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Fractionated crystallization in a polydisperse mixture of hard spheres
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We consider the nature of the fluid—solid phase transition in a polydisperse mixture of hard spheres.
For a sufficiently polydisperse mixturec-0.085) crystallization occurs with simultaneous
fractionation. At the fluid—solid boundary, a broad fluid diameter distribution is split into a number
of narrower fractions, each of which then crystallize. The number of crystalline phases increases
with the overall level of polydispersity. At high densities, freezing is followed by a sequence of
demixing transitions in the polydisperse crystal. 98 American Institute of Physics.
[S0021-96068)51548-9

I. INTRODUCTION altogether atr=~0.12 while samples witl-=0.075 crystal-
. ) . lize only slowly in the coexistence region and not above the

Equal-sized hard spheres qonstltutg probably the Slmr'nelting transitior® Other examples of the effects of polydis-
plest example of a purely entropic material. In a hard-spherge i are the appearance of a demixing transition in a poly-
system there is no contribution to the internal enébgifom  isnerse fluid of hard sphefesand the observation of a
interparticle 'fqrc'e's so thdl is a constant, at a f|>.<ed tem- liquid—vapor transition in polydisperse adhesive hard
perature. Minimizing the free energf,=U-TS, is thus sphereg,
simply equivalent to maximizing the entrop§. Conse- The effect of polydispersity on the crystallization of

quently, the structure and phase behavior of hard spheres Iiﬁard-sphere colloids has been investigated by computer
determined solely by entropy. Although the hard—spheresimulation?_ll density functionat>!® and analytical

model was originally introduced as a mathematically simpley,q o iesi415 The picture that emerges is remarkably consis-
model of atomic I|q_U|d§ recent work has d.emonstra.ted 't tent. All calculations find that the fluid—solid phase transition
usefulne;s as a basic model for complex fIl}.|'GEmspens'|ons vanishes for polydispersities above a certain critical level
of submicron polymethyl methacrylateor silica colloids, .. The phase diagram for small polydispersities<(c-.)
coated with a thin polymeric layer so that strong repulsions'_lgs been rationaliz&din terms of the appearance of a; ad-
dominate the attractive dispersion forces between the COIIOiditionaI high density crystal-to-fluid transition, in a polydis-

gal cgres, beh?’; inl rr;an%/ v;/z:]ys T)S harg sp?e(;e:[s. In tthe ! rse system. While, at low polydispersities hard spheres
ecade, a great deal of efiort has been devoted 1o systema ?splay, with increasing density, the conventional fluid-to-

SFUd'eS of sugh colloidal h.ard—sphere- sy_ster'anor suffi- crystal transition, at higher polydispersities re-entrant behav-
ciently monodisperse colloids, crystallization is observed afor is predicted. The two freezing transitions converge to a

densities similar t50 those predicted by compute_r simulationsingle point in the(,o) plane which is a polydisperse ana-
for hard Sphefefé.- Measuremer)ts of the gsmotlc pressurelogue of the point of equal concentration found in molecular
and compressibility show a similar dramatic agreement Wlﬂ}mxtures_le At this singularity, the free energies of the poly-

predicted hard-sphere prope'rt?t-:‘s. . .. disperse fluid and crystal phases are equal.
There is, however, one important and unavoidable dif- The purpose of this note is to examine the fate of a

ference between colloids and the classical hard-sphere modﬁ-l ; ; -

S . ighly polydisperse ¢> o) hard-sphere fluid. Previous the-
V\:h'ch ISI freqdue]ntly %verlpolﬁed._vv_hereas thz_sphereslm th‘(Jbretical research has not been able to identify a fluid—solid
classical model are identically sizéde., monodispergecol- .transition foro> o so it is generally believed that the equi-

loidal particlgs have an ineyitable spread of.sizes. which Sibrium phase is disordered at all densities up to close pack-
most conveniently characterized by the polydispersitydje- ing. Several years ago, Puséguggested that a highly poly-

fined as disperse suspension might crystallize by splitting the broad
U:(@_ﬁz)l/zlﬁ, (1) overall distribution into a number of narrower distributions
of polydispersityog, each of which could be accommodated
where within a single crystalline phase. Each crystal would then
o have a correspondingly different mean size with the number
pR“:J dRp(R)R", (2) of crystalline phases increasing with the overall polydisper-
sity. For fractionated crystallization to occur the total free
with p(R) the density distribution and= [ dRp(R). energy of the set of multiple crystals must be lower than that

