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Binary hard-sphere mixtures: a comparison between computer 
simulation and experiment 
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and P. BARTLETT 
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(Received 31 August 1994; revised version accepted 11 October 1994) 

The complex crystalline order, recently observed by Bartlett, P., Ottewill, 
R, H., and Pusey, P. N., 1992, Phys. Rev. Lett., 68, 3801, in asymmetric binary 
hard-sphere mixtures is discussed in detail. Experimental observations on phase 
separation in a complex fluid, a binary suspension of near hard-sphere colloids, 
are compared with phase diagrams obtained from computer simulations of an 
atomic hard-sphere liquid. Although there is in general a close degree of 
agreement between experiment and theory, a detailed comparison shows several 
unexpected differences. These differences are shown to reflect non-equilibrium 
effects, and possible reasons for their origin are evaluated. 

1. Introduction 

This paper concerns the phase behaviour and structure of binary mixtures of hard 
spheres of different sizes, i.e. large 'A' spheres and small 'B '  spheres. We compare 
the findings of recent experiments on mixtures of 'hard-sphere' colloids, in which 
binary 'superlattice' crystals AB 2 and AB 13 were found, with the predictions of recent 
computer simulations. 

Ever since the pioneering work of Bernal [1] and Scott [2], assemblies of hard 
spheres have been studied quantitatively as models of fluids [3], crystals I-4-6] and 
glasses [7]. Despite the simplicity of the hard-sphere interaction, which lacks both 
attraction and directionality, hard-sphere systems show many of the properties of 
real matter. A surprising finding of early computer simulations [3, 4] was that, as 
their concentration is increased, equal-sized hard spheres undergo a first-order 
freezir~g transition to form a crystal with a close-packed structure. Since the internal 
energy of an assembly of hard spheres is entirely kinetic, this transition must be 
driven entropically 1,8-10]. More recent work has established that the hard-sphere 
freezing transition results from competition between two contributions to the system's 
entropy, the configurational entropy and the entropy associated with the amount of 
local free volume available to the spheres. At high concentrations, efficient ordered 
packings, which provide greater free volume than amorphous packings, are preferred 
thermodynamically. 
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396 M.D. Eldridge et al. 

As shown by Bernal [1], the maximum packing or volume fraction of an 
amorphous assembly of hard spheres is ~b -~ 0"64 ('random close packing'). At this 
concentration the particles are completely constrained by their neighbours and have 
no free volume for local motions. By contrast, in a crystal at q~ - 0-64 the particles 
have considerable free volume, since the concentration of a fully compressed 
close-packed crystal of hard spheres is q~ = 0"74. Thus, from the discussion above, 
one might expect hard spheres to freeze at a concentration ~b ~< 0.64. The computer 
simulations of Hoover and Ree [4] indeed revealed a first-order freezing transition: 
the maximum (freezing) volume fraction of an equilibrium hard-sphere fluid is 
~bF = 0"494 and the minimum (melting) concentration of the hard-sphere crystal is 
q~M = 0-545. 

Implicitly adopting the idea that the freezing of hard-sphere systems is driven by 
maximizing free-volume entropy, Murray and Sanders [11, 12] considered possible 
superlattice structures for binary mixtures. They argued that such structures would 
be stable if their maximum volume fractions (i.e. their free volumes when fully 
compressed) exceeded 0.74, thus ensuring large free volumes at the lower freezing 
concentrations; otherwise phase separated crystals of pure A and pure B would be 
favoured. For radius ratios ~ = RB/R  A between 0"3 and 1, Murray and Sanders 
identified two superlattices AB2 and AB, which fulfilled this criterion, and one AB13, 
which marginally failed it. A convenient comparison of close packed densities for 
binary solids is given in [13], AB 2 (atomic analogue aluminium and other borides) 
consists of a hexagonal close packed structure of large A particles with B particles 
filling the holes between the planes; it has a fully compressed packing fraction greater 
than 0.74 for 0-482 ~< ~ ~< 0.624 with a maximum of 0-779 at ~ = 0.577. In AB13 
(atomic analogues NaZn13 , UBe13 ) the large spheres are located on a simple cubic 
lattice and 13 small spheres lie inside the cubic subcells arranged on the vertices of 
a regular icosahedron; these isocahedra are rotated by 90 ~ between adjacent cubic 
subcells so that the unit cell of this complex structure comprises 8 subcells containing 
112 particles. The maximum packing fraction of AB,3 is found to be 0.738 at 

= 0-558. For the size ratios of interest in the present work, 0"5 ~< ~ ~< 0.65, AB2 and 
AB13 are the phases which might possibly be stable with respect to the pure solids. 
Outside this range other structures are possible. The sodium chloride structure AB 
has a maximum packing fraction of 0-793 at ct = 0.414; its stability for small size 
ratios, ~ ~< 0-45, has been established elsewhere [14]. At very high size ratios, ct >~ 0"85, 
a random alloy with a close-packed structure is the preferred structure [15, 16]. In 
the range 0"65 ~< ~ ~< 0-85 it seems likely that phase separation of the pure solids will 
occur at high concentrations; formation of an AB solid with the CsC1 structure has 
been discounted after thermodynamic considerations similar to those described later 
[17]. 

Most studies of the thermodynamic and structural properties of hard-sphere 
assemblies have been theoretical or by computer simulation rather than experimental. 
In the ball bearing experiments gravitational forces completely dominate thermal 
excitations; on the other hand, hard-sphere atoms, which would show thermal 
motion, do not exist, Over the last few years, however, a number of experiments have 
been performed o n suspensions of sub-micron-sized colloidal spheres, whose interaction 
is steep and repulsive and:is well approximated by that of hard spheres, which show 
significant Brownian motion [18, 19]: These suspensions can thus reach thermo- 
dynamic equilibrium (although in some cases special measures must be taken to 
reduce residual gravitational effects). The initial experiments established the phase 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
T
a
n
d
F
 
t
i
t
l
e
s
]
 
A
t
:
 
0
8
:
4
4
 
1
0
 
O
c
t
o
b
e
r
 
2
0
1
0



Binary hard-sphere mixtures 397 

behaviour [20] and the structure and dynamics of the fluid, crystalline and glassy 
states of suspensions of (nearly) equal sized particles [18]. Later Bartlett, Ottewill 
and Pusey [21, 22] investigated binary mixtures identifying both the AB 2 and AB13 
structures. Two mixtures were studied at size ratios ct = 0.62 + 0.01 and ~ = 0-58 + 0.01. 
Motivated in part by these experiments, Eldridge, Madden and Frenkel calculated 
the free energies of the AB2 [23] and AB13 [24] structures and constructed a 
theoretical phase diagram for the binary mixtures at ~ = 0-58 [25]. 

We draw attention to some special properties of colloidal suspensions. The liquid 
in which the particles are suspended can, to a good approximation, be regarded as 
an incompressible thermal reservoir. Thus, so far as its thermodynamic properties 
are concerned, a binary suspension can be treated as a two-component, A and B, 
system. If it is further assumed that the particles are also incompressible, a colloidal 
suspension is studied under conditions of constant volume. This contrasts with the 
more common experimental situation where the external constraint is one of constant 
pressure. Bartlett [26] has suggested that the phase diagram of a binary mixture at 
constant volume is most naturally represented in a 'density-density' form in which 
the axes are ~b A and ~bB, the partial volume fractions of the components. In this 
representation, three-phase eutectic triangles replace the eutectic points of the usual 
pressure-composition or temperature-composition representations (see figure l(a) 
and the discussion in section 3). 

