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Binary mixtures of suspended colloidal spheres of size ratio a = 0.58, whose interaction is 
close to that of hard spheres, undergo freezing transitions into ordered superlattice structures. 
At different number ratios of the two species, both the AB2 (atomic analogue AIB]) and the 
AB,, (atomic analogue NaZn,,) structures are found. The structures were identified by both 
“powder light crystallography” and electron microscopy of dried samples. The phase diagram 
contains three eutectics. The freezing transitions in this conceptually simple binary mixture 
are driven entropically: put simply, at a given concentration and number ratio, the system 
adopts the “most efficient” packing of the spheres. 

1. Introduction 

The idea that the structure of “simple” condensed phases is determined 
predominantly by packing constraints is very old and derives essentially from 
the work of van der Waals [l]. The dominant role of the short-ranged repulsive 
forces was most directly demonstrated by the discovery, from computer 
simulation studies [2], that a purely repulsive hard sphere system has a first 
order fluid-solid phase transition. While the one-component system of hard 
spheres studied by Alder and Wainwright froze into a close-packed face- 
centred-cubic structure, recent work has shown, rather surprisingly, that there 
exists a wide variety of other ordered (and partially ordered) phases which can 
be stabilized similarly by pure excluded volume factors. For example, simula- 
tion studies [3] suggest that, at high densities, a system of anisotropic hard core 
particles may form spontaneously a number of common liquid crystalline 
phases (including nematics, smectics and columnar structures). Here we ex- 
plore an alternative route to structural complexity. The aim of the present 
paper is to demonstrate that complex superlattice structures are stable at high 
densities in binary mixtures of differently sized hard spheres. In this expanded 
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version of an earlier paper [4] we show that a dense mixture of hard sphere 
colloids of size ratio (Y = a,/cr, = 0.58 (where a, and V~ are the diameters of 
the large (A) and small (B) spheres) may form either one of two different 
superlattice structures, AB, and AB 11, depending upon the initial conditions. 

The colloidal particles used in this work consisted of spherical poly(methy1 
methacrylate) (PMMA) cores stabilized against aggregation by a thin 
(-10 nm), chemically grafted, layer of poly( 12-hydroxy stearic acid) [5]. 
Particle diameters were a, = 642 ? 5 nm and a, = 372 + 5 nm. Experiment 
shows that these composite particles readily disperse in hydrocarbons as 
essentially uncharged spheres. In the current work the particles were suspend- 
ed in mixtures of cis-decalin and carbon disulphide in proportions chosen so 
that the refractive index of the mixture approximately matched that of the 
particles (-1.51). In this way the van der Waals attractive forces were 
minimized and the interparticle potential is essentially zero until the separation 
is reduced to the point at which the grafted polymeric layers first touch. Any 
closer approach of the two colloidal particles requires the polymeric layers to 
either compress or interpenetrate. Both theory (for a review of the properties 
of polymeric brushes, see ref. [6]) and experiment [7] demonstrate that the free 
energy penalty for any significant distortion of the polymeric layer is large 
compared with kT. Consequently the colloid interparticle potential is steeply 
repulsive and may be approximated well by that of a hard sphere. This has 
been confirmed by measurements made on the phase behaviour [8,9], crys- 
tallization [lo] and glass formation [ll] in one-component suspensions of this 

type. 

2. Superlattice phases 

Our most striking finding is that in mixtures of (Y = 0.58 two different 
superlattice phases appear to be stable. Each phase is observed at different 
ratios, NBINA of the numbers of the two colloidal species. We consider first the 
AB, structure which was observed in suspensions with number ratios NJ NA of 
4 and 6 and total volume fractions +A + & between 0.525 and 0.557. Crys- 
tallization was noticeably slower in these binary mixtures compared to the 
one-component systems previously studied [8,9] with crystals being clearly 
visible only after about five weeks after mixing (cf. a few hours for the 
one-component system in ref. [S]). Fig. la shows an electron micrograph image 
of the crystalline phase formed in a sample with the composition N,l NA = 6 
and the original total density 4, + 4, = 0.536. The most notable feature is the 
binary long range order with an alternating sequence of planes of large and 
small spheres being clearly visible. This micrograph is consistent with an (011) 
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Fig. 1. (a) Scanning electron microscopy image of the AB2 superlattice, found in a sample with the 

original composition N,IN, = 6 and 4, + c$, = 0.536. The micrograph shows an approximate (011) 

section. (b) Structure of the AB, phase. The hexagonal unit cell is shown in bold. 

section through the AB, structure depicted in fig. lb. This is a layered 
structure, akin to AlB,, with the large and small spheres residing in alternating 
close-packed planes. In the hexagonal unit cell the larger A spheres are stacked 
vertically above one another along the c-axis, while the smaller B spheres 
occupy the trigonal prismatic cavities between neighbouring A layers. 

