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A geometrically-based mean-field theory of polydisperse
hard-sphere mixtures

P. Bartlett
School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

~Received 30 October 1996; accepted 28 March 1997!

We present a mean-field description of a system of polydisperse hard-spheres. The theory is based
on the postulate that the excess statistical properties of a general polydisperse mixture are a function
of the number, the mean diameter, surface area, and volume of the constituent particles. Within this
model a corresponding states relationship holds between a general polydisperse system and a
suitably chosen two-component mixture. This equivalence is used to derive approximate
expressions for the free energy and pressure of polydisperse crystal and fluid phases. Quantitative
results are presented for the case of a Schultz distribution of diameters. These free energies are used
to calculate the solid–fluid phase diagram as a function of diameter polydispersity. We find a
terminal polydispersity of 8.3% above which the polydisperse fluid remains stable at all densities.
In contrast with recent simulations we find no evidence for a substantial fractionation in diameters
between the coexisting fluid and solid phases. ©1997 American Institute of Physics.
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I. INTRODUCTION

In the last decade considerable progress has mad
understanding the rich and varied phase behavior of collo
suspensions.1,2 One of the most fruitful ideas has proved
be the analogy between colloids and simple atomic syste3

At least in a formal sense the equilibrium statistical mech
ics of a suspension ofuniformcolloidal particles is identica
with that of an atomic system interacting with the same
tential. This link has meant that the techniques and conc
of classical statistical mechanics have been utilized ex
sively to understand the rich statistical phenomena obse
in colloidal systems. This is most evident in the case
‘‘hard sphere’’ colloids where considerable experimental a
theoretical effort has established a remarkably exotic se
phase behavior.4–7 Indeed the hard core system plays a c
cial role in colloid physics because, as for simple fluids,
microscopic structure of suspensions is dominated by sh
range repulsive interactions; longer-range attractions con
ute to thermodynamics only in a mean-field approximatio

There is, however, one important aspect in which c
loids and atoms differ. While all atoms of the same elem
are identical in size there is inevitably a distribution of siz
among the components of any colloidal suspension. This
ameter variation or ‘‘polydispersity’’ is unavoidable in an
experimental system. Indeed considerable experimenta
fort is normally necessary to reduce the diameter variatio
a level at which an approximation by identically sized p
ticles is realistic. While it is clear that, in principle, polydis
persity could modify the thermodynamic properties of s
pensions, shift phase transitions or even in extreme c
prevent them from occurring there is, as yet, an incomp
understanding of the role of polydispersity. In the main t
is because of the lack of simple accurate statistical mode
colloidal systems with a continuous distribution of diam
eters. The purpose of this paper is to demonstrate a gen
geometric equivalence between a polydisperse mixture a
188 J. Chem. Phys. 107 (1), 1 July 1997 0021-9606/97
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binary hard-sphere system. Since the properties of bin
mixtures are much more amenable to analysis this equ
lence allows the properties of polydisperse systems to
readily approximated. To test the accuracy of our appro
we calculate the influence of polydispersity on the fluid
solid phase boundaries in hard spheres.

The influence of polydispersity on the fluid–solid pha
transition of hard spheres was first examined by Dickins
and Parker8 who found that the width of the coexistenc
region narrows as polydispersity increases. They sugge
that above a terminal polydispersity of about 11%~defined as
the standard deviation of the diameter distribution divided
the mean diameter! the transition should disappear entirel
Similar conclusions were reached using density functio
arguments9,10 although the terminal polydispersity was es
mated as being between 5% and 7%. The problem has b
reexamined recently11 by computer simulation. A polydis-
perse system was simulated byimposinga Gaussian chemi
cal potential distribution. The identity of each particle w
then allowed to change so as to simulate, at equilibrium
continuous diameter distribution. While the results, from t
study, for the terminal polydispersity were broadly in lin
with previous estimates the authors found a significant
gree of fractionation between the coexisting fluid and so
phases. The diameter distribution in the fluid phase w
peaked around a lower mean diameter and was consider
broader than the distribution found in the coexisting so
phase.

In this paper we report a mean-field treatment of po
dispersity in hard-sphere mixtures. The theory is formula
in Sec. II. In Sec. II A we apply this method to calculate t
pressure and free energy of a polydisperse solid solu
while the thermodynamics of the polydisperse fluid phase
described in Sec. II B. The theory of the solid-fluid pha
coexistence in a polydisperse hard-sphere mixture is outli
/107(1)/188/9/$10.00 © 1997 American Institute of Physics
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in Sec. III, followed by a description of our main results
Sec. IV.