The main purpose of this paper is to compare the experimental findings with the 
predictions of computer simulation, presenting in the process more complete experi- 
mental and theoretical phase diagrams than in previous publications. While there is 
a broad level of agreement between experiment and simulation (and, furthermore, 
with the arguments of Murray and Sanders), there are several differences of detail. 
In particular, we note that the icosahedral-containing superlattice phase AB13 is 
formed more readily from a fluid than equilibrium simulations predict and, second, 
that mixtures in which there is a marked difference in composition between the 
predicted equilibrium crystal and the fluid phase are often observed experimentally 
to form amorphous solids. We believe that these relatively minor disagreements are 
not caused by the failure of the hard-sphere model to represent the potential between 
the polymethylmethacrylate (PMMA) colloidal particles used in these experiments 
(see section 2.1). Indeed, our philosophy in writing this paper is to assume that these 
discrepancies reflect the importance of non-equilibrium factors which, although 
undoubtedly present in our experiments, are absent from the equilibrium computer 
simulations. The importance of such kinetic factors in the crystallization of one- 
component hard sphere is well documented. For example, at 4)'~ 0-58, a glass 
transition suppresses long distance diffusion in a one-component assembly of hard 
spheres and prevents homogeneous nucleation [7]. In experiments, colloidal samples 
with 4) > 0.58 do eventually crystallize but only by a process of heterogeneous 
nucleation at a rate which is much smaller than the homogeneously nucleated 
crystallization observed at lower concentrations. Obviously these non-equilibrium 
effects will also operate in mixtures. Indeed one could envisage that the consequences 
of such non-equilibrium transitions would be more complex than the simple 
suppression of crystallization observed in a one-component system. In an asymmetric 
binary mixture there is the additional possibility of a 'selective' arrest of just one of 
the two component species (i.e. a 'partial' glass transition). If such a transition occurs 
in a region of the phase diagram where two coexisting crystalline phases are expected, 
the growth of one phase could be preferentially 'blocked' by the selective nature of 
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the dynamics in the glass. In such situations ordered states will apparently 'coexist' 
with amorphous phases. Generally, in situations where the energies of competing 
ordered structures are very similar (as simulation predicts is the case for hard-sphere 
mixtures over wide bands of composition), kinetic factors may favour one phase 
preferentially over other competing structures. Consequently, the crystalline phase 
observed in an experiment need not be the equilibrium state but rather a metastable 
state, with a slightly higher free energy, which is simply formed the quickest. 

Finally, for completeness, we mention here other related work. It is remarkable 
that the first examples of colloidal superlattices (AB2 and ABi3 ) were found by 
Sanders [12] in native gem opals, solidified crystals of colloidal silica spheres. It was 
this discovery that led Murray and Sanders to consider the stability of superlattices 
of hard spheres. Subsequently, Hachisu and Yoshimura [13] observed at least five 
superlattice structures, including AB2 and AB13, in mixtures of charge-stabilized 
colloidal spheres. However, in these pioneering studies neither the interaction between 
the particles nor the phase behaviour of the mixtures was well characterized. Recently 
the stability of the AB 2 and AB13 phases has been considered theoretically. The 
results of Xu and Baus [27], based on density functional methods, and Bartlett and 
van Megen [28], who estimated entropies from free volume calculations, are in 
reasonable agreement with the simulations discussed here. 

2. Summary of experiment and simulation 

2.1. Experiment 

The preparation and characterization of both the particles [29] and the binary 
suspensions [21] have been described in detail previously; here we give only a brief 
summary. The particles comprised spherical cores of amorphous PMMA stabilized 
sterically by thin, 10-15 nm, shells of poly(12-hydroxystearic acid) (PHSA). They 
were suspended in mixtures of decahydronaphthalene (decalin) and carbon disulphide 
in a proportion chosen such that the refractive index of the mixture was close to that 
of the particles (~  1-50). This provided nearly transparent 'index-matched' samples 
suitable for study by both direct observation and light scattering. A number of 
previous experiments (see reference [28] for further discussion) on one-component 
suspensions of this type has established that the interaction between the PMMA 
particles is well approximated by that of hard spheres. 

Suspension concentrations were determined as follows. Several samples of each 
individual component were prepared over a range of weight fractions which spanned 
the freezing transition. After the samples had reached equilibrium, the hard-sphere 
freezing volume fraction, (~V = 0"494, was identified by extrapolating to zero [20, 30] 
the volume of crystal in samples in the fluid-crystal coexistence region. Then effective 
hard-sphere volume fractions ~b, used henceforth, of samples at any known weight 
concentration could be calculated. This procedure provides an accurate determina- 
tion of the effective density of the composite PMMA/PHSA particle in the 
decalin/CS2 mixture. Since small colloidal particles contain a higher proportion of 
the low density PHSA shell than larger particles the density of the composite colloid 
is a slowly increasing function of particle size. The variation is, however, relatively 
small with densities, defined as the mass of the dry particle divided by the volume 
in suspension of the composite PMMA/PHSA colloid, determined for the smallest 
(186nm) and largest (321nm) particles of 0-979 and 1-008 g cm -a, respectively. 
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Binary hard-sphere mixtures 399 

Mixtures were prepared by combining, in the required proportions, stock solutions 
of individual components with volume fractions calculated from the experimentally 
determined composite particle densities. The desired final concentration of a sample 
was achieved by centrifuging the particles down, removing the clear supernatant, and 
redispersing the particles by tumbling. Particle number ratios were estimated from 
the calculated volume fractions of each component in the mixture and the particle 
radii listed below. 

The particle radii were calculated from the lattice parameters of crystals at the 
melting concentration, measured by light powder crystallography I-31]. Particles with 
radii 186 _ 3, 199 + 3 and 321 _ 3 nm were used; combination of the first or second 
with the third provided size ratios of ~ = 0-58 + 0.01 or ~ = 0-62 ___ 0-01. The 
polydispersities (standard deviation/mean size) of all species, determined by dynamic 
light scattering and transmission electron microscopy, were 0-04-0.05. 

While one-component PMMA suspensions typically reach their equilibrium states 
within a day or two of mixing, binary mixtures crystallize much more slowly, 
sometimes taking weeks or months. Over such long times, sedimentation of the 
particles under gravity can dominate crystallization, leading to inhomogeneous 
amorphous sediments. In our experiments the effects of gravitational settling were 
minimized by rotating the samples continuously but slowly--one revolution per 
day--in the vertical plane so that the particles experienced 'time-averaged zero 
gravity' 1,32]. From time to time they were removed from the rotator for study and 
then replaced to resume slow rotation. 

Crystallization, when observed, appeared to be homogeneously nucleated: small 
crystallites grew throughout the samples. In partially crystalline samples, the 
crystallites settled under gravity within a few hours after removal from the rotator, 
leaving sharp boundaries separating (upper) colloidal fluid phases from (lower) 
crystalline phases. Since their lattice parameters are comparable in magnitude with 
the wavelength of visible light, crystallites were visible as coloured specks in white 
light illumination. Direct observation therefore provided two types of information: 
first, the phase composition of the sample as fluid, crystalline or a mixture of the 
two; and second, some measure of the rate at which crystallization takes place. In 
particular we noted the time after mixing at which crystallites were first observed 
and the time taken for the sample to reach equilibrium i.e. the time after which the 
volume of the solid phase no longer changed. Because light scattering and electron 
microscopy often suggested that the solid portion of these samples contained both 
amorphous and crystalline regions we did not attempt to compare quantitatively the 
amount of the solid phase with the predictions of the computer simulations. 

