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Fractionated crystallization in a polydisperse mixture of hard spheres
Paul Bartlett
Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom

~Received 10 July 1998; accepted 18 September 1998!

We consider the nature of the fluid–solid phase transition in a polydisperse mixture of hard spheres.
For a sufficiently polydisperse mixture (s.0.085) crystallization occurs with simultaneous
fractionation. At the fluid–solid boundary, a broad fluid diameter distribution is split into a number
of narrower fractions, each of which then crystallize. The number of crystalline phases increases
with the overall level of polydispersity. At high densities, freezing is followed by a sequence of
demixing transitions in the polydisperse crystal. ©1998 American Institute of Physics.
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I. INTRODUCTION

Equal-sized hard spheres constitute probably the s
plest example of a purely entropic material. In a hard-sph
system there is no contribution to the internal energyU from
interparticle forces so thatU is a constant, at a fixed tem
perature. Minimizing the free energy,F5U2TS, is thus
simply equivalent to maximizing the entropyS. Conse-
quently, the structure and phase behavior of hard spher
determined solely by entropy. Although the hard-sph
model was originally introduced as a mathematically sim
model of atomic liquids1 recent work has demonstrated
usefulness as a basic model for complex fluids.2 Suspensions
of submicron poly~methyl methacrylate! or silica colloids,
coated with a thin polymeric layer so that strong repulsio
dominate the attractive dispersion forces between the co
dal cores, behave in many ways as hard spheres. In the
decade, a great deal of effort has been devoted to system
studies of such colloidal ‘‘hard-sphere’’ systems.3 For suffi-
ciently monodisperse colloids, crystallization is observed
densities similar to those predicted by computer simulat
for hard spheres.4,5 Measurements of the osmotic pressu
and compressibility show a similar dramatic agreement w
predicted hard-sphere properties.3

There is, however, one important and unavoidable
ference between colloids and the classical hard-sphere m
which is frequently overlooked. Whereas the spheres in
classical model are identically sized~i.e., monodisperse! col-
loidal particles have an inevitable spread of sizes which
most conveniently characterized by the polydispersity,s, de-
fined as

s5~R22R̄2!1/2/R̄, ~1!

where

rRn5E dRr~R!Rn, ~2!

with r(R) the density distribution andr5* dRr(R).
Recent work has revealed that as soon as a hard-sp

suspension is allowed to enjoy a significant degree of po
dispersity, several interesting new phenomena arise. Exp
ments find that the crystallization transition is suppres
10970021-9606/98/109(24)/10970/6/$15.00
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altogether ats'0.12 while samples withs50.075 crystal-
lize only slowly in the coexistence region and not above
melting transition.3 Other examples of the effects of polydis
persity are the appearance of a demixing transition in a p
disperse fluid of hard spheres6,7 and the observation of a
liquid–vapor transition in polydisperse adhesive ha
spheres.8

The effect of polydispersity on the crystallization o
hard-sphere colloids has been investigated by comp
simulation,9–11 density functional,12,13 and analytical
theories.14,15 The picture that emerges is remarkably cons
tent. All calculations find that the fluid–solid phase transiti
vanishes for polydispersities above a certain critical le
sc . The phase diagram for small polydispersities (s<sc)
has been rationalized15 in terms of the appearance of an a
ditional high density crystal-to-fluid transition, in a polydis
perse system. While, at low polydispersities hard sphe
display, with increasing density, the conventional fluid-t
crystal transition, at higher polydispersities re-entrant beh
ior is predicted. The two freezing transitions converge to
single point in the~f,s! plane which is a polydisperse ana
logue of the point of equal concentration found in molecu
mixtures.16 At this singularity, the free energies of the poly
disperse fluid and crystal phases are equal.