II. METHOD

To compute the fluid–solid coexistence in a polydispe
hard-sphere mixture we use a geometric mean-field appro
inspired by scaled particle theory12,13 ~SPT!. The SPT has
been applied previously, to the best of our knowledge, o
to fluid systems. We assume here that the underlying g
metric ideas are applicable equally to solids as to fluids.
low we outline the basis of our approach. In a later sect
we apply the theory to calculate the equation of state o
polydisperse hard-sphere crystal.

Consider a polydisperse system of hard spheres in w
the scaled sphere diametera5R/R̄, where R̄ is the mean
diameter, is distributed according to the normalized den
function f (a). The probability of finding a sphere with
scaled diameter betweena and a1da is therefore
f (a)da. Let r5N/V be the total number of particles pe
unit volume. For convenience we introduce the followi
moments of the diameter distribution

j j5
p

6
rR̄jE

0

`

a j f ~a!da. ~1!

The zeroth and first moments define the number density
mean diameter

r5
6

p
j0 , R̄5

6

pr
j1 . ~2!

While s, the relative standard deviation of the diameter d
tribution orpolydispersity

s25
R2

R̄2
21, ~3!

is related to the second moment by

j25
p

6
rR̄2~11s2!. ~4!

The third momentj3 is simply the total hard-sphere volum
fractionf.

The starting point for our approach is an expression
the excess chemical potentialmex(a) of the species of diam
etera in the polydisperse system. Our basic approximat
is thatmex(a) is given by a cubic polynomial for alla of the
form

bmex~a!5Da31Ca21Ba1A, ~5!

whereb51/kBT andA, B, C, andD are coefficients which
depend onf and the functionf (a). We derive expression
for A andD below.

This expression has been discussed in earlier work12,13

on the application of scaled particle theory to fluids but
repeat the justification of Eq.~5! here for clarity. The exces
chemical potentialmex(a) may be identified formally with
the work of inserting, at some fixed positionR in the system,
a singlehard-sphere particle of diametera. Inserting a hard-
J. Chem. Phys., Vol. 10
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sphere particle atR excludes the centers of all neighborin
species with a diametera i from a spherical region of diam
etera1a i aboutR. Fora>0 this is equivalent to excluding
anypart of a neighboring particle from a region of diamet
a centered onR and consequently the addition is equivale
to creating a cavity of diametera. mex(a) is therefore equal
to the reversible work expended in making a cavity of dia
etera. While in general the functionmex(a) is unknown, we
approximate it by appealing to its limiting form at small an
largea.

The excess chemical potential of a point particle
readily calculated from the Widom insertion expression14

The probability of inserting a point particle into a system
hard spheres of volume fractionf is proportional to 12f.
Consequently the excess chemical potential, in the limit
a50, is exactly

lim
a→0

bmex~a!52 ln ~12f!. ~6!

Consider now the case ofa very large. The leading term
in bmex(a) is the pressure-volume work required to exclu
particles from a cavity of diametera. If P is the pressure of
the hard-sphere system, then the leading term to the chem
potential is the cubic contribution (p/6)bPR̄3a3. There is
also a contribution from the surface energy of the cav
which will be quadratic in a. This is of the form
4pR̄2bgaa2, wherega is the surface tension of a spheric
cavity of diametera. Taking into account the curvatur
dependence15 of the surface tension

ga5g0S 12
d

aR̄
D ~7!

results in a further linear contribution tobmex(a). Hered is
a length of orderR̄ andg0 is the surface tension of the cavit
in the limit of a→`. Combining these terms with th
a50 limit gives an expression of the form

bmex~a!5
p

6
bPR̄3a31Ca21Ba2 ln ~12f!, ~8!

where the coefficientsB andC are functions off and, in
general, functionals of the diameter distributionf (a). Al-
though the form of Eq.~8! has been derived from macro
scopic arguments the success of SPT suggests that thi
pression can be successfully extrapolated to part
dimensions, at least for fluids.16 We assume that similar con
siderations hold for the solid phase.