The structures of the crystals were identified by 'light powder crystallography'. 
An expanded laser beam illuminated a large number of randomly oriented crystallites; 
measurement of the scattered light intensity over a range of angles provided 'powder' 
diffraction patterns. Because the form factors of the individual particles are difficult 
to determine in index-matched samples 1-21] we do not attempt to analyse the 
intensities of the Bragg reflections but identify structures simply from their positions. 
A few dried samples of the crystalline phases were studied by scanning electron 
microscopy. Examples of both powder diffraction patterns and electron micrographs 
are given in [21] and [22]. 

Before embarking on a detailed comparison of experimental behaviour with that 
predicted by simulation we will discuss a number of factors which could complicate 
the situation. A general issue is the extent to which the system studied experimentally 
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400 M.D.  Eldridge et al. 

approximates the ideal binary mixture of hard spheres examined in the simulations. 
We consider first the nature of the interaction between the PMMA particles. In a 
non-polar medium, electrostatic effects should be negligible while attractive van der 
Waals forces are expected to be minimized by matching the refractive indices of the 
particles and suspension medium. Sterie stability of closely spaced particles results 
from the repulsive force induced by compression of their layers of stabilizer. 
Calculations [21] suggest that the interparticle potential increases from zero when 
the layers are just in contact to --~ 10kB T on a decrease of 2-3 nm of the interparticle 
spacing. Thus the potential, while continuous, is extremely steep; for particles of 
diameter 1> 400 nm in Brownian motion, the potential increases from zero to 
essentially infinity when the interparticle spacing changes by less than 0"5~o. 
Experiments [28] on the phase behaviour, structure and dynamics of PMMA 
suspensions, as well as measurements of osmotic pressure [33], support these 
theoretical estimates. Therefore we do not expect the inevitable slight softness of the 
particles to be a significant complicating factor. 

A second concern is that PMMA particles of any one species have a distribution 
of size. It is known both theoretically [18] and experimentally that a polydispersity 
of ~> 0-08 suppresses crystallization of a one-component hard-sphere system by 
distortion of the putative lattice. However, there is as yet no experimental evidence 
that the smaller polydispersities, 0-04-0-05, typical of the particles used in this work 
seriously affect either the freezing transition or the structure of the crystals. It remains 
possible that this degree of polydispersity has a greater effect in binary mixtures; 
however, lacking direct evidence, we cannot explore this possibility further. 

Another factor which must be considered is the reliability of the volume fractions 
assigned to the experimental samples. We estimate that the sample preparation 
procedure outlined above could result in uncertainties in the total volume fraction 
of order 0.01. Furthermore the concentrations of the samples could change somewhat 
during the many months over which they were observed. Periodic weighing revealed 
occasional minor loss of liquid by evaporation, despite careful sealing of the sample 
cells. It is known that carbon disulphide penetrates and swells the particles to some 
extent [34]. The process is fairly rapid and occurs largely within the first few hours 
after exposure of the particles to carbon disulphide; it is allowed for in the sample 
preparation procedures outlined here. However, further penetration may occur over 
a longer time. These uncertainties must  be borne in mind when attempting 
quantitative comparisons. 

2.2. Simulation methods 

2.ZI. Free energy data 
In order to compute the phase diagram by simulation methods we require the 

equations of state and free energies of all competing phases. As discussed in the 
introduction, the possible binary solid phases may be identified as those whose density 
at close packing is similar to that of a one-component f.c.c, crystal of hard spheres. 
From this criterion, the possible solid phases are the pure solids, AB 2 and AB13. 

The free energies were obtained using thermodynamic integration methods. For 
the binary fluid, we compute the work needed to compress the fluid mixture from 
zero density (the ideal gas) to the required packing fraction. The semi-empirical 
equation of state of Mansoori et al. [35] was used for this purpose since test 
calculations [17] for several compositions and size ratios, 0.50 ~< ~ ~< 0.60, have 
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shown that it introduces negligible errors up to packing fractions of order 0"55, which 
is sufficiently high for our purposes. The reliability of the Mansoori equation was 
confirmed previously by Jackson et al. [36] for smaller size ratios. 

For the solid state free energies we made use of the Frenkel-Ladd method [6], 
in which the reference state is taken to be the corresponding Einstein crystal. These 
calculations have been describedin detail elsewhere [24, 25]. For the pure solid A, 
the equation of state agreed well with that of Young and Alder [5-1, who provided 
a convenient polynomial representation. We have presented similar expressions for 
the AB13 and AB 2 free energies in [24] and 1-25]. A full set of pressures and free 
energies is given in 1-17]. 

2.2.2. Phase diagrams 
The (~A, (~B) constant volume phase diagrams were calculated from the free 

energy data in two stages. First, the equilibrium conditions were applied at constant 
pressure, using 'common-tangent construction' [37, 38] to characterize the coexisting 
phases and construct a constant pressure phase diagram. To convert the pressure- 
composition phase diagrams into the (tkn, tkR) representation the calculated tie lines 
at each pressure are considered. The equation of state for each of the coexisting 
phases is inverted to find the appropriate packing fraction and the equivalent tie line 
in the (~b A, tkB) representation is constructed. In this way the phase boundaries in 
the (~A, (~B) plots are located. 

Errorrs in the phase boundaries stem from three sources. The statistical errors in 
the solid-state free energies are the most easily quantified. These are typically around 
0.01kB T per particle. To obtain interpolated free energies at packing fractions between 
those at which simulations were made, a fit to the equation of state is integrated. 
For the calculations presented here, simple polynomial fits for the excess free energy 
Fex at a single value of the size ratio were used, rather than the global (q~, a) fits given 
in [24] and 1,25]. These were very accurate, and the errors in the interpolated free 
energies are not expected to be significantly larger than the statistical errors in the 
values calculated explicitly. 

In recent years finite size problems have been treated with increasing care. Here 
no attempt has been made to correct for the limited size of the simulations carried 
out. 896 particles were used in the AB13 simulations and 648 in the AB 2 ones. 
However, previous analyses of the finite size problem for free energies calculated by 
the lattice-coupling method I-6] revealed corrections that are smaller than the 
statistical errors quoted in this work. 

A second source of error lies in the fluid-state free energy and particularly in the 
reliability of the Mansoori equation of state [35]. The Mansoori equation has been 
tested extensively by Jackson et al. 1-36] and in this work over the range of a of 
interest. It is generally believed to be accurate for densities where solid-fluid phase 
coexistence has been calculated. Although some systematic error may be anticipated 
from this source, it is likely to be of the same order of magnitude as the (random) 
statistical error of the solid-state free energies. We demonstrate the potential 
significance of this error below. 

A third possible source of error comes from finding the point of contact of the 
common tangent to the fluid curve. However, since the Mansoori equation is a 
smooth function it is expected that the errors associated purely with finding the 
tangent to the fluid curve that passes through a solid free energy point are very small, 
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Figure 1. (a) Phase diagram at constant volume of a binary mixture of hard spheres with a 
diameter ratio c~ = 0-58. In addition to the fluid phase F, the following stable solid phases 
appear: pure A, pure B, AB 2 and AB13. Also shown are the state points studied by 
Bartlett et al. [22] in colloidal suspensions: II~, AB13 + B + F; ~', AB13 + F; A, AB13; 
~ ,  AB2 + F; A, amorphous solid. (b) The effect on the ct = 0"58 phase diagram of 
increasing the free energy of the fluid by 0-1kB T. 
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Binary hard-sphere mixtures 403 

i.e. a much smaller effect than that caused by the statistical errors in the solid-state 
free energies. 