Recent work has revealed that as soon as a hard-spheséthe equivalent polydisperse fluid. This can only happen if
suspension is allowed to enjoy a significant degree of polythe reduction in free energy as particles are removed from a
dispersity, several interesting new phenomena arise. Experiluid and placed in a crystal is sufficiently large to exceed the
ments find that the crystallization transition is suppressedoss of entropy of mixing as the distribution is partitioned.
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This is a delicate balance and it is far from obvious where the  Our first task is to calculate the thermodynamics of the
result lies. Pusey, for instance, originally suggested that fracluid state. The free energy density< F/V) may be conve-
tionation would generate crystals with a polydispersityrof  niently split into ideal and excess portions
so as to minimize the number of crystal phases required and | _iq, ,ex

g f=fld+fex 4
the subsequent loss of entropy of mixing. However, as noted
above, ato. the free energy of the polydisperse fluid and The ideal part of the free energy density is given by a
crystal phases are eqlaind so there is no driving force for straightforward generalization of the free energy of an ideal

fractionation. gas as
In earlier work® the possibility of fractionated crystalli-
zation for o> o, was considered but no conditions where ﬁfid:J dRp(R)[In p(R)—1], (5

two crystal phases could coexist could be found. Here we

re-examine the stability of a polydisperse hard-sphere fluidvith s=1/(kgT). For the case of the rectangular distribu-
using a much simpler approach. Rather than solving théon, the ideal free energy density is simply

equations of phase equilibria in a polydisperse system we , —

restrict ourselves to the easier task of comparing the free  Bf“=p(In p—1)—p In(Rw). (6)

energies, at the same c_;lensity and temperature, of crystal afgle calculate the excess free energy den$Ry;, of the poly-

fluid phases. We find, in agreement with Puséshat frac-  gisperse fluid from the general equation of state given by

tionation occurs in polydisperse hard-sphere mixtures buggjacuse and Stelf. This equation of state is a straightfor-

that the polydispersity of the resulting crystals is substanyarq generalization of the highly successful EOS for an ar-

tially less thano . . _ . bitrary hard-sphere mixtuf€ first considered by Mansoori
The rest of the paper is organized as follows: in Sec. llet 5], The Mansoori EOS has been checked against simula-

we present our model for the free energies of the polydistion data by a number of authors and agreement is generally

perse fluid and crystal phases. The stability diagram is presycelient. The free energy per particle”& F/N) is then
sented in Sec. lll. Finally, in Sec. IV we summarize and.,~7f=(fifd+f?x)/p.

conclude. Now we consider the free energy of the fractionated

solid phase. Since as mentioned above, we expect the num-

ber of crystals to depend upon the overall polydispersiof
II. THE MODEL the parent distribution, we consider the general cas® of

coexisting crystals. In order to establish some relation be-

Our model consists of hard-sphere particles in a vol- tween the parent distributiop(R) and the sub-distribution,

umeV, at an overall density gé=N/V. Each particle has a p,(R), found in theith crystal, we make two assumptions.
diameterR drawn from some overall distributiop(R) so  First, we choose the distribution in each crystal to be rectan-
that p=[ dRp(R). Previous work has suggestédhat the  gular and second, to keep the theory computationally man-
thermodynamic properties of a polydisperse system are relageable, we force the widtlor polydispersity to be equal in
tively insensitive to the detaileshapeassumed for the di- each of theP coexisting phases. With these two restrictions
ameter distribution, at least when the polydispersity is smalthe housekeeping of the fractionation process is straightfor-
(0<0.1). Indeed the phase behavior has been fdfino,a  ward. Theith crystal, for instance, contains &l particles
rather good approximation, to be a function o_nIy of the first\hose diameters lie betWEdﬁ:l—WS(l-i-(P/Z)—i)] and

three moments of the diameter distributign, R, and the ﬁ[l—ws((PIZ)—i)] with wg, the width of the crystal dis-

normalized width . For a broad diameter distribution, yipytion, given byw,=w/P. The mean diameter of particles
higher moments will presumably also need to be consideregy, iheith crystal is then simply given as

Consequently, the phase behavior will become increasingly
sensitive to the shape of the distribution assumed. However,
we expect that the width of the distribution will still play an
important if not the dominant role in determining the generic . . L .
features of the phase behavior of a polydisperse systerr"il.nmdettgr'_e dﬁ’;ggﬁﬁ) irsi::%hcgtr? ifhsf;?/fste::]ﬁ_ o/P. The di-
Since our concern here is with establishing these generﬁ y

features of the polydisperse phase diagram we have taken 0 R<§i(1_ws/2)