The total chemical potential,m(a), of the species of
diametera is the sum of the excess component@given by Eq.
~8!# and an ideal contribution,17 bm id(a)5 ln rL3(a)f(a),
whereL(a) is the thermal wavelength of the species w
diametera. To calculate the pressure of the polydisper
system we use the thermodynamic relation,

S ]P

]r j
D
T

5(
i

r i S ]m i

]r j
D
T

, ~9!

or rather its generalization to a continuous distribution,
7, No. 1, 1 July 1997
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S ]P

d@ f # D
T

5rE
0

`

f ~a!S ]m

d@ f # D
T

da, ~10!

where]P/d@ f # is the functional derivative ofP. It is appar-
ent from above that ifmex(a) is a cubic polynomial ina,
then the pressureP must be a function of, at least, the fir
four moments of the diameter distribution (j j ,
j50, . . . ,3).Substitution of Eq.~8! into Eq. ~10! and inte-
gration demonstrates that a dependence of the pressure
moments higher thanj3 arisesonly if the coefficientsB or
C depend themselves upon such moments. To proceed
make the simplest hypothesis, consistent with the form
sumed in Eq.~8!, that the pressureP and the excess chemica
potential are functionsonly of the first four moments so Eq
~8! becomes

bmex~a!5
p

6
bP~j0 ,j1 ,j2 ,j3!R̄

3a31C~j0 ,j1 ,j2 ,j3!a
2

1B~j0 ,j1 ,j2 ,j3!a2 ln ~12f!. ~11!

While the discussion above is little more than suggestive,
idea that the statistical mechanics of a polydisperse syste
hard spheres is a function of such basic geometric varia
as the total number, mean size, surface area, and volum
particles is very appealing physically. Furthermore it su
gests that it is feasible to approximate the properties o
polydisperse system by a limited set of discrete compone
In particular the pressure and the excess chemical pote
of a polydisperse and an equivalent discrete system wil
identical provided that

j j5j j~discrete! for j50, . . . ,3. ~12!

Rather surprisingly, to match the first four moments of a
diameter distribution requires, in general, only two diffe
ently sized components. To see this consider the binary
tribution detailed in Table I. This distribution has been ch
sen so that varyingd andD allow the mixture composition
and volume fraction to change while the total number den
and mean diameter are fixed atrb andR̄b , respectively. The
first four diameter moments of the binary mixture are read
calculated as

TABLE I. A binary mixture of hard spheres with a fixed value for the to

number density of particles ofrb and a mean diameter ofR̄b. The properties
of the mixture are a function of the variablesd andD.

Large species Small species

Number density
rb

(12D)
2

rb

(11D)
2

Diameter
R̄b

(11d)
(12D)

R̄b

(12d)
(11D)
J. Chem. Phys., Vol. 10
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j0~binary!5
p

6
rb ,

j1~binary!5
p

6
rbR̄b,

~13!

j2~binary!5
p

12
rbR̄b

2H ~12d!2

11D
1

~11d!2

12D J ,
j3~binary!5

p

12
rbR̄b

3H ~12d!3

~11D!2
1

~11d!3

~12D!2 J .
The zeroth and first moment of the binary and polydispe
mixture are matched by simply equating the number den
(rb5r) and the mean particle diameter (R̄b5R̄) of the two
distributions. Equating the remaining two moments of t
polydisperse mixture gives a pair of simultaneous conditio
on the binary variablesd andD. Solving these two equation
fixes the composition and density of the binary mixtu
which is a corresponding state model for the polydispe
system.

To obtain quantitative results it is necessary to consi
a particular probability density function. For computation
ease we consider only the Schultz~or generalized exponen
tial! distribution

f ~a!5
~z11!z11

z!
az exp@2~z11!a#, ~14!

where the polydispersitys is related to the parameterz by

s25
1

z11
. ~15!

The moments of the Schultz distribution may be calcula
analytically with the results

j j5
p

6
rR̄j

~z1 j !!

z! ~z11! j

5
p

6
rR̄j@11~ j21!s2#@11~ j22!s2#•••@11s2#.

~16!

Equating the first four moments gives the parameters of
equivalent binary distribution. The binary mixture equivale
to a Schultz-distributed polydisperse system of number d
sity r, mean diameterR̄, and polydispersitys is

rb5r, R̄b5R̄,
~17!

D25
s2

11s2 , d50.

Since this distribution matches exactly the first four mome
of the Schultz system a natural question is the accurac
higher moments. The moments of the equivalent binary d
tribution, from Eq.~17!, are

j j5
p

12
rR̄j H 1

~11D! j21 1
1

~12D! j21J , ~18!
7, No. 1, 1 July 1997
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which in the limit of small polydispersity may be approx
mated as

j j5
p

6
rR̄jF11

j ~ j21!