In order to indicate the insensitivity of the phase diagrams (in the location of 
phase boundaries) to systematic errors of the size estimated, a simple shift has been 
applied to the fluid free energies and the diagram recalculated. Figure l(b) shows the 
resulting phase diagram with the fluid free energy surface artificially raised by 0"lkB T 
per particle. This value is approximately ten times the average statistical error in the 
solid-state free energies. Figure l(a) shows the original diagram for comparison. 
Overlaying the two figures reveals only marginal differences in the phase boundaries 
and indicates a striking insensitivity to such a large perturbation. The solid-fluid 
phase boundaries shift to slightly lower densities as expected and the most noticeable 
changes are in the AB13 + F and AB13 + AB 2 + F regions. 

3. Simulation phase diagrams for 0"50 ~ �9 ~ 0"625 

The results of computer simulation are most conveniently compared with 
experiment by portraying the calculated phase diagram in the (q~A, q~B) plane. In this 
representation mixtures of constant composition lie along rays which radiate from 
the origin at a fixed polar angle, while the radial distance labels the total volume 
fraction ~bA + q~B. The phase rule dictates that for a binary mixture of hard spheres 
the maximum number of coexisting phases is three, so the (~b A, ~ba) plane is divided 
into regions of one-, two- and three-phase coexistence. Figure l(a) shows a few 
examples of the calculated tie-lines which in areas of two-phase coexistence connect 
the equilibrium phases. The proportion of each equilibrium phase is given by the 
standard lever-rule construction. In the three-phase regions the vertices of the 
bounding triangle label the densities and compositions of the three coexisting phases 
while the proportions of each phase are given by a simple geometric construction 
[26]. Phase diagrams were calculated for size ratios ranging from 0"5 to 0.625. Figure 
2 shows the range 0"5 ~< ~ ~< 0.59 and figure 3 the range 0.60 ~< ~ ~< 0-625. 

Based on their experimental observations at ~ = 0.58, Bartlett et al. [22] proposed 
what is probably the simplest possible form of the (qSA, q~B) phase diagram for a 
binary mixture with four crystalline states, A, B, AB2 and AB13. With increasing 
particle concentration, the following phase behaviour was suggested (see figure 1, 
reference 1-22]): fluid for all compositions; four two-phase regions, each comprising 
fluid and one of the crystals; three eutectic triangles A + AB 2 + fluid, AB 2 + ABla + 
fluid and AB13 + B + fluid; and, at the highest concentrations, crystal-crystal 
coexistence, A + AB2, AB2 + AB13 and AB13 + B. In fact the phase diagram for 

= 0"58 (figure l(a)) calculated subsequently in the simulations [25] looks, at a first 
glance, to be considerably more complicated. However, a detailed comparison with 
the phase diagram suggested by Bartlett et al. [22] shows some striking similarities. 
Both diagrams contain the same combinations of phase coexistences; all that is altered 
is their relative disposition in the plane. Indeed the calculated phase diagram (figure 
l(a)) is simply a severely distorted form of the earlier diagram suggested by Bartlett 
et al. This can be seen by focusing on the positions of the three eutectic fluid com- 
positions (where a fluid phase coexists with crystals of either A + AB2, AB2 + AB13 
or ABla + B). In the calculated phase diagram these three points, and their associated 
phase boundaries, are skewed towards the small sphere (Y) axis when compared with 
the earlier phase diagram of Bartlett et al. 

The underlying reason for this asymmetry is that the osmotic pressure is increasing 
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at fixed total ~b across the diagram. At the freezing points of the pure solids (i.e. at 
(~bA, ~ba)= (0, 0"494), (0"494, 0)) the pressures are in the ratio of number densities 
(i.e. ~3). To illustrate the consequence of this consider a sample of equal volume 
fractions (~bA = ~bB) at 7 = 0.625 (figure 3(c)); this corresponds to a composition of 
nB/nA = 4 which, given the preponderance of B particles, might be expected to 
crystallize out pure B above the freezing density. In fact, as the diagram shows, 
crystallization into a highly compressed A occurs, leaving a fluid enriched in B at a 
lower density than the mean. The dominant factor contributing to the lowering of 
the free energy of the sample upon crystallization is the increased free volume 
available to the larger number of small particles in the lower density fluid. 

First we discuss the predicted diagrams for 0.5 ~< c~ ~< 0-59 (figure 2). The diagrams 
are generically similar, showing the behaviour described earlier: four two-phase 
fluid-crystal coexistence regions, three three-phase eutectic triangles and three 
regions of crystal-crystal coexistence. (Since the experimental results do not extend 
to very high concentrations the three-phase crystal region B + AB2 + AB13 does not 
concern us here.) However, the position and extent of each region are strong functions 
of the size ratio ~. Two features are striking: (i) the large extent of the A + fluid 
region, and thus even at number ratio nB/nA = 6, a fluid is predicted to freeze first 
into A + fluid rather than AB 2 + fluid or AB13 plus fluid, as one might expect naively; 
(ii) the fact that the AB 2 + fluid region extends to very large values of nB/n A so that 
at ct = 0-54 a fluid mixture with nB/n A ~ 50 should freeze first into AB 2 + fluid rather 
than AB13 + fluid. Even at ~ = 0-58, where experiments were performed, a fluid at 
nB/n n = 13 is predicted to form AB2 + fluid rather than AB13 + fluid. 

Between ~ --- 0"59 (figure 2(c)) and ~ = 0-60 (figure 3(a)) a qualitative change in 
the form of the diagrams is found. The AB 2 + fluid, AB 2 + AB13 + fluid, and 
AB 2 + A + fluid regions disappear, so that AB 2 should be found only at very high 
concentrations. A fluid + AB13 + A triangle appears. Again, the predicted phase 
behaviour is a strong function of size ratio. At ~ = 0.62 AB 2 is found only at the 
highest concentrations, and at c~ = 0"625 ABla also has almost disappeared. As we 
shall see in the next section, the sensitivity of the phase behaviour for radius ratios 

~-0.62 has important consequences when we compare the results of computer 
simulations with experiment. For ~ > 0-625 the phase diagram is expected to take 
the simple form predicted by Bartlett 1-26], corresponding to an A-B eutectic. This 
should hold up to ct ~_ 0-85 above which, because of their increasingly similar sizes, 
mixed, substitutionally disordered crystals of A and B become possible. 

Finally we note that at the very highest packing fractions, ~b ~ 0-65, all the 
calculated phase diagrams demonstrate that the most stable solid phases are those 
predicted by Murray and Sanders [11]. Thus at riB~hA- 2 solid AB2 is stable; at 
nB/n A ~ 13, AB~a is stable, and at number ratios intermediate between the ideal 
stoichiometries, phase separation into the two adjoining solid phases is predicted. 

4. Comparison of experiment and simulation 

4.1. Radius ratio ct = 0.62 

The samples prepared at c~ = 0.62 are plotted on the phase diagram, figure 4, 
predicted by simulation. We show both samples which have been discussed previously 
[21] and some new ones at nB/n A ~ 2, 4, 10 and 13. Here, for completeness, we 
summarize the behaviour of all samples. We note that the total volume fractions are 
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u ~ , + B  ~AB2+B 

0.4- ~:,+F" 2" ~ 

A+F+AB 
0.3- 

0.2- 

AB2 

0.1- 

0.0 

Fluid (F) 

~ l l  in 
,r 

AB2+A 

A+F 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Ca 

Figure 4. Phase diagram at constant volume of a binary mixture of hard spheres with a 
diameter ratio e = 0.62. The symbols indicate that the following phases were detected 
by Bartlett et al. [21] in colloidal suspensions: (3, Fluid (F); •, amorphous solid; @, 
B; I ~ , A B 1 3 + B + F ; ~ , B + F ;  II, A + F ;  D,A. 

mostly in the range 0.49 < (4~A + q~a) < 0.56, which covers the coexistence region of 
a one-component system where crystallization is fairly rapid. By analogy with the 
one-component system, we expected that more concentrated samples would tend to 
remain in metastable glassy states; however, this remains to be established at all 
number ratios. Samples rich in A, 0 ~< riB~hA < 1"2, formed crystals of essentially pure 
A coexisting with fluid enriched in B. The time taken for the samples to reach their 
equilibrium coexistence states increased rapidly with increasing content of B, from 
the day or so characteristic of a one-component A sample to many weeks. This 
slowing down presumably reflects the ejection of an increasing number of small B 
particles from the growing A crystals. For 1.2 ~< na/nA < 4 no crystallization was 
observed and the samples remained in metastable fluid or glassy states. From figure 
4 we note that all samples with riB~hA ~ 4 are predicted to lie in the A + fluid region. 
Apart from the tendency to form glasses at large nB/nA ratios (which will be discussed 
further in section 5.1) there is general agreement between experiment and simulation 
in this region of the phase diagram. 