The purpose of this note is to examine the fate o
highly polydisperse (s.sc) hard-sphere fluid. Previous the
oretical research has not been able to identify a fluid–s
transition fors.sc so it is generally believed that the equ
librium phase is disordered at all densities up to close pa
ing. Several years ago, Pusey17 suggested that a highly poly
disperse suspension might crystallize by splitting the bro
overall distribution into a number of narrower distribution
of polydispersityss , each of which could be accommodate
within a single crystalline phase. Each crystal would th
have a correspondingly different mean size with the num
of crystalline phases increasing with the overall polydisp
sity. For fractionated crystallization to occur the total fr
energy of the set of multiple crystals must be lower than t
of the equivalent polydisperse fluid. This can only happen
the reduction in free energy as particles are removed fro
fluid and placed in a crystal is sufficiently large to exceed
loss of entropy of mixing as the distribution is partitione
0 © 1998 American Institute of Physics
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This is a delicate balance and it is far from obvious where
result lies. Pusey, for instance, originally suggested that f
tionation would generate crystals with a polydispersity ofsc

so as to minimize the number of crystal phases required
the subsequent loss of entropy of mixing. However, as no
above, atsc the free energy of the polydisperse fluid a
crystal phases are equal15 and so there is no driving force fo
fractionation.

In earlier work15 the possibility of fractionated crystalli
zation for s.sc was considered but no conditions whe
two crystal phases could coexist could be found. Here
re-examine the stability of a polydisperse hard-sphere fl
using a much simpler approach. Rather than solving
equations of phase equilibria in a polydisperse system
restrict ourselves to the easier task of comparing the
energies, at the same density and temperature, of crysta
fluid phases. We find, in agreement with Pusey,17 that frac-
tionation occurs in polydisperse hard-sphere mixtures
that the polydispersity of the resulting crystals is subst
tially less thansc .

The rest of the paper is organized as follows: in Sec
we present our model for the free energies of the polyd
perse fluid and crystal phases. The stability diagram is p
sented in Sec. III. Finally, in Sec. IV we summarize a
conclude.

II. THE MODEL

Our model consists ofN hard-sphere particles in a vo
umeV, at an overall density ofr5N/V. Each particle has a
diameterR drawn from some overall distributionr(R) so
that r5* dRr(R). Previous work has suggested17 that the
thermodynamic properties of a polydisperse system are r
tively insensitive to the detailedshapeassumed for the di-
ameter distribution, at least when the polydispersity is sm
(s,0.1). Indeed the phase behavior has been found,18 to a
rather good approximation, to be a function only of the fi
three moments of the diameter distribution,r, R̄, and the
normalized width s. For a broad diameter distribution
higher moments will presumably also need to be conside
Consequently, the phase behavior will become increasin
sensitive to the shape of the distribution assumed. Howe
we expect that the width of the distribution will still play a
important if not the dominant role in determining the gene
features of the phase behavior of a polydisperse sys
Since our concern here is with establishing these gen
features of the polydisperse phase diagram we have ta
r(R) as a simple rectangular distribution,

r~R!5rH 0

~R̄w!21

0

R,R̄~12w/2!

R̄~12w/2!<R<R̄~11w/2!

R.R̄~11w/2!

, ~3!

whereR̄ is the mean diameter and the normalized widthw is
related directly to the conventional polydispersitys by w
52)s. It will prove convenient to choose as variables t
mean diameterR̄, the polydispersitys and the volume frac-
tion f5(p/6)* dRr(R)R35(p/6)rR̄3(11w2/4).
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Our first task is to calculate the thermodynamics of t
fluid state. The free energy density (f 5F/V) may be conve-
niently split into ideal and excess portions

f 5 f id1 f ex. ~4!

The ideal part of the free energy density is given by
straightforward generalization of the free energy of an id
gas as

b f id5E dRr~R!@ ln r~R!21#, ~5!

with b51/(kBT). For the case of the rectangular distrib
tion, the ideal free energy density is simply

b f id5r~ ln r21!2r ln~R̄w!. ~6!

We calculate the excess free energy density,f ex, of the poly-
disperse fluid from the general equation of state given
Salacuse and Stell.19 This equation of state is a straightfo
ward generalization of the highly successful EOS for an
bitrary hard-sphere mixture20 first considered by Mansoor
et al. The Mansoori EOS has been checked against sim
tion data by a number of authors and agreement is gene
excellent. The free energy per particle (F 5F/N) is then
F f5( f f

id1 f f
ex)/r.