2
s21O~s4!G . ~19!

Inspection shows that these values are identical with the
ments of the Schultz distribution to terms of orders2. Con-
sequently while the higher moments,j j with j.3, of the
Schultz and binary distributions are in general different,
the limit of small polydispersityall moments of the binary
and Schultz distributions are equal.

Our general approach should now be clear. We ass
that the excess thermodynamic properties of a polydisp
system are functions only of the first four moments of t
diameter distribution. To approximate the polydisperse m
ture we consider the equivalent binary system describe
Table I and Eq.~17!. Equating the excess thermodynam
properties of the two corresponding systems gives the ex
chemical potential of the polydisperse system atall diam-
eters from Eq.~11!.

A. Polydisperse crystal

To illustrate how the ideas of the last section may
applied we now calculate the thermodynamic properties o
Schultz-distributed polydisperse FCC crystal. The equiva
binary system is the substitutionally disordered FCC ha
sphere crystal~a solid solution! which has been studied ex
tensively by Kranendonk and Frenkel18–20 using computer
simulation techniques. In this study the authors studied
nary hard-sphere mixtures of diameter ratiosa50.95, 0.90,
and 0.85. Both the equation of state and the excess free
ergies of the binary substitutional crystals were determin
Conveniently for the present discussion, the authors exp
their simulation data in terms of a set of symmetry-adap
analytical functions for the pressure and excess free ene
It is then straightforward to evaluate the excess chem
potential of the large (mL

ex) and small spheres (mS
ex) in terms

of the ratioRS /RL of the diameters of the small and larg
spheres, the compositionXL defined as the mole ratio o
large spheres and the volume fractionfb of the binary crys-
tal.

To discuss the thermodynamics of the polydisperse c
tal we use as variables the volume fractionf, the mean
diameterR̄, and the polydispersitys of the diameter distri-
bution rather than the moments,j j . For a Schultz distribu-
tion the two sets of variables are readily related from E
~16!. Inspection of Eq.~17! shows that the equivalent binar
mixture has a volume fraction off, a diameter ratio of
RS /RL5(12D)/(11D), and a compositionXL5(12D)/2
whereD5s/A11s2. The pressure of the binary solid
readily obtained from the analytical expressions given
Kranendonk and Frenkel.20 We find that the pressure of th
polydisperse solid is alwayshigher than the pressure of th
monodisperse system of the same volume fraction. Thi
illustrated in Fig. 1 where the reduced pressure (bPR̄3) of
the solid is plotted versus the polydispersity at a fixed v
ume fraction off50.545. On a qualitative level the increa
J. Chem. Phys., Vol. 10
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in pressure with polydispersity reflects the reduction in fr
volume as it becomes increasingly difficult to efficient
pack very different-sized spheres in a unit cell without d
torting the cell.

The accuracy of the mean-field approximation may
assessed by a comparison with the simulation results
tained by Bolhuis and Kofke.11 Unfortunately an unambigu
ous test is difficult because the diameter distribution in
simulation was not fixed but varied as a result of the fix
chemical potential distribution assumed. However, for n
row distributions, we expect that the key property of a d
tribution is its width rather than detailed shape. This is c
tainly the case within the current theory where polydispe
systems with different diameter distributions have very sim
lar statistical propertieswhen compared at fixeds. Conse-
quently, to a first approximation, it is not necessary to kn
the detailed form of the diameter distribution used in t
simulation. The simulation results may be compared direc
with a calculation, for example, of a Schultz-distributed so
of the samepolydispersity. Figure 2 shows such a compa
son between the present theory~solid line! and the simula-
tion data of Bolhuis and Kofke11 ~circles! for the pressure of
the polydisperse solid. The reduced pressure,bPR̄s

3 , is plot-
ted as a function of the diameter polydispersity along
fluid–solid coexistence line determined by Bolhuis a
Kofke. The inset plot in Fig. 2 gives the volume fraction
the solid phase along the same coexistence line. As ca
seen from Fig. 2 the agreement between theory and sim
tion is reasonably good although at high polydispersities
high densities the mean-field theory does seem to over
mate slightly the pressure.