In the opposite limit, samples rich in B, nB/n A ~ 30, formed either B + fluid or 
apparently pure B crystal without fluid. Since there were particles of A in these 
samples, we must assume that these were trapped in the B polycrystal, probably in 
amorphous grain boundaries; scanning electron microscopy supports this conjecture 
1-21]. Again there was a marked slowing down of the rate of crystallization with 
increasing content of the minority (A) species. Figure 4 shows that most of these 
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samples are predicted to lie in the ABla + B + fluid or ABla + B regions, in 
disagreement with the fact that AB13 was not observed experimentally. However, in 
figure 3(c), for ~ = 0.625, we note that these samples lie mainly in the corner of the 
A + B + fluid triangle where the predominant phase will be crystalline B. Thus given 
the experimental uncertainty in the diameter ratio (~ = 0.62 ___ 0-01) and the diffi- 
culty, noted above, in nucleating crystals of A from fluids containing mostly 
small spheres, there is a reasonable level of agreement between experiment and 
simulation. Overall the experimental results confirm the prediction from simulation 
that the size ratio ~ = 0-62 is at the upper limit for the stability of both AB 2 and 
ABx3. The former was not observed and the latter, though found, appeared to be 
metastable. 

The most interesting behaviour was observed in samples with 10 < riB~hA < 16. 
The most concentrated of these samples formed apparently pure B crystals (again 
presumably with trapped amorphous A). At slightly lower concentrations samples 
containing AB13 + B + fluid were found. However, the following observations on a 
sample with riB~hA = 12"9 and q~ = 0.533 suggest that the AB13 phase may be 
metastable. Crystallites were first observed in this sample after one day, and after 
two weeks the fraction of the sample which appeared crystalline remained constant 
at 0.80 + 0.05 for the next nine months. Analysis of the powder diffraction patterns, 
figure 5(a) shows that the crystal, when first formed, was essentially pure B (a 
random-stacked, close-packed structure I-31]). After a period of three months, features 
appeared in the pattern characteristic of the ABx3 structure. As can be seen from 
figure 5(b), the superlattice reflections are superimposed on a relatively large 
featureless background. This suggests that the sample contains both crystalline B 
and AB13 phases as well as an appreciable amount of a third disordered phase. Over 
still longer times, the amount of AB13 appeared to decrease, leaving the B crystal, 
figure 5(c, d). Because the measurements shown in figure 5 spanned many months, 
the intensities measured on different occasions are on different arbitrary scales, so 
the proportions of each of the three phases are difficult to estimate accurately. 
However, the change in the relative amounts of the two crystalline phases may be 
followed by ratioing the intensity of one of the AB13 superlattice reflections, for 
example the (422) line, to the intense (001) reflection of the randomly stacked B 
crystal. Figure 6 displays the ratio of these two peaks for measurements at 
2 = 647.1 nm where the reflections are well separated. As shown, the relative amount 
of the AB13 phase reaches a peak after about six months and subsequently drops, 
strongly suggesting that the AB13 phase is metastable, with respect to B crystal and 
fluid. The subsequent disappearance of the superlattice phase is, however, very slow 
with crystallites of AB13 remaining visible even a year after sample preparation. 
Unfortunately, over this long time period the intensity of light scattered by big and 
small particle changes (probably caused by a small degree of selective evaporation 
of carbon disulphide from the suspension medium), so we cannot be sure that the 
metastable AB13 crystal grows from B particles trapped in amorphous states, 
although this seems the most likely explanation. 

The behaviour of these samples is not consistent with the predictions of figure 4, 
for ~ = 0.62, that they should lie in the AB13 + fluid, A + AB13 + fluid or A + fluid 
regions nor with those of figure 3(c), for ~ = 0.625, where AB13 is only predicted at 
high concentration. We note, however, that in figure 3(c) all the experimental samples 
lie in or close to regions where B crystals are predicted. Comparing figures 3(c) 
and 4, it is immediately apparent that the equilibrium phase diagrams are very 
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Scattering vector q / 10 -2 nm 1 

Figure 5. Light scattering diffraction patterns measured for a colloid mixture of radius ratio 
c~ = 0-62, composition riB~hA = 12"9 and volume fraction ~b A + ~b B = 0"533 after (a) three, 
(b) six, (c) nine and (d) twelve months. The dominant Bragg reflection in (a) and the 
marked peaks (O) in (b-d) arise from the (001) interplane spacing of a crystal of small 
spheres. The additional peaks, clearly visible in (b), indicate the presence of an ABa3 
phase. 

sensitive to small changes in diameter ratio; in particular, note the destabilization of 
the AB13 phase at ~ = 0.625 compared with the case at c~ = 0"62 and the subsequent 
marked change in the phase equilibria for compositions around n~/n a = 13. This 
sensitivity reflects the very similar free energies of the competing crystalline phases. 
In this situation we can expect kinetic factors to play a dominant role in determining 
which phases are found experimentally. The surprising observation of metastable 
AB13 must therefore indicate that this phase is formed more readily than the 
thermodynamically preferred B crystal. Possible explanations for this kinetic effect 
are discussed in section 5.2. However, the apparent readiness of AB13 to nucleate 
does not explain fully the complex sequence of phase behaviour observed in the 
experiments. The scattering data show clearly that the thermodynamically stable B 
crystal nucleates first and only later does the metastable AB13 grow. The explanation 
of why a metastable phase should appear at all if a more stable phase has already 
nucleated remains unclear. 
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Elapsed time/days 
Figure 6. The ratio of the light scattering intensities of the AB13 (422) line (IAB13) to the B 

(001) line (IB) as a function of time after preparation, for a colloidal sample of radius 
ratio ~t -- 0"62, na/n A = 12.9 and ~b = 0"533. 

4.2. Radius ratio ~ = 0.58 

The samples prepared at c~ = 0.58 are plotted on the phase diagram, figure l(a) 
predicted by simulation. Because we expected mixtures with nn/n A < 1-2 to behave 
in much the same way as at ~ = 0-62, i.e., to form A crystal + fluid, no such samples 
were prepared. A surprising finding, initially, was that the samples at nB/n A = 2, 
corresponding to the stoichiometry of AB2, did not crystallize. Subsequent simulations 
showed that these samples are predicted to lie in the crystal A + fluid region, where 
amorphous  structures were also found at ~ = 0.62. It remains to be established 
whether, as predicted in figure l(a), samples of this composition but higher total 
concentration would form AB 2 or whether crystallization would be superseded by a 
glass transition. 