Now we consider the free energy of the fractionat
solid phase. Since as mentioned above, we expect the n
ber of crystals to depend upon the overall polydispersitys of
the parent distribution, we consider the general case oP
coexisting crystals. In order to establish some relation
tween the parent distributionr(R) and the sub-distribution
r i(R), found in thei th crystal, we make two assumption
First, we choose the distribution in each crystal to be rect
gular and second, to keep the theory computationally m
ageable, we force the width~or polydispersity! to be equal in
each of theP coexisting phases. With these two restrictio
the housekeeping of the fractionation process is straight
ward. Thei th crystal, for instance, contains allNi particles
whose diameters lie betweenR̄@12ws(11(P/2)2 i )# and
R̄@12ws((P/2)2 i )# with ws , the width of the crystal dis-
tribution, given byws5w/P. The mean diameter of particle
in the i th crystal is then simply given as

R̄i5R̄F12
ws

2
~11P22i !G ~7!

and the polydispersity of each crystal isss5s/P. The di-
ameter distribution in thei th crystal is then

r i~R!5r iH 0

~R̄iws!
21

0

R,R̄i~12ws/2!

R̄i~12ws/2!<R<R̄i~11ws/2!

R.R̄i~11ws/2!

, ~8!

at an overall density ofr i5Ni /Vi with Vi the volume of the
i th phase. Although the number of particles in each crys
phase is the same for all crystals and equal toN/P ~since the
polydispersity of each crystal is assumed equal! the volume
Vi of each phase is so far undetermined. To fix the volum
or equivalently the number densityr i , of each crystal we use
the fact that the crystals are in equilibrium with each oth
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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This constraint is straightforward to apply since, in o
model of the partition, no particle may exist in anymore th
one crystal. Consequently we do not need to consider
change of particles. Equilibrium simply requires that the
motic pressure of each crystal,P i , be fixed and equal to an
external pressure of, say,P

P i~r i ,ss ,R̄i !5P. ~9!

With the density of each crystal phase determined, the t
number density of the set ofP coexisting crystals is then

r̄s5
P

( i 51
P ~1/r i !

~10!

and the corresponding composite packing fraction isf̄

5(p/6)r̄sR̄
3(11w2/4). The mean free energy per particle

F̄ s
P5

1

P (
i

f i

r i
, ~11!

where f i is the free energy density of thei th crystal.
To complete our model for the fractionated phases

need an expression for the excess free energy of a poly
perse crystal. For that purpose we use a scaled par
theory. Since the details have been described elsewhere14 we
just outline the approach here. The model exploits the pic
of particles in a solid as being confined in cells or cag
formed by the neighbors from which they cannot esca
While in a monodisperse crystal the cells are all identical
a polydisperse crystal the size and shape of the cell va
The idea is to recognize that one can allow for the variabi
in the cell shape to a first approximation, by considering j
a finite number of different-sized neighbors. The number
different-sized particles is determined by the accuracy w
which the properties of the finite mixture approximate tho
of the polydisperse system. If the excess free energy of
polydisperse system is a function of the firstp moments of
the diameter distribution@p/2# different-sized spheres ar
needed to match the diameter moments of the continu
distribution (@x# is the smallest integer not less thanx!. For
a polydisperse system of hard spheres, highly succes
mean-field theories such as the Percus–Yevick approxi
tion suggest that only four diameter moments a
significant.19 In this case, the properties of a polydisper
system should be well approximated by a binary mixture
spheres, chosen so that the first four moments of the p
disperse and binary distributions are equal. The two diam
distributions are ‘‘equivalent’’ and all excess properties a
to a first approximation, equal. For the rectangular distri
tion the equivalent binary distribution has an equal num
of large and small spheres with diametersR̄i(11ss) and
R̄i(12ss), respectively. Specifically then, we equate the e
cess free energy of the polydisperse crystal with that of
equivalent binary substitutional crystal. For the evaluation
the latter we take advantage of the analytical express
quoted by Kranendonk and Frenkel21 as fits to Monte Carlo
simulation results. Combining the excess free energy w
the ideal free energy density,

b f i
id5r i~ ln r i21!2r i ln~R̄iws! ~12!
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yields the free energy densityf i of the i th crystal. Finally,
we note that our model for the polydisperse crystal implici
assumes that all different-sized spheres are placed rand
on the sites of a common fcc lattice. At high polydispersiti
the smallest particles in the distribution could also be acco
modated within the interstices of a crystal of larger particl
The current calculations ignore this possibility and so
valid only for polydispersities ofs&0.3.