The diameter dependence of the excess chemical po
tial in the polydisperse solid may be obtained from Eq.~11!
and the values for the chemical potentials in the~equivalent!
binary system,mL

ex andmS
ex. The normalized diameter

~scaled byR̄) of the large and small species in the equivale
binary mixture are, from Table I,

FIG. 1. Reduced pressurebPR̄3 as a function of the normalized widths of
the Schultz distribution of diameters. Results for a polydisperse solid~solid
line! with a fixed volume fraction off50.545 and a polydisperse fluid
~dashed line! of volume fractionf50.493 are shown.
7, No. 1, 1 July 1997
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aL5
1

12D
~20!

aS5
1

11D
.

From the arguments above, for these two diameters, the
cess chemical potential of the polydisperse system and
corresponding binary mixture are equal. Substitution in
~11! gives two simultaneous equations, ata5aL and aS ,
which may be solved to give the undetermined coefficie
B andC at each value of (f,s,R̄). Figure 3 illustrates the
dependence of the excess chemical potential in the s
phase on polydispersity. The calculations are for a fixed v
ume fraction off50.545 and refer to the particle of mea
diameterR̄. It is evident from this figure that the influence o
increased polydispersity is to destabilize the solid phase

B. Polydisperse fluid

In the case of a fluid phase the arguments outlined
Sec. II are identical with the starting point of the conve
tional scaled particle theory~SPT! of hard sphere mixtures
In the original derivation of Reisset al. the unknown coeffi-
cients in the expression for the excess chemical poten
@Eq. ~8!# were determined12 by ensuring essentially that th
first and second derivative ofmex(R) were continuous a
R50.

The excess chemical potential from SPT of the spec
of diameterR in a polydisperse fluid, namely

bmSPT
ex ~R!5

p

6
bPSPTR

31
9j2

226j1j316j1
2~12j3!

2 R2

1
3j2

~12j3!
R2 ln~12j3!, ~21!

FIG. 2. The pressure of the polydisperse solid as a function of the diam
distribution widthss . The volume fraction of the solid, at each value
ss , is fixed at the coexisting solid density determined by Bolhuis and Ko
~Ref. 11!. The inset graph shows the resulting volume fraction,fs , as a
function ofss . The solid line depicts the results of the mean-field appro
mation for a Schultz diameter distribution while the computer simulat
results~Ref. 11! are shown as points.
J. Chem. Phys., Vol. 10
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can be obtained, formally, from the SPT results derived fo
binary hard-sphere fluid13 using the approach discussed
the previous section. As expected the form predicted
scaled particle theory is consistent with the general polyd
perse expression given in Eq.~11!.

Here we choose not to use the SPT result for numer
calculations since computer simulations of mixtures sh
small but significant deviations from SPT. For a binary m
ture of hard spheres the Mansoori, Carnahan, Starling,
Leland ~MCSL! equation of state,21 which is simply a
weighted average of the Percus–Yevick~PY! compressibil-
ity ~which is identical with the SPT result! and virial pres-
sures

bPMan5
2

3
bPc1

1

3
bPv , ~22!

yields results which are in much closer agreement w
simulation.20 We therefore choose a polydisperse MCS
equation rather than the SPT result to approximate the p
disperse fluid phase. For a polydisperse system the MC
approximation has been written as17

bPMan5
6

pH j0
12j3

1
3j1j2

~12j3!
2 1

3j2
32j3j2

3

~12j3!
3 J . ~23!

Standard manipulation gives the following expression for
excess chemical potential:

ter

e

-

FIG. 3. The excess chemical potential~normalized by the monodispers
value! as a function of the polydispersitys of the diameter distribution. The
solid line depicts the chemical potential of the particle of mean diamete
a polydisperse solid of fixed volume fractionf50.545. The dashed line
refers to the polydisperse fluid of volume fractionf50.493.
7, No. 1, 1 July 1997
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bmMan
ex ~R!5R3H p

6
bPMan1

j2
3~j322!

j3
2~12j3!

22S j2
j3

D 3ln ~12j3!J
1R2H 3j1

12j3
1

3j2
2

j3~12j3!
2

13S j2
j3

D 2ln ~12j3!J 1
3j2
12j3

R2 ln ~12j3!.

~24!

In contrast with the SPT result, this expression is not con
tent with the general polydisperse form@Eq. ~11!#. The rea-
son for this discrepancy is that the virial form of the Percu
Yevick approximation which is included in the Mansoo
average is itself not thermodynamically self-consisten22

Even with this restriction a comparison with simulation da
for polydisperse hard-sphere fluids suggests that the M
soori equation of state is remarkably reliable.