In all the samples at both na/n A = 4 and nB/n A = 6 the final state was AB 2 q- fluid, 
with differing proport ions of the two phases. This crystal structure was clearly 
identified from both the light scattering diffraction patterns and electron microscopy 
of dried samples [22]; the electron micrographs showed beautiful long-range binary 
order. In all cases crystallization was slow. The first crystallites were observed within 
4-5  weeks and full crystallization took at least three months. Figure l(a) shows that 
samples at n~/n A = 6 are predicted to lie either in the AB 2 + fluid region or near to 
the corner of the AB 2 + A + fluid region. If we assume that A remains amorphous  
there is reasonable agreement between experiment and simulation. However, the 
situation is less satisfactory for the samples at na/n A = 4 which showed AB E + fluid 
experimentally but are predicted to be mainly in the A + fluid region. Possible 
explanations for this behaviour are discussed in section 5. Points of good agreement 
concern the total concentration of the AB E crystal and the hexagonal interlayer- 
spacing or c/a ratio. Experimentally, these parameters were calculated from the 
measured lattice constants of the crystal and the known particle sizes. The volume 
fraction of AB 2, in the samples in which it was observed, was between 0-63 and 0.65 
whereas the lowest predicted value is ,,~0"64. There was a similar degree of agreement 
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for the c/a ratio with an experimental value of 1.045 + 0-002, for samples at nB/n A = 4, 
against a computed value of 1.049. 

The most concentrated sample at nB/nA = 14 and 20 appeared to be entirely AB13 
but presumably contained some solid B, either in an amorphous state or as a crystal 
which would be hard to identify (see discussion below). The other samples at 
riB~hA = 14 and 20, and those at riB~hA = 9 showed ABx3 + fluid coexistence. The 
AB13 structure was indicated clearly by light crystallography; the appearance of 
superlattice lines in the diffraction patterns confirmed the presence of the large unit 
cell described in section 1. Electron microscopy of dried AB ~ 3 was not very successful, 
probably because of disruption of the crystal on drying. Surprisingly, ABe3, despite 
its complex structure, crystallized much more rapidly than AB2. At nB/nA = 20"0 and 
thA + ~bB = 0-538 crystallites were observed within three days and complete crystal- 
lization took about three weeks. Inspection of figure l(a) shows that at na/n A -- 20 
most of the samples lie in the AB 13 + fluid region, in agreement with the observations. 
At nB/nA = 14 most samples are predicted to show three-phase ABe3 + ABz + fluid 
coexistence, whereas AB 13 + fluid was observed. There is consistency if we assume 
that the AB 2 remains amorphous. Samples at nB/nA = 9 show the most serious 
disagreement with predictions: AB 2 + fluid is predicted whereas ABx3 + fluid is seen. 
This behaviour is discussed further in section 5. As measurements on the AB2 crystal 
demonstrated there is a good agreement between observed and predicted values for 
the concentration of superlattice phases. For all the samples discussed in this 
paragraph the total volume fraction of ABe3 lay in the range 0.58-0-60, whereas the 
lowest value predicted by simulation is about 0"58. 

In all the samples prepared at na/nA = 30 fluid-solid coexistence was observed, 
with crystals of AB ~ 3 being clearly identifiable from light crystallography. Simulation 
predicts that while the three most dilute samples lie in the ABa3 + fluid region the 
remaining sample should show a three-phase coexistence between AB 13, B, and fluid. 
Checking this prediction is difficult experimentally because at a diameter ratio of 

= 0.58 there is a near overlap of the main peak of the B crystal with one of the 
AB 13 lines. Close inspection of the light scattering diffraction patterns does, however, 
reveal several features which while not conclusive are consistent with the theoretical 
predictions. Figure 7(a-d) shows the measured scattering from samples with nB/nA ---- 30 
and q~A + q~8 ---- 0"520, 0"533, 0"542 and 0"553. Concentrating on the two peaks at 
1.9 • 10- 3 and 2"0 x 10- 2 nm-  t we can clearly see there is a change in their relative 
intensity between parts (a-c) and part (d). The peak at 2.0 x 1 0  - 2  nm-~ arises from 
the very intense (531) reflection [22] of the AB13 crystal while the peak at 
1.9 x 10 -2 nm -a may arise from either the strong (001) reflection of the B crystal 
(if present) or the (440) line of ABt3. Under the index-matching conditions used in 
the experiments at 2--476.2 nm the (440) line of ABe3 is normally found to be 
significantly weaker than the strong (531) peak, as is indeed observed in figure 7(a-c). 
The reversal of the intensity ratio in figure 7(d) therefore indicates that the most 
concentrated sample contains both ABa3 and B crystals, as predicted. 

5. Structural and thermodynamic effects on crystallization kinetics 

If one accepts at face value the comparison of phases observed experimentally in 
the suspensions with those predicted from the hard-sphere thermodynamic phase 
diagram, some aspects about the kinetic factors influencing which crystalline phases 
are observed experimentally may be inferred. 
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(c) 
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Scattering vector q / 10 .2 nm -1 

Figure 7. The measured light scattering from colloidal samples of radius ratio ~ = 0-58 with 
na/n A = 30 and (a) CA + Ca ---- 0'520, (b) 0"533, (c) 0"542 and (d) 0-553. The marked peak 
( 0 )  at  q = 1.9 x 10 -2 nm -1 may arise from either the (001) interplane reflection of a 
crystal of small spheres or the (440) line of an AB13 crystal. The two lines are almost 
coincident. The remaining peaks indicate the presence of an AB13 crystal. 

Two general features emerge from this comparison. First, AB13 seems to crystallize 
very readily out of the suspensions. In contrast to the other crystalline phases, it is 
detected experimentally whenever it is predicted on thermodynamic grounds, and 
even, in some cases, at compositions where other phases are expected to be more 
stable. Second, pure A and AB z seem reluctant to crystallize out of suspensions whose 
compositions differ substantially from those of the crystals. The thermodynamic 
phase diagrams show that at both e = 0"58 and a = 0"62 solid A should precipitate 
out of fluids with a wide range of compositions, from pure A to nB/nn ~ 9. 
Experimentally, as seen in figure 4, pure A appears only from suspensions of 
composition nB/n A < 1.2, for ~ = 0.62; for larger nB/n n values an amorphous  solid is 
found. Similarly, for ~ = 0"58 (figure l(a)), amorphizat ion occurs at composit ion 
na/n A = 2 whereas at na/n A = 4 solid AB z appears rather than A, as would be 
expected from the thermodynamic phase diagram. 

In the nB/nn = 4 mixture (~ = 0"58), it is as if the system has settled into the next 
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most stable state in order to avoid crystallizing A from the B-rich fluid. Similarly, 
for fluids of composition na/nA = 9, AB13 appears, rather than AB 2, as expected on 
thermodynamic grounds. In order to make this observation more concrete, we have 
recalculated phase diagrams at ~ = 0.58 with the A and AB 2 crystals artificially 
destabilized with respect to the other phases. By thermodynamically destabilizing these 
crystals, we are attempting to explore the consequence of formation of these phases 
being blocked kinetically, and to expose the boundaries between the fluid and the 
underlying metastable phase. In figure 8(a) we show the phase boundaries calculated 

(a) 
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Figure 8. The effect on the phase diagram for ~ = 0.58, shown in figure l(a), of(a) an increase 
in the free energy of solid A by k, T and (b) an increase in the free energies of both 
solids A and AB2 by k B T. The experimentally observed phases are indicated as in figure 1. 
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by artificially raising the free energy of solid A by k B T. These locate possible 
transitions to metastable phases accessible to suspensions with composition riB~hA = 4 
as they are compressed, if nucleation of crystalline A is blocked because of the large 
difference between the composition of fluid and solid. The points examined experi- 
mentally at these compositions are also shown. It can be seen that all the experimental 
points at which solid AB 2 was found now lie in or very close to the metastable 
two-phase region of AB 2 + fluid. 