Putting everything together, we now calculate the diffe
ence free energy per particle,DF P5F s

P2F f , between the
polydisperse fluid and the fractionated set ofP crystals as
follows. The overall particle density distribution of either th
set of crystals or the polydisperse fluid is characterized
identical values for the overall volume fractionf̄, the poly-
dispersitys and the mean diameterR̄. For fixed f5f̄, s

andR̄, the free energy of the fluidF f is calculated from Eqs.
~6! and the Mansoori EOS. Combining Eqs.~9! and~10! we
see that the overall volume fractionf̄ of the solid phases~or
equivalently the mean densityr̄s! may be considered as
function of the osmotic pressureP. Inverting this relation
yields the osmotic pressureP and so, from Eq.~9!, the den-
sities r i of each of the coexisting crystals which taken t
gether have an overall volume fraction off̄. Knowing the
density, polydispersityss5s/P and mean diameterRi @from
Eq. ~7!# of each crystal it is straightforward to calculate th
corresponding free energy densityf i and the mean free en
ergy F s

P of the multiple crystals from Eq.~11!.

III. RESULTS

We now present in detail results for the stability of
system of polydisperse hard spheres obtained from
theory described above. In Fig. 1, we show the free ene
difference,bDF P, between the fractionated crystals and t
fluid phase as a function of polydispersity, for the repres

FIG. 1. The free energy difference per particle, at a constant packing f
tion of f50.6, between polydisperse crystalline and fluid phases as a f
tion of polydispersity. The number of coexisting crystals is detailed in
legend. The arrows mark the polydispersity limits between which the fr
tionated binary crystals are stable.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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tative density off50.60. The first question to be address
is the relative stability of the various fractionated cryst
and the fluid phase.

Referring to Fig. 1, we see that for low levels of pol
dispersity, at this density, the crystal has a significantly low
free energy than the fluid phase. However, with increas
polydispersity, the stability of the polydisperse crystal
duces rapidly until fors*0.084 the unfractionated polydis
perse crystal is unstable relative to the fluid phase. The or
of this behavior lies in the different ways polydispersity a
fects the maximum packing fraction, or equivalently the fr
volume, of ordered and disordered structures. In a flu
smaller particles are free to pack in the cavities betw
larger particles and so the free volume and thus the entr
increases with polydispersity. Conversely, the periodicity
a crystal causes the free volume and entropy of a poly
perse crystal to decrease with increasing polydispersity. C
sequently the free energy of a fixed-density polydispe
crystal will diverge at a critical level of polydispersity a
which the fluid free energy will remain finite. Second, w
note from Fig. 1 that at low polydispersities, fractionating t
distribution into two or more crystals always raises the f
energy of the solid state. This is because of the loss of
tropy of mixing as the diameter distribution is split up. Th
contribution to the free energy difference,bDF P, due to the
loss of entropy of mixing is simply:

bDF mix
P 5 ln P ~13!

for fractionation intoP crystal phases which is very close
the differences seen in Fig. 1 ass→0. However, at finite
polydispersities, Eq.~13!, does not give a reasonable es
mate of the free energy differences between the various
of crystals. As is evident, the free energybDF P reduces
with increasing polydispersity. The reduction being sma
as the number of crystals considered increases. This is
cause the polydispersity of each fractionated crystal drop
the total number of crystals, between which the overall d
tribution is split, increases. For instance, fractionating a d
tribution with a polydispersity of 6% between two phas
would result in crystals with 3% polydispersity, three phas
would lead to 2% polydispersity and so on. As the polyd
persity of each of the individual crystals decreases the in
ence of the divergence of the free energy at the close-pac
limit is reduced and so the free energy is less affected by
overall polydispersity. As a consequence the fractiona
two-crystal phase takes the place of the polydisperse sin
phase crystal, as the state of lowest free energy, fos
.0.078 and remains the most stable phase untils50.099, at
which point the fluid appears.