Figure 4 compares the fluid pressure determined
simulation11 with the results from Eq.~23! calculated for a
Schultz-distributed fluid with a diameter polydispersity
s f . Simulation data is currently only available for the pro
erties of thecoexistingpolydisperse fluid phase. The corr
sponding density and mean diameter of the fluid pha
found by simulation,11 are shown in the inset graph. As ma
be seen the results of the computer simulation are re
sented very accurately by the Mansoori approximation p
posed by Salacuse and Stell.17

In the limit of small polydispersity the pressure, from th
Mansoori expression, for a Schultz-distributed fluid, may
written as

PMan5PcsH 123s2
113f12f222f3

11f1f22f3 1O~s4!J , ~25!

FIG. 4. The reduced pressure of a polydisperse fluid as a function o
width of the diameter distribution. The solid line represents the Mans
approximation for a Schultz distribution. The computer simulation result
Bolhuis and Kofke~Ref. 11! are denoted by the filled circles. The volum
fraction (f f) and mean diameter (Rf /Rs) are fixed at the coexisting fluid
values determined by Bolhuis and Kofke and are shown in the inset pl
J. Chem. Phys., Vol. 10
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wherePcs is the Carnahan and Starling result16 for the pres-
sure of a fluid of monodisperse hard spheres. The pressu
the polydisperse fluid is therefore alwayslower than the
monodisperse system at the same total volume fraction
marked contrast with the solid phase. This is illustrated
Fig. 1 where the reduced pressure (bPManR̄

3) is plotted as a
function of polydispersity for a Schultz-distributed fluid o
fixed volume fractionf50.493. The lower pressure in th
polydisperse fluid reflects the increased efficiency of pack
and consequent increase in the free volume as smaller
ticles pack in the cavities between larger particles. The sa
effect is responsible for the observed decrease in~excess!
chemical potential with increasing polydispersity display
in Fig. 3—increasing mixture polydispersity enhances
stability of the fluid phase.

III. POLYDISPERSE PHASE EQUILIBRIA

The difficulty in calculating phase equilibria in a poly
disperse system is that, in general, the diameter distribu
will not be the same in the two coexisting phases. If w
denote the two coexisting phases23 by f ands and the corre-
sponding diameter distributions byf f(R) and f s(R), then the
conditions for equilibrium are, in principle, the infinite set
coupled equations17

Ps5Pf ,
~26!

ms~R!5m f~R! for 0,R,`.

These equations must be solved for the two distributio
together with the constraint that the total number of partic
of diameterR is fixed so that

N~R!5Nf f f~R!1Nsf s~R!, ~27!

whereNf andNs are the total number of particles in the c
existing phases. To simplify this problem we assume t
both phases may be represented by a Schultz distributio
diameters. To include the possibility that for instance t
solid phase will be richer in large particles than the coex
ing fluid we allow the mean diameter and polydispersity
the fluid and solid distributions to be, in general, differen

Assuming that the diameter distribution has a sim
analytical form reduces dramatically the number of degr
of freedom and considerably simplifies the problem. Ho
ever, this simplification has two unfortunate consequenc
First, in general, it is not possible to satisfy the conservat
condition and the conditions for chemical equilibrium simu
taneously, and second, the conditions for thermodyna
equilibrium cannot be satisfied for allR.

Here we avoid the difficult task of ensuring that partic
numbers are conserved by considering only the marginal
bility of the polydisperse solid. That is we seek to find t
properties of the polydisperse fluid which is generated as
infinitesimal amount of the solid melts. This occurs as t
upper boundary of the region of fluid–solid coexistence
crossed where the system is composed almost entirely
single phase and the conservation conditions are viola
then only infinitesimally.
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With the assumption of a Schultz distribution, the pha
behavior of the polydisperse mixture is characterized by
volume fractions of the two coexisting phases,f f andfs ,
and the mean diameter and polydispersities of the fl
(R̄f ,s f) and solid (R̄s ,ss). The problem of determining the
stability boundaries of a solid of given mean diameterR̄s and
polydispersityss is consequently reduced to seeking valu
of fs ,f f ,R̄f , ands f which satisfy the equilibrium condi
tions given in Eq.~26! as closely as possible. Although it
possible to search for an approximate solution which m
mizes, for example, the weighted chemical potential diff
ence atall R here we choose a simpler option. We reduce
infinite set of equilibrium conditions to four by requirin
equality of chemical potential at just three diamete
(R1 ,R2 ,R3). Since the majority of the particles have diam
eters in the range fromR̄(12s) to R̄(11s) we choose the
three diameters as

R15
R̄s

12D
,

R25R̄s , ~28!