In order to examine the same trends for the very B-rich suspensions, where 
nucleation of both A and AB 2 could be blocked, we show in figure 8(b) the effect of 
destabilizing both A and AB 2 by kBT. Again, experimental points which lay 
previously in a region of predicted stability for fluid plus A and AB 2 (riB~hA = 9), 
but where AB13 was observed, are now located in, or very close to, an ABI3 + fluid 
region. 

These considerations lend substance to the idea that the experimental observa- 
tions are affected by kinetic effects. In the following sections we describe preliminary 
attempts to identify factors which might lead the kinetics of crystallization to depend 
on the composition of solid and melt. 

5.1. Fluid composition and crystal nucleation 

The experimental observations on the binary crystals are consistent with the 
formation of crystals by a process of homogeneous nucleation. Careful observations 
have been made on the kinetics of crystal formation in the one-component hard- 
sphere colloids [39]. Homogeneous nucleation is observed for packing fractions 
below ~ = 0"58 (which is the density at which diffusion is arrested). At higher 
densities, heterogeneous nucleation is seen, which results in distinctively textured 
crystals growing away from interfaces. 

We have investigated some possible reasons for a relationship between ease of 
crystallization and the difference in composition between crystal and fluid by 
calculating some of the parameters which appear in classical nucleation theory as 
applied to crystallization of solid A from a binary mixture, 

In classical theory, the rate of homogeneous nucleation is expressed as the product 
of a thermodynamic factor, which gives the number of nuclei which have reached a 
critical size N*, and a kinetic factor f * ,  which governs the rate at which further A 
particles are added to the critical nucleus: 

Jnuel _. f ' N * .  (1) 

Both of these factors depend on the mole fraction of A particles in the fluid X A. The 
kinetic factor f *  contains a trivial factor proportional to X A, which arises from the 
proportion of fluid atoms around the surface of the critical nucleus which are of type 
A and may therefore stick on, and a potentially complicated XA dependence from 
the rate at which the rearrangement necessary to include one of the fluid atoms into 
the crystal takes place. We have not investigated the composition dependence of the 
latter factor here; instead we have simply set it to be proportional to the diffusion 
coefficient of a one-component hard-sphere fluid with the same total packing fraction 
[7]. 

Nucleation theory is normally developed at constant pressure, where the number 
of critical nuclei (per unit volume) that have reached the critical size N* will be 
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N* = No exp \ - k ~ / "  (2) 

Here, the liquid contains N O A atoms per unit volume, and AG* is the Gibbs free 
energy of formation of the critical nucleus (presumed spherical). The colloidal 
experiments are carried out at constant volume, so that the thermodynamic driving 
force is really the change in the Helmholtz free energy of the whole sample when a 
crystal nucleus forms. However, since the crystal nucleus is at the same osmotic 
pressure as the liquid, it is easy to show that, for the formation of a nucleus which 
is very small compared with the whole sample, the difference between these free 
energies is insignificant. 

AG* is given by 

AG* - 16~7av2 (3) 
3AGp2 ' 

where ~ is the interfacial tension between the A crystal and the fluid of composition 
XA, AGp is the free energy difference per particle between A in the fluid and A in the 
pure solid, and vs is the volume per atom in the solid. Clearly, both ~ and AGp vary 
with fluid composition. AGp is given by [37] 

AGnuel __ f l ~ c  __ # F .  (4 )  
AOp- N~UCl 

~ ,  is calculated by taking the intercept on the XA = 1"0 axis of the tangent to the 
fluid Gibbs free energy curve GF(XA) at the composition XA. 

AS the fluid becomes less rich in A spheres or, more generally, as its composition 
becomes less like the stoichiometry of the nucleating phase, the driving force for 
nucleation is lowered. This has the effect of lowering the nucleation rate for a fluid 
composition which differs markedly from that of the nucleating solid. 

In order to examine whether this thermodynamic factor is sufficient to explain 
the apparent reluctance of A to crystallize from B-rich suspensions we have calculated 
the nucleation rate from the above expressions with the interracial tension ~ held 
constant. We have chosen the value of 7 so that the packing fraction dependence of 
the rate of nucleation predicted for the one-component case parallels the observations 
made by Pusey et al. [18], i.e., nucleation commences just below the freezing density, 
and the rate of crystal formation is a maximum at ~b -~ 0.53. This gives 7 = 0"2kR T/a 2, 
which should be contrasted with the measured value of 0-46kB T/~ 2 [40] and the 
theoretical value of 0.61kBT/c~ 2 [41] for a hard-sphere fluid against a planar 
hard-sphere wall. Using these larger values in the nucleation theory expression 
predicts crystallization only over a small range of densities, q5_ 0-53. The lower 
bound for observation of nucleation is then defined as 1/1000 of the maximum rate 
calculated for nucleation of f.c.c. A from a fluid of pure A at ~b -~ 0-53. The choice of 
criterion for nucleation does not affect significantly the variation of density at which 
nucleation is first adjudged to occur for differing fluid compositions. This is because 
the nucleation rate remains virtually zero until a critical density at which there is an 
'explosion' of nuclei. Hence, a rather large range of choice for this lower limit to 
nucleation all 'pick out' this critical density quite well. Calculations based upon these 
considerations showed that the critical density for observation of nucleation does 
not depart significantly from the freezing line; i.e., they show that the simple 
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thermodynamic factor is not sufficient to block nucleation of A crystals from a B-rich 
suspension in the way apparently observed. 

The other factor which might be involved in the blocking effect is the fluid 
composition dependence of the interfacial tension 7. Nothing is known about this 
dependence, although intuition would suggest that the strain at the interface should 
become greater as the difference in composition of the two phases increases. We have 
carried out illustrative calculations in which the surface free energy per unit area is 
allowed to vary linearly with composition from a value appropriate to pure A 
liquid-solid coexistence to pure B liquid-solid coexistence. This accounts only for 
the increasing number of the smaller B particles in a unit area of the interface, and 
is likely to underestimate the true variation. The results of this calculation are shown 
in figure 9. It can be seen that this line roughly divides the experimentally studied 
points at which nucleation of A was/was not observed. In view of the ad hoc treatment 
of the composition dependence of the interfacial term, all that can really be deduced 
from this figure is the great sensitivity of nucleation to surface, rather than bulk, 
thermodynamic effects. 

5.2. Icosahedral order in the fluid 

At a purely qualitative level, it seems reasonable to assert that a crystal will form 
readily from a fluid if the local order in the fluid resembles that in the crystal. In this 
case, the free energy barrier to crystallization would be expected to be low. Given 
the apparent readiness of AB13 crystals to nucleate, noted earlier, we have sought to 
characterize the local coordination structure in the fluid near to freezing. J6nsson 
and Andersen 1-42] have noted the presence of a significant degree of local icosahedral 
order in simulations of supercooled one- and two-component (X A = 0"2, o-~/a A = 0.8) 
Lennard-Jones systems. It seems possible that this local order could facilitate the 
formation of the locally icosahedral ABx3 crystal. The icosahedral character of the 
AB13 crystal is very high: it is obvious that the B particle at the centre of an 
icosahedral unit is icosahedrally coordinated by 12 other B particles. What is less 
apparent is that the B particles on the outside of these clusters also have 12 
neighbours, 10 B particles and two As, and that these are disposed icosahedrally. 
The central question to be addressed here is: does the presence of the A particles in 
fluids of composition close to AB13 induce a higher degree of icosahedral order 
around the B particles than would be found in a one-component fluid at the same 
packing fraction? 