By a procedure similar to that described above, we h
mapped out the range of stability of the polydisperse h
sphere system fors<0.20. Our results are shown in Fig.
The regions are labeled by the number of coexisting crys
which minimize the total free energy of the polydisperse s
tem while the boundaries indicate the specific densities
polydispersities at which competing phases have equal
energies. As is evident, there are appreciable areas of de
and polydispersity where fractionation into multiple crysta
is predicted.
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At low volume fractions,f,0.516, the polydisperse
fluid is the most stable phase at all polydispersities. Ho
ever, with an increase in packing fraction a crystalline ph
takes the place of the polydisperse fluid as the most st
phase. The nature of the crystalline phase depends on
magnitude of the polydispersitys. So while fors,0.085 we
have crystallization into the usual single polydisperse crys
with increasing polydispersity the fluid fractionates upon s
lidification into a rapidly increasing number of crystals. Th
diagram gets more and more complicated as the polydis
sity grows since, by necessity, the number of crystall
phases required to accommodate the increasing width of
diameter distribution increase. So while for polydispersit
in the range 0.085,s,0.117 two fractionated crystals ar
first formed, three crystals are required for 0.117,s
,0.145, four for 0.145,s,0.171, five for 0.171,s
,0.195 while ats50.20 complete crystallization require
six different crystal phases. Furthermore, we note that as
polydispersity increases the packing fraction at which
fluid becomes unstable increases fromf50.516 ats50 to
f50.665 ats50.20. The degree of fractionation predicte
varies with the overall level of polydispersity. Referring
Fig. 3, we see that the polydispersity of the crystal~s! at the
fluid–solid boundary reaches a maximum of 0.085 before
average falling with increasing fluid polydispersity, althou
in from far a continuous fashion. Where fractionation occu
Fig. 3 reveals that the polydispersity of each crystal form
is considerably lower than the critical polydispersity, es
mated here assc'0.085.

In addition to the fluid-multiple crystal transitions dis
cussed above, Fig. 2 reveals that there is a further sequ
of demixing transitions in the solid phase. Compressing
polydisperse crystal causes a solid-state phase separati
which the diameter distribution is fractionated. For instanc
polydisperse crystal withs50.08 is stable up to a density o
f50.597. At this point the system separates into two cr
tals, each of polydispersitys50.04, which are stable until a

FIG. 2. The stability diagram of a polydisperse hard-sphere mixture. In e

region of volume fractionf̄ and polydispersitys the phase with the lowes
free energy is indicated. Crystalline regions are labeled by the numbe
coexisting crystal phases.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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total density off50.667 is reached. Further compressi
results in three crystals, followed at still high densities by
cascade of demixing transitions. The explanation for this
havior lies in the effect of polydispersity on the limitin
packing fraction of a crystal. As mentioned previously, t
density at which the free energy of a polydisperse cry
starts to diverge reduces with increasing polydispersity. A
polydisperse crystal is compressed there comes a poin
which the reduction in the excess free energy which occ
when the polydispersity is reduced is sufficient to exceed
increase in the ideal free energy of mixing after fractionati
At this point the crystal phase separates.

Finally, we emphasize that we have calculated only
stability boundaries, not the full equilibrium phase diagra
of a system of polydisperse spheres. The reason for th
that a full calculation of the phase equilibria, particularly
view of the large number of competing phases found in t
work, would be a large and complicated problem. Howev
we expect our stability diagram~Fig. 2! to be a useful guide
to the form of the phase diagram. Confirmation of this po
of view is provided by the comparison, seen in Fig. 4, b
tween the current model and the fluid-single crystal coex
ence region established in earlier work.15 The dashed curve
indicate the positions of the polydisperse cloud-point bou
aries and were calculated by a novel moment projec
method using, as input, polydisperse free energies simila
those described above. Referring to Fig. 4, we see that
stability boundary lies approximately midway between t
two coexistence densities. Inspection of Fig. 4 reveals, ra
intriguingly, that the polydisperse point of equal concent
tion, marked by the large circle in Fig. 4, is practically coi
cident with the lowest density at which the binary system
fractionated crystals is stable. This seems to be a cha
occurrence. However, the proximity of the two points su
gests that, at equilibrium, the re-entrant melting predicted
Ref. 15 will in fact be pre-empted by a solid-state pha
separation.