R35
R̄s

11D
,

whereD25ss
2/(11ss

2). The equilibrium conditions

Ps5Pf , ~29a!

ms~R1!5m f~R1!, ~29b!

ms~R2!5m f~R2!, ~29c!

ms~R3!5m f~R3!, ~29d!

are solved numerically by using the equality of pressure
the two phases, Eq.~29a!, to eliminate the fluid polydisper
sity s f from the set of variables. The remaining three no
linear equations of chemical equilibrium are solved var
tionally by minimizing the functionF

F ~fS ,f f ,R̄f !5„ms~R1!2m f~R1!…
21„ms~R2!

2m f~R2!…
21„ms~R3!2m f~R3!…

2,

~30!

using a conjugate-gradient algorithm. Coexistence of t
phases demands thatF 50.

IV. RESULTS

We have calculated the fluid–solid coexistence bou
aries in the polydisperse hard-sphere system as a functio
polydispersity. Both coexisting fluid and crystal phases h
a Schultz distribution of diameters. Figure 5 shows the v
ume fractions of the two coexisting phases as a function
the polydispersity of the diameter distribution in the sol
ss . As might be anticipated from the discussion in Sec. I
the principle effect of increasing polydispersity is to shift t
coexisting fluid density to higher values. The volume fra
tion of the coexisting solid phase does also increase but
J. Chem. Phys., Vol. 10
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much lower rate. Consequently with increasing polydisp
sity the fluid density approaches the solid density. This
most readily seen in Fig. 6 where the ratio (fs2f f)/f f is
plotted as a function ofss . The most remarkable feature o
this figure is that as the solid polydispersity approache
terminal value of aboutss*50.0829 the volume fractions o
the two coexisting phases appear to converge. Beyond
terminal value for the solid polydispersity no coexisting s
lution could be found. Consequently forss.ss* , the poly-
disperse fluid phase remains the thermodynamically sta
phase, within the current model, at all densities.

The value found here for the terminal polydispers
ss* , above which a polydisperse crystal is not stable, is
reasonably close agreement with previous estimates ofss*
which lie in the range of 5%–12%. The density function
calculations of Barrat and Hansen9 find a value of 6%–7%
while McRae and Haymet predict10 ss*; 5%. The computer

FIG. 5. The volume fraction of coexisting polydisperse crystal~solid! and
fluid ~dashed! as a function of the polydispersity of the solid phasess .

FIG. 6. Relative difference in volume fraction at coexistence as a func
of the solid polydispersityss .
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simulations of Bolhuis and Kofke11 find a terminal polydis-
persity of 5.7% for the solid and 11.8% for the fluid.

In the current calculations the diameter distributions
the fluid and solid phases are, in principle, different. Ho
ever, we find that the differences between the two distri
tions are rather small. This is illustrated in Fig. 7 where
ratio (R̄f /R̄s) of the mean diameters of the fluid and so
phases are plotted together with the polydispersity ra
(s f /ss). The average diameter in the fluid is always sma
and is slightly more narrowly distributed than in the coexi
ing solid. While the effect is more pronounced as the ter
nal polydispersity is approached the shift in the mean dia
eter and polydispersity is small, being 1% or less of the so
values. The differences between the diameter distribution
coexisting phases is most readily appreciated from Fig
Here the distributions are plotted for the fluid and so
phases at the terminal polydispersity.

The observation of a small difference in the diame
distributions of the polydisperse fluid and solid is in mark
contrast to the simulation results described recently
Bolhuis and Kofke.11 This study found substantial partition
ing between the two coexisting phases with the fluid ph
containing a wider distribution of diameters~with a smaller
mean size! than the solid. At the terminus, where fractio
ation was most significant, the fluid polydispersitys f was
over twice the value of the polydispersity of the coexisti
solid phase. In contrast, we find that the polydispersities
the fluid and solid phases are very similar~differing by less
than 1%! at all points in the phase diagram. While both stu
ies agree that the smaller spheres should be located in
fluid phase, there are differences in the extent of this fr
tionation. The results of Bolhuis and Kofke suggest a mu
greater degree of fractionation at the terminal polydisper
with a mean diameter in the fluid phase of about 95% t
found in the solid. Our calculations suggest a much clo

