The free energies of the polydisperse ¯uid
and the crystal phases are formally only a function of q
since mn are ®xed at their initial values. Phase bound-
aries are located by equating P and lq � of =oq. In the
monodisperse limit we recover the expected transition
from a ¯uid phase at a volume fraction of g � �p=6�/3 �
0:49 to a crystalline phase at the higher volume fraction
g � 0:55. This is the only transition in the monodisperse
limit. Figure 1a shows how the phase boundaries shift
with increasing polydispersity. The ®rst e�ect increasing
r has is to progressively narrow the ¯uid±crystal
coexistence region until it eventually vanishes at the

Fig. 1a, b Quenched phase behav-
iour for polydisperse hard spheres.
a Phase boundaries in the polydis-
persity (r)±volume fraction (g)
plane. The miscibility gap vanishes
at the azeotrope, marked by the
®lled circle. b The Gibbs-free-energy
di�erence per particle, Dg � gs ÿ gf,
as a function of the dimensionless
pressure. The circles mark the ¯uid±
crystal transitions and the ®lled
circle marks the position of the
azeotrope
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terminal point rt � 0:083 and gt � 0:59. At high poly-
dispersities, the free-energy di�erence between the
crystal and ¯uid phases is a nonmonotonic function of
the density or equivalently of the pressure (Fig. 1b). This
indicates that at high densities there is an additional
transition in the polydisperse system from the crystal
back to a disordered phase. The range of densities over
which the crystal is stable shrinks with increasing
polydispersity until, at the terminal polydispersity, it
has disappeared completely from the equilibrium phase
diagram [5].

Annealed phase behaviour

The phase diagram depicted in Fig. 1a describes
quenched freezing where mn are ®xed at their initial
values. A natural question is what happens if we relax
this constraint and allow particles to redistribute? This is
more di�cult to answer on two counts: ®rst, because
we have to deal with an e�ective four-component free
energy f �q;/1;/2;/3� and second, the expression de-
rived by Warren [4] for the reduced entropy, s, is
intractable analytically for two or more moments. Here,
we do not attempt to derive the equilibrium phase
diagram from ®rst principles. Instead, we investigate
the stability of the polydisperse crystal phase to small
¯uctuations in moment densities. We ®nd that a
polydisperse crystal is always stable against ¯uctuations
in the total number density but, above a certain density,
is unstable against polydispersity ¯uctuations. This
instability suggests that the equilibrium annealed state
is one in which the broad initial diameter distribution is
split into several narrower fractions. We con®rm this
hypothesis by comparing the free energies of polydis-
perse ¯uid, crystal and multiply fractionated solid
phases and ®nd that multiple crystal phases are stable
over large regions of parameter space.

The criterion for stability of the polydisperse crystal
is the standard one that the matrix of second partial
derivatives of f with respect to the moment densities
(including /0 � q amongst these) should be positive
de®nite. The plane in the moment space where the
determinant o2f =o/io/j

�� �� � 0 de®nes the position of
the mean-®eld spinodal. Generally, the determinant is
always positive except at high densities and polydisper-
sities. The numerically determined spinodal with the
instability region increasing as the degree of polydisper-
sity increases is shown in Fig. 2. The origin of the
instability is revealed by the direction in moment space
along which the ¯uctuations diverge as the spinodal
plane is crossed. The instability direction is de®ned by
the eigenvector of the matrix o2f =o/io/j whose eigen-
value vanishes at the spinodal. The arrows on the
spinodal line in Fig. 2 indicate the direction of the
rapidly growing ¯uctuations, projected into the (r,g)

plane. The arrows are almost parallel to the r-axis so the
system is unstable towards a composition ¯uctuation in
which r and not q changes. The physical interpretation
of this instability is straightforward. A close-packed
crystal of monodisperse hard spheres has a maximum
density of gcp � 0:74 at which each sphere contacts its
12 equally sized nearest neighbours. In a polydisperse
crystal, by contrast, there is a ®nite chance that one of
the neighbouring spheres will be larger than the mean
and these two spheres will then touch at a density
g < gcp. Consequently, increased polydispersity lowers
the packing e�ciency of the crystal. Compressing a
polydisperse crystal results in phase separation since
at some density the reduction in excess free energy as
fractionation occurs will exceed the resulting loss of
entropy of mixing.

The physical picture that emerges is that a crystalline
lattice can only accomodate spheres with a narrow range
of sizes, the width of the sizes being determined by the
density. At high densities not all the di�erently sized
spheres can crystallise into a single solid phase. In order
to crystallise they must ®rst fractionate before crystall-
ising individually into separate solid phases each con-
taining spheres of a di�erent size. To con®rm this picture
we compare the free energies at each point in the (r, g)
plane of the polydisperse ¯uid, the unfractionated
crystal (of polydispersity r) and m coexisting solid
phases (each with a polydispersity of r=m). The resulting
stability diagram is shown in Fig. 3. It is clear that there
are large regions of parameter space where fractionated
crystal phases are stable.

Fig. 2 The annealed spinodal (solid line) and critical point (®lled
circle) of the polydisperse hard-sphere crystal in the r±g plane. The
arrows indicate the spinodal instability direction
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Conclusions

We have shown that the e�ect of small levels of
polydispersity is to narrow the width of the region of
¯uid±crystal coexistence. At higher levels of polydisper-
sity, however, the phase behaviour predicted depends

sensitively on the time scale for fractionation. If the
kinetics of fractionation is slow compared with crystal
nucleation and growth, as we conjecture should be the
case for dense suspensions, then the ¯uid±crystal
transition is reentrant. Above some density the polydis-
perse crystal melts back to an amorphous phase and the
range of densities over which the polydisperse crystal is
stable shrinks rapidly as one approaches a critical level
of polydispersity. If there is either no signi®cant
separation between the time scales for the relaxation of
the total density and the polydispersity or we are
interested in the long-time properties then we expect
very di�erent behaviour. In this case the polydisperse
hard-sphere crystal is thermodynamically unstable with
a tendency to separate into multiple crystal phases,
each containing spheres of a di�erent size. Finally we
comment on the relevance of our predictions to exper-
iment. Although it is not clear yet from the limited
experimental data available which (if either) of these two
extreme limits is appropriate to the freezing of real
colloidal systems our key result is the demonstration
that the kinetic behaviour of polydisperse systems could
prove to be very rich. Its elucidation remains a challenge
to experimentalists.
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