R) as a simple rectangular distribution, - 4 = —
p(R) P g p(R1=pi{ (Rwy) ™ Ri(1-wy2)=R=R(1+wy2), ©®)

e WS .
Ri:ﬁl—?(ﬁp—zn @)

0 5<§(1—w/2) B 0 R>Ri(1+w/?2)
p(R)=p{ (Rw) ! R(1-w/2)<R<=R(1+w/2), (3)
0 R>R(1+w/2) at an overall density gb;,=N; /V; with V; the volume of the

— _ ) ) ith phase. Although the number of particles in each crystal
whereR is the mean diameter and the normalized witls 356 s the same for all crystals and equalt® (since the
related directly to the conventional polydispersityby w polydispersity of each crystal is assumed ejtiaé volume
=2V3o. It wiII_prove convenient to choose as variables theVi of each phase is so far undetermined. To fix the volume,
mean diameteR, the polydispersityr and the volume frac-  or equivalently the number density, of each crystal we use
tion ¢=(7/6)f dRp(R)R3=(7/6)pR3(1+w?/4). the fact that the crystals are in equilibrium with each other.
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This constraint is straightforward to apply since, in our
model of the partition, no particle may exist in anymore than
one crystal. Consequently we do not need to consider ex-
change of particles. Equilibrium simply requires that the os-
motic pressure of each crystdl,;, be fixed and equal to an
external pressure of, salj

Ii(pi o5, R)=11. 9
With the density of each crystal phase determined, the total
number density of the set ¢ coexisting crystals is then

— P
PS=SF pr) 10

-1.5 1 -
———T—T
0.01 003 005 007 0.09 0.1

and the corresponding composite packing fractionas
= (m/6)p<R3(1+w?/4). The mean free energy per particle is

(8]
— 1o f _ . .
T == 2 —, (11 FIG. 1. The free energy difference per particle, at a constant packing frac-
P pi tion of ¢=0.6, between polydisperse crystalline and fluid phases as a func-
. . . tion of polydispersity. The number of coexisting crystals is detailed in the
wheref; is the free energy density of thi¢h crystal. legend. The arrows mark the polydispersity limits between which the frac-

To complete our model for the fractionated phases waeionated binary crystals are stable.
need an expression for the excess free energy of a polydis-
perse crystal. For that purpose we use a scaled particle
theory. Since the details have been described elsethees vyields the free energy densifly of theith crystal. Finally,
just outline the approach here. The model exploits the pictureve note that our model for the polydisperse crystal implicitly
of particles in a solid as being confined in cells or cagesassumes that all different-sized spheres are placed randomly
formed by the neighbors from which they cannot escapeon the sites of a common fcc lattice. At high polydispersities,
While in a monodisperse crystal the cells are all identical, inthe smallest particles in the distribution could also be accom-
a polydisperse crystal the size and shape of the cell variesnodated within the interstices of a crystal of larger particles.
The idea is to recognize that one can allow for the variabilityThe current calculations ignore this possibility and so are
in the cell shape to a first approximation, by considering juswalid only for polydispersities of<0.3.
a finite number of different-sized neighbors. The number of  Putting everything together, we now calculate the differ-
different-sized particles is determined by the accuracy wittence free energy per particlé,”7*=.7F— 7;, between the
which the properties of the finite mixture approximate thosepolydisperse fluid and the fractionated setPfcrystals as
of the polydisperse system. If the excess free energy of thinllows. The overall particle density distribution of either the
polydisperse system is a function of the fismoments of set of crystals or the polydisperse fluid is characterized by
the diameter distributiorip/2] different-sized spheres are identical values for the overall volume fractiah the poly-
ngeded_to matgh the dlameter moments of the Com'nuouﬁispersityo and the mean diamet®. For fixed ¢:a o
distribution (x] is the smallest integer not less than For