FIG. 3. The polydispersity,ss , of the fractionated crystalline phase forme
at the fluid–solid boundary as a function of the fluid polydispersitys.
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IV. DISCUSSION AND CONCLUSIONS

We have analyzed the stability of a polydisperse fluid
hard spheres with respect to a process of simultaneous
tionation and crystallization. Although the model is qui
simple we find several interesting features. In particular,
predict that for a sufficiently polydisperse system of ha
sphere fractionation occurs upon solidification. The fluid
ameter distribution separates into a number of fractions
narrower polydispersity which then crystallize. Furthermo
we find that compressing a polydisperse crystal induce
sequence of demixing transitions in the crystal.

To keep the theory presented here manageable we
been forced to make a number of assumptions. We have
instance, imposed a somewhat arbitrary model for the fr
tionation process. In particular we have assumed that a r
angular diameter distribution fractionates into a number
equal-width daughter distributions, each of which is a
rectangular in form. In principle, we could relax the co
straint of equal width. However, since the densities of
coexisting crystals are similar it seems likely that this mo
fication would have little effect. The more critical restrictio
is probably the assumption made for the form of the daugh
distribution. However, in view of the relative insensitivity o
polydisperse systems to the detailed form chosen for the
ameter distribution, we expect that the current predictio
will be in at least qualitative if not quantitative agreeme
with more rigorous calculations, when available.

We now speculate briefly on the feasibility of observin
solid-state fractionation in experiments on hard-sphere
loids. The first point to note is that fractionation requir
colloid diffusion over distances comparable to the size of
growing crystallite. The rate of such large scale diffusi
motion reduces with increasing colloid density, as a resul
caging effects, and essentially vanishes at the glass trans
density,fg .3 For uniformly sized hard-sphere simulations22

find a long-lived metastable glassy state aroundfg50.58

FIG. 4. A comparison between the current stability diagram~solid lines! and
the fluid–solid coexistence predicted in Ref. 15~dashed lines!. The large
circle marks the position of the polydisperse point of equal concentrat
The thick dotted line denotes the estimated location of the polydisperse g
transition.
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which persists up to the random close-packing limit atf rcp

50.64. The glass transition in a system of polydisperse h
spheres has not been studied to the best of our knowle
although Schaertl and Silescu23 have estimatedf rcp as a
function of polydispersity from simulation. Assuming
simple linear relationship between the two densities give
crude estimate of the glass transition density asfg(s)
'(0.58/0.64)f rcp(s). Referring to Fig. 4, we see that if thi
estimate for the glass transition is used, then fractiona
crystallization might be experimentally observable for po
dispersities in the narrow range 0.08,s,0.11 where diffu-
sive motion is still possible although slow. If conversely, t
dynamics of the fractionation process turn out to be app
ciably slower than the experimental timeframe then exp
ments should follow our earlier predictions15 and exhibit a
polydisperse point of equal concentration. A clear resolut
of this ambiguity must await experiment.

Finally, our results suggest a possible explanation for
apparently anomalous simulations reported by Bolhuis
Kofke.10 In contrast with other theoretical work, this stud
found that:~i! the particle size distributions in the fluid an
crystal phases were significantly different and~ii ! that the
coexistence region although initially narrowing with increa
ing polydispersity finally widened. The phase diagram w
traced out by integrating along the fluid–crystal coexiste
line. Implicit in this approach is the assumption that only o
crystalline phase exists at the fluid–solid boundary. Re
ring to Fig. 2, we envisage that at the point where two po
disperse crystals become stable the simulation will foll
one of the two fluid–solid branches until it halts at the d
continuity marking the start of the three-crystal region. W
this picture in mind, we may readily account for the obs
loaded 10 Oct 2010 to 137.222.10.113. Redistribution subject to AIP licens
rd
ge
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vation that at the point, where the simulation could no long
follow the fluid–solid boundary, the crystal polydispersi
was almost exactly half that of the fluid value. At the sam
time, we note that their limiting polydispersity (s50.118)
lies close to our estimate for the highest polydispers
~0.117! at which two polydisperse crystals remain the eq
librium phase.
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