FIG. 7. The ratio of the mean diameters and the polydispersities in
coexisting phases as a function of the solid polydispersityss . The solid line

is the ratioR̄f /R̄s and the dashed lines f /ss .
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value for the fluid diameter of about 99% of the solid one
Finally we discuss the accuracy of the solution repor

here of the equations of phase equilibria. It is natural to
if the approximation of matching the chemical potential
the two existing phases at three diameters rather than fo
R is valid. Figure 9 illustrates the difference in the chemic
potentialsDm of the two phases as a function of diameter
the terminal polydispersityss*50.0829. Matching the two
phases so thatDm50 at the diametersR1 ,R2 , andR3 en-
sures thatDm;0 over the central diameter region whe
most of the particles lie. Consequently, the approximat

e
FIG. 8. The diameter distribution in the coexisting crystal~solid! and fluid
phases~dashed! evaluated at the terminal polydispersityss50.0829. Here

a is the scaled diameterR/R̄s . The arrows label the three specific diamete
(R1 ,R2 ,R3) where the chemical potential of the solid and fluid phases
equated.

FIG. 9. The chemical potential difference between the coexisting fluid
solid phases, atss50.0829, as a function of the scaled particle diame

a5R/R̄s whereR̄s is the mean diameter in the solid.
7, No. 1, 1 July 1997

nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions



er
in
r-
-
ng
b-
ng
m
a
i
on
id

es
io
s-
x
re
a
ta

de
ix
ro

re
t
at
e

t o
re

as
he
e
e
om

en
ll

wo
lear
ur
sed
ns.
er
t the
lita-
a
se-
ase

nd
like
ny

J.

-
dis-

196 P. Bartlett: Polydisperse hard-sphere mixtures

Download
looks good. The error in the approximation is, howev
more pronounced in the wings of the distribution. The
crease inDm at small and largea demonstrates that, at the
modynamic equilibrium, the fluid distribution is not pre
cisely Schultz in form. We can gain some idea of the cha
required in the diameter distribution to achieve full equili
rium by recognizing that, to first order, the effect of changi
the diameter distribution is to alter only the ideal ter
@bm id(a)5 ln rL3(a)f(a)#. The excess contribution is
function of the moments of the diameter distribution and
accordingly less sensitive to the details of the distributi
Consequently, a first approximation to the equilibrium flu
distribution, f 1(a), will be

f 1~a!5 f 0~a! exp~bDm! ~31!

where f 0 is the Schultz-diameter distribution. For the valu
plotted in Fig. 8 the subsequent change in the distribut
from the Schultz form is sufficiently small that the two di
tributions cannot be distinguished graphically. The appro
mation of solving the equilibria at just three diameters the
fore seems to provide a very good estimate of the ph
diagram while affording a significant reduction in compu
tional effort.

V. CONCLUSIONS

In summary we have proposed a simple mean-field
scription of the effects of polydispersity in hard spheres m
tures. This approach allows the excess thermodynamic p
erties of a polydisperse mixture to be calculated from
knowledge of the properties of an equivalent binary mixtu
In the case of fluid phases our approach is equivalen
scaled particle theory. Comparison with simulation d
demonstrates the essential accuracy of the proposed m
field approximation.

We have used this procedure to calculate the effec
polydispersity on the fluid–solid coexistence of hard sphe
Our results are broadly in line with previous results.8–10We
predict that the fluid–solid coexistence densities incre
with increasing polydispersity up to a terminal value of t
polydispersity ofss*50.083. Above this polydispersity th
fluid phase is stable at all densities and no fluid–solid co
istence could be found. The most significant difference fr
the recent simulations reported by Bolhuis and Kofke11 is in
our prediction of a much more limited fractionation betwe
the two coexisting phases. We find an appreciably sma
J. Chem. Phys., Vol. 10
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difference in the mean diameter and polydispersity in the t
coexisting phases as compared with simulation. It is unc
if this discrepancy reflects the neglect of correlations in o
simple mean-field picture or is a consequence of the impo
linear chemical potential distribution used in the simulatio

Finally the broad level of agreement observed with oth
more sophisticated theoretical approaches suggests tha
present mean-field treatment provides a simple, yet qua
tively correct, treatment of polydispersity. It therefore is
natural framework for a systematic study of the con
quences of polydispersity in a broad range of colloidal ph
transitions. More work along these lines is in progress.
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