: . dR, the free energy of the fluid; is calculated from Eqgs.
a polydisperse system of hard spheres, highly SUCCGSSfl?Ig and the Mansoori EOS. Combining Eq8) and (10) we
mean-field theories such as the Percus—Yevick approxima- '

tion suggest that only four diameter moments aresee_that the overall volume frg:tiqhof the solid _phase&)r
significant’® In this case, the properties of a polydisperse€duivalently the mean densify,) may be considered as a
system should be well approximated by a binary mixture O,fqnctlon of the qsmotlc pressutd. Inverting this relation
spheres, chosen so that the first four moments of the polyi€lds the osmotic pressuié and so, from Eq(9), the den-
disperse and binary distributions are equal. The two diameteii€S pi Of each of the coexisting crystals which taken to-
distributions are “equivalent” and all excess properties aregether have an overall volume fraction ¢f Knowing the

to a first approximation, equal. For the rectangular distribu-density, polydispersitys= o/P and mean diametd®; [from
tion the equivalent binary distribution has an equal numbeEd. (7)] of each crystal it is straightforward to calculate the

of large and small spheres with diamete§§(1+os) and corresponding free energy densityand the mean free en-

it 72 i
Ri(1- o), respectively. Specifically then, we equate the ex S s of the multiple crystals from Eq(11).

cess free energy of the polydisperse crystal with that of an
equivalent binary substitutional crystal. For the evaluation o}, resyLTS
the latter we take advantage of the analytical expressions

quoted by Kranendonk and FrenKeés fits to Monte Carlo We now present in detail results for the stability of a
simulation results. Combining the excess free energy witlsystem of polydisperse hard spheres obtained from the
the ideal free energy density, theory described above. In Fig. 1, we show the free energy
. _ difference,BA.77, between the fractionated crystals and the
Bfi"=pi(In pi—1)—p; In(Rywy) (12 fluid phase as a function of polydispersity, for the represen-
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tative density of¢=0.60. The first question to be addressed
is the relative stability of the various fractionated crystals |
and the fluid phase. 0.65 |
Referring to Fig. 1, we see that for low levels of poly- 1
dispersity, at this density, the crystal has a significantly lower
free energy than the fluid phase. However, with increasing
polydispersity, the stability of the polydisperse crystal re-
duces rapidly until fore=0.084 the unfractionated polydis-
perse crystal is unstable relative to the fluid phase. The origin
of this behavior lies in the different ways polydispersity af-
fects the maximum packing fraction, or equivalently the free
volume, of ordered and disordered structures. In a fluid,
smaller particles are free to pack in the cavities between ]
larger particles and so the free volume and thus the entropy 0.50 — , ,
increases with polydispersity. Conversely, the periodicity of 0.00 0.04 0.08 0.12 0.16 0.20
a crystal causes the free volume and entropy of a polydis- o
perse crystal to decrease with increasing polydispersity. Con-
sequently the free energy of a fixed-density polydispersé&!G. 2. The stability diagram of a polydisperse hard-sphere mixture. In each
crystal will diverge at a critical level of polydispersity at region of volume fractionp and polydispersityr the phase with the lowest
which the fluid free energy will remain finite. Second, we free energy is indicated. Crystalline regions are labeled by the number of
. . .. . . coexisting crystal phases.
note from Fig. 1 that at low polydispersities, fractionating the
distribution into two or more crystals always raises the free
energy of the solid state. This is because of the loss of en-
tropy of mixing as the diameter distribution is split up. The flui
contribution to the free energy differenggA.7", due to the
loss of entropy of mixing is simply:

0.60 +

<

0.55 +

At low volume fractions, $<0.516, the polydisperse
d is the most stable phase at all polydispersities. How-
ever, with an increase in packing fraction a crystalline phase
takes the place of the polydisperse fluid as the most stable
BAV%X:'” P (13) phase_. The nature of .the cr.ystalline phase depends on the
magnitude of the polydispersity. So while foro<0.085 we
for fractionation intoP crystal phases which is very close to have crystallization into the usual single polydisperse crystal,
the differences seen in Fig. 1 as—0. However, at finite with increasing polydispersity the fluid fractionates upon so-
polydispersities, Eq(13), does not give a reasonable esti- lidification into a rapidly increasing number of crystals. The
mate of the free energy differences between the various setBagram gets more and more complicated as the polydisper-
of crystals. As is evident, the free enerA.7" reduces sity grows since, by necessity, the number of crystalline
with increasing polydispersity. The reduction being smallerphases required to accommodate the increasing width of the
as the number of crystals considered increases. This is béiameter distribution increase. So while for polydispersities
cause the polydispersity of each fractionated crystal drops da the range 0.0850<0.117 two fractionated crystals are
the total number of crystals, between which the overall disfirst formed, three crystals are required for 0.&l@
tribution is split, increases. For instance, fractionating a dis<<0.145, four for 0.1450<0.171, five for 0.17%¥o
tribution with a polydispersity of 6% between two phases<0.195 while atoc=0.20 complete crystallization requires
would result in crystals with 3% polydispersity, three phasesix different crystal phases. Furthermore, we note that as the
would lead to 2% polydispersity and so on. As the polydis-polydispersity increases the packing fraction at which the
persity of each of the individual crystals decreases the influfluid becomes unstable increases frgn+ 0.516 atoc=0 to
ence of the divergence of the free energy at the close-packing=0.665 ato=0.20. The degree of fractionation predicted
limit is reduced and so the free energy is less affected by thearies with the overall level of polydispersity. Referring to
overall polydispersity. As a consequence the fractionatedrig. 3, we see that the polydispersity of the cry®aat the
two-crystal phase takes the place of the polydisperse singldluid—solid boundary reaches a maximum of 0.085 before on
phase crystal, as the state of lowest free energy,dfor average falling with increasing fluid polydispersity, although
>0.078 and remains the most stable phase ur#iD.099, at  in from far a continuous fashion. Where fractionation occurs,
which point the fluid appears. Fig. 3 reveals that the polydispersity of each crystal formed
By a procedure similar to that described above, we havés considerably lower than the critical polydispersity, esti-
mapped out the range of stability of the polydisperse hardnated here as.~0.085.
sphere system far<0.20. Our results are shown in Fig. 2. In addition to the fluid-multiple crystal transitions dis-
The regions are labeled by the number of coexisting crystalsussed above, Fig. 2 reveals that there is a further sequence
which minimize the total free energy of the polydisperse sysof demixing transitions in the solid phase. Compressing a
tem while the boundaries indicate the specific densities angdolydisperse crystal causes a solid-state phase separation in
polydispersities at which competing phases have equal freehich the diameter distribution is fractionated. For instance a
energies. As is evident, there are appreciable areas of densitplydisperse crystal witi-=0.08 is stable up to a density of
and polydispersity where fractionation into multiple crystals¢=0.597. At this point the system separates into two crys-
is predicted. tals, each of polydispersity=0.04, which are stable until a
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FIG. 3. The polydispersityg s, of the fractionated crystalline phase formed
at the fluid—solid boundary as a function of the fluid polydispersity FIG. 4. A comparison between the current stability diagtaciid lines and
the fluid—solid coexistence predicted in Ref. (dashed lines The large
circle marks the position of the polydisperse point of equal concentration.
The thick dotted line denotes the estimated location of the polydisperse glass
transition.
total density of$=0.667 is reached. Further compression
results in three crystals, followed at still high densities by a
. y . 9 . . y IV. DISCUSSION AND CONCLUSIONS
cascade of demixing transitions. The explanation for this be-
havior lies in the effect of polydispersity on the limiting We have analyzed the stability of a polydisperse fluid of
packing fraction of a crystal. As mentioned previously, thehard spheres with respect to a process of simultaneous frac-
density at which the free energy of a polydisperse crystationation and crystallization. Although the model is quite
starts to diverge reduces with increasing polydispersity. As &imple we find several interesting features. In particular, we
polydisperse crystal is compressed there comes a point aredict that for a sufficiently polydisperse system of hard-
which the reduction in the excess free energy which occur§phere fractionation occurs upon solidification. The fluid di-
when the polydispersity is reduced is sufficient to exceed th@meter distribution separates into a number of fractions of
increase in the ideal free energy of mixing after fractionation narrower polydispersity which then crystallize. Furthermore,
At this point the crystal phase separates. we find that compressing a polydisperse crystal induces a
Finally, we emphasize that we have calculated only theéé€duence of demixing transitions in the crystal.
stability boundaries, not the full equilibrium phase diagram 10 keep the theory presented here manageable we have

of a system of polydisperse spheres. The reason for this f2€€n forced to make a number of assumptions. We have, for
that a full calculation of the phase equilibria, particularly in NStance, imposed a somewhat arbitrary model for the frac-

view of the large number of competing phases found in thigionation process. In particular we have assumed that a rect-

work, would be a large and complicated problem HOWeVerangular diameter distribution fractionates into a number of

LI . : equal-width daughter distributions, each of which is also
we expect our stability diagrarffrig. 2) to be a useful guide . L
; , . . . rectangular in form. In principle, we could relax the con-
to the form of the phase diagram. Confirmation of this point__ ~ . : . "
£ view i ided by th . in Fia. 4. b straint of equal width. However, since the densities of the
OT VIEW IS provided by the comparison, seen in Fig. 4, be coexisting crystals are similar it seems likely that this modi-
tween the current model and the fluid-single crystal coexist