To answer this question we have examined a local bond-order parameter in 
simulations of pure A and AB13 fluids. As shown by Steinhardt et al. 1-43, 44] suitable, 
rotationally invariant, bond-order parameters may be constructed from combinations 
of spherical harmonics defined on the 'bond'  connecting two atoms. To form a local 
order parameter for particle i, we construct 

1 
- ( 5 )  

j = n n  bonds 

where Y~m is a spherical harmonic and rij is a unit vector directed along the line of 
centres of atoms i and j. The sum runs over those atoms which are closer than 
1.2(al + %) and the number of contributions to the sum is N~. Rotationally invariant 
combinations of the Q[~ are 
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Figure 9. The dashed line shows the effect of the ad hoc composition dependent surface 
tension on the critical density for nucleation at both (a) ce = 0"58 and (b) e = 0.62. 
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( 4~ ' )1/2 
QI= 21+ 1 ~ [Qiml2 (6) 

m =  - I  

l ~  i i i 
l 1 m3)Qlm, Qtm2Qtm3. (7) w i =  

m l ,  m2 ,  m3 
m l + m 2 + m 3 = O  

QI is a second-order invariant and the bracketed term in the third-order invariant, 
WI, is a Wigner-3j symbol. The ratio of these order parameters, 

is found to be insensitive to the precise definition of neighbours used yet is a sensitive 
measure of different coordination symmetries. 

By observing on a graphics terminal several clusters (of roughly 13 atoms) in 
dense fluid configurations the following criteria were found to indicate icosahedral 
order around a central particle i: 

Q~ i> 0.40 ) 
/ 

^i -0.13 {icosahedral cluster. W 6 ~< 
/ 

11 ~< N~ ~< 13 ) 

Similarly, the following criteria: 

i> O.lO 

Q~ ~> 0"40 
^. f.c.c, cluster, 

W~, ~< -0.12 

11 13 

(9) 

(10) 

were applied in exploring configurations for f.c.c, clustering. In practice, we found 
that the particles identified by these criteria formed almost disjoint sets, and 
conformed well with the particles identified as icosahedrally or cubically coordinated 
on the graphics display. 

Figure 10(a, b) shows the behaviour of the number N I of icosahedrally and number 
N c of cubically coordinated particles in two simulations as the fluids are gradually 
compressed to densities well above their equilibrium freezing densities. Compression 
simulations of this type are the hard sphere equivalent of temperature quenches in 
normal fluids. These fluids were gradually compressed in steps of Aq~ = 0.005 
separated by equilibration runs of 250 000 collisions up to a highest packing fraction, 
~b = 0"60. The compression itself was achieved by a sequence of small particle 
expansions accomplished by finding, after a 1000 collision sequence, what the 
maximum swelling of the particle radii would be in order to bring a pair of particles 
into contact and then swelling the particles by 90% of this value. Note that this 
means that the actual compression rate was not constant but became slower as the 
packing fraction became higher. Production runs of 500 000 collisions were performed 
for 16 densities in this range (0.45 ~< ~b ~< 0.60) from which averages of local order 
were taken. 
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Figure 10. The percentage of particles involved in f.c.c, and icosahedral clustering in MD 
densification simulations for (a) a monodisperse hard-sphere system and (b) a binary 
hard-sphere mixture with ~ = 0-58 and riB~hA = 13. 

For  the one-component fluid compression, MD was performed on 864 particles 
in a cubic box. Figure 10(a) shows the average number of icosahedral and f.c.c. 
clusters found as the density was increased (this averaging was over 20 configurations 
output during the production run). The percentages of atoms involved in each cluster 
type are plotted in figure 10(a). As is clearly seen, icosahedral clustering does play a 
role in the dense hard-sphere fluid and reaches a peak for ~b = 0-55 with an average 
of 34~o involvement. However, in the one-component case, icosahedral order cannot 
be found in the crystalline phase, and f.c.c, clustering, which does lead to crystal 
nucleation, is a competing tendency. For  ~b ,~ 0.57 the system crystallizes and the 
icosahedral order is swamped by the cubic order. Examination of the simulation cell 
at the end of this run showed that two close-packed crystallites had formed separated 
by grain boundaries, q5 ~ 0.57 is the packing fraction identified by Woodcock as the 
limit of the metastable fluid branch under slow quenching conditions [7]. 

The second compression run was for a mixture with size ratio of ~ = 0.58, 
composition X A = 1/14 corresponding to the AB13 stoichiometry, and total number 
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of particles N = 896. Figure 10(b) contrasts the behaviour of the AB13 fluid with the 
pure fluid case; again N~ and N c rise smoothly together as 4) is increased. However, 
in this case, even at packing fractions higher than the 'Woodcock' density, we do 
not see crystallization at the compression rates used. This accords with the 
experimental observation that crystallization is much slower in the binary mixtures 
than in one-component systems, i.e., that the crystalline state is more remote in some 
sense. (Close inspection of figure 10(b) shows a sharp jump in NI at ~ --- 0-55; we are 
currently examining whether this is linked to an incipient nucleation event in a series 
of runs at lower compression rates.) The noteworthy thing about these figures is that, 
at densities close to freezing, the degree of icosahedral order in the ABe3 fluid is 
similar to that in the one-component case, i.e. there is no additional pre-ordering of 
the fluid at this composition above that which might be expected in a one-component 
system at the same density. The apparent relative ease of formation of the AB13 
crystal in the binary mixtures, relative to the other possible crystal phases, must be 
due to the fact that a crystal with icosahedral local order is possible at this 
stoichiometry and size ratio which may be found by the intrinsic icosahedral 
fluctuations in the melt. 

6. Conclusions 

In this paper we have presented a detailed comparison between the phase 
behaviour found in a binary colloidal suspension of radius ratios 0.62 and 0-58, and 
an atomistic Monte Carlo simulation of a mixture of hard spheres. Our work is 
motivated by the recent observation of the spontaneous formation of two highly 
ordered superlattice structures, AB 2 and AB13 , in mixtures of colloidal spheres. 
Overall, we find a close level of agreement between simulation and experiment over 
wide regions of composition. In particular, simulation confirms the experimental 
result that the size ratio ~ = 0"62 is the upper limit for the stability of both superlattice 
phases. We also find excellent agreement between predictions for the densities and 
unit cell sizes and experiment. The quality of this agreement demonstrates that the 
effective potential between two colloidal particles is indistinguishable experimentally 
from the classical hard-sphere interaction. Consequently, factors such as the softness 
of the polymer coating or the potydispersity of the colloidal spheres are, at least in 
this case, unimportant. 

In limited regions of composition we observe discrepancies between experiment 
and simulation. On the basis of the general level of agreement mentioned above, we 
attribute these differences to kinetic factors. A close comparison reveals several 
interesting non-equilibrium effects. First, the AB13 structure is very readily crystal- 
lized from a fluid phase, and second, by contrast, crystals of pure A and AB2 are 
rather reluctant to crystallize from fluids which differ appreciably in composition 
from the pure solids. Utilizing results from Monte Carlo simulations we demonstrate 
that these trends may be explained in terms of the structural requirements for 
nucleation in these mixtures. The relatively rapid nucleation and growth of the 
icosahedral containing superlattice AB13 is most probably due to the large fraction 
(in excess of 40% at q~A + q~B = 0"55) of particles in binary mixtures which are 
incorporated into 'icosahedral clusters' in the fluid phase. In contrast, the blocking 
of the nucleation of A and AB 2 is a consequence of the rapid variation of the 
interfacial energy, between crystal and fluid, with composition. 
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