) blished i i 3BThe dashed fication would have little effect. The more critical restriction
ence region established in earlier workThe dashed curves is probably the assumption made for the form of the daughter

|nQ|cate the positions of the polydisperse cloud-point bour_‘d'distribution. However, in view of the relative insensitivity of
aries and were calculated by a novel moment projection,q|ydisperse systems to the detailed form chosen for the di-
method using, as input, polydisperse free energies similar tgmeter distribution, we expect that the current predictions
those described above. Referring to Fig. 4, we see that thgj| pe in at least qualitative if not quantitative agreement
stability boundary lies approximately midway between theyith more rigorous calculations, when available.

two coexistence densities. Inspection of Flg 4 reveals, rather We now speculate briefly on the feasibility of observing
intriguingly, that the polydisperse point of equal concentra-solid-state fractionation in experiments on hard-sphere col-
tion, marked by the large circle in Fig. 4, is practically coin- |oids. The first point to note is that fractionation requires
cident with the lowest density at which the binary system ofcolloid diffusion over distances comparable to the size of the
fractionated crystals is stable. This seems to be a changgowing crystallite. The rate of such large scale diffusive
occurrence. However, the proximity of the two points sug-motion reduces with increasing colloid density, as a result of
gests that, at equilibrium, the re-entrant melting predicted ircaging effects, and essentially vanishes at the glass transition
Ref. 15 will in fact be pre-empted by a solid-state phasedensity, ¢ .2 For uniformly sized hard-sphere simulatiéhs
separation. find a long-lived metastable glassy state arousyg=0.58
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which persists up to the random close-packing limitgat, vation that at the point, where the simulation could no longer
=0.64. The glass transition in a system of polydisperse harépllow the fluid—solid boundary, the crystal polydispersity
spheres has not been studied to the best of our knowledgi#as almost exactly half that of the fluid value. At the same
although Schaertl and Sileséuhave estimatedp,q, as a  time, we note that their limiting polydispersity¢0.118)
function of polydispersity from simulation. Assuming a lies close to our estimate for the highest polydispersity
simple linear relationship between the two densities gives &0.117 at which two polydisperse crystals remain the equi-
crude estimate of the glass transition density o)  librium phase.
~(0.58/0.64)),,(0). Referring to Fig. 4, we see that if this
estimate for the glass transition is used, then fractionatedJ.-p. Hansen and I. R. McDonal@heory of Simple LiquidéAcademic,
crystallization might be experimentally observable for poly- _New York, 1986. _ ) . .
dispersities in the narrow range 0:08<0.11 where diffu- 2W. B. Russel, D. A. Saville, and W. R. Schowal@olloidal Dispersions
. L . . ) ’ (Cambridge University Press, Cambridge, 1989
sive motion Is still pOS.SIble. although slow. If conversely, the 3p_N. pusey, irLiquids, Freezing and Glass Transitioedited by J. P.
dynamics of the fractionation process turn out to be appre- Hansen, D. Levesque, and J. Zinn-Justitorth Holland, Amsterdam,
ciably slower than the experimental timeframe then experi—4é99,’\13>vPChaP- 10& S\F/’- 763;/?42- Natitondon 320 340 (1986
. I S . N. Pusey an . van Megen, Na nao .
ment§ should fo_IIow our earlier predlgtldﬁsand exhibit @  sg E paulin and B. J. Ackerson. Phys. Rev. L&t 2663(1990.
polydisperse point of equal concentration. A clear resolutionsp_ g warren, preprint1998.
of this ambiguity must await experiment. ;J. A. Cuesta, preprint, cond-mat/980703998.
Finally, our results suggest a possible explanation for thegg- g_- i_eaf, prepdrlr';t, gons-mit/?h(;fg?(ﬂ%?i_ 46, 1229 (1985
. . . . DIckinson an . Parker, J. ranc ett. , L- .
appar%]tly anomalou; simulations reported by Bo_lhws aneby’ < Bolhuis and D. A, Kofke, Phys. Rev. 8, 634 (1996.
Kofke.™ In contrast with other theoretical work, this study is g. phan, W. B. Russel, J. Zhu, and P. M. Chaikin, J. Chem. RBgs.
found that:(i) the particle size distributions in the fluid and 129789(1998.
crystal phases were significantly different afig) that the ;% Wfﬁéﬁ?ﬂdﬁg'JHinferﬂéf'Jprgﬁfnqci@' o jf’l‘g;(;%a-
.coexisten'ce region .althoug'h initially narrowing w.ith increas-p’ Bartlett, J. Chem. #hysgz 188 i1997). ' ' '
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