Further evidence for the formation of the AB, structure comes from light 
diffraction measurements. Fig. 2a shows the indexing of the diffraction data 
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Fig. 2. Powder diffraction data. (a) Indexing the AB2 phase. The square of the peak position q:*, is 

plotted as a function of h* + k’ + hk. The solid lines represent the theoretical result for a 

hexagonal phase of dimensions a = 693 nm and c = 724 nm, with the index I increasing from I= 0 

(bottom right) to 4 (top left). The filled points denote the positions of observed Bragg reflections 
while unobserved reflections are indicated by the unfilled circles. (b) Indexing the AB,, phase. The 

dashed line corresponds to the cubic lattice constant a = 1884 nm. 
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from a sample of composition NBINA = 4 and 4A + & = 0.533. The square of 
the peak position ( qikl) is plotted versus h* + k* + hk. For a hexagonal phase 
such a plot should consist of a series of straight lines, each corresponding to a 
fixed value of the interlayer index 1, 

2 
qhkl = $ (h* + k2 + hk) + $ l* , 

where a and c are the two unit cell lengths. A total of 1.5 Bragg peaks (shown 
by the filled circles in fig. 2a) were observed which index on a hexagonal phase 
with the lattice parameters a = 693 nm and c = 724 nm (c/a = 1.045). Although 
a few lines are either very weak or missing, for example the reflections 110, 
201, 002 and 102, there seems to be no systematic absences, as indeed expected 
for the AB, structure (space group P6/mmm (a’“‘)). Unfortunately we are not 
able to quantitatively analyse the intensity data because of our present lack of 
detailed knowledge on the form factors of the individual particle species near 
refractive-index match. So consequently while the AB, structure is the most 
plausible hexagonal phase, the precise details of the local structure must await 
further experiments. Finally, we note that assuming the unit cell contains just 
one large and two small spheres gives the crystal density as &, + +A = 0.638. 

Suspensions prepared with compositions N,IN, = 9, 14, 20 and 30 crys- 
tallized into a second superstructure with the stoichiometry AB ,3. Crys- 
tallization was rapid compared to AB, with crystallites of AB,, being visible 
within a few days of sample preparations. Fig. 3a shows a drawing of the 
proposed structure of this cubic phase. The structure is essentially similar to 

Fig. 3. (a) Proposed structure of the AB,, phase. (b) Electron micrograph of AB,, from a sample 

of original composition N,,/ N, = 14 and density C#J, + 4, = 0.553. 
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that commonly found for binary metal alloys of composition AB,,, such as 

NaZn,, and UBe,,. The unit cell consists of eight icosahedra clusters of small 
spheres, each of which has at its centre an additional small sphere, arranged 
within a cubic lattice of large spheres. As is apparent from fig. 3a the 
icosahedra are orientationally ordered with each neighbouring polygon of small 
spheres rotated by n/2 about the crystallographic x-axis. The corresponding 

space group is Fm3c (Q”‘). 
Strong evidence for the formation of this remarkably complex structure 

comes from light scattering measurements. The diffraction data from the 
crystalline phase formed in a mixture with composition NJ NA = 14 and density 
$A + +B = 0.539 is shown in fig. 2b, as a plot of &, versus h’ + k* + 12. For a 
cubic phase, such a plot should pass through the origin and be linear with the 
slope 4n2/a2 where a is the unit cell dimension. A total of 19 distinct Bragg 
reflections were observed which index on a face centred cubic phase of lattice 
constant a = 1884 nm with the extinction symbol [12] F__c. There were no 
unobserved reflections below hkl = 620. There are only two space groups 
consistent with this data, namely F43c (Q”‘) and Fm3c (Q”‘) which differ in 
the presence (Fm3c) or absence (F43c) of an inversion centre. To distinguish 
between these two possibilities requires measurements of the absolute intensity 
of the reflections Z(hkl), particularly those with hkl all odd. Unfortunately, 
because of the problems discussed above, we are currently not able to do this 
and so on the basis of the powder diffraction data alone we cannot differentiate 
between the space groups F43c (Q*“) and Fm3c (Q”‘). 

Support for the more symmetric AB,, structure Fm3c (Q22h) comes from 
electron microscopy. Fig. 3b shows an example of the structures found. Clearly 
the drying of the sample has disrupted much of the original order. However a 
reasonably well ordered array of 12 large spheres (shown by the grid in fig. 3b), 
comprising part of the (011) face of the AB,, unit cell, is still visible. Indeed a 
close inspection of fig. 3b reveals two pentagons of small spheres (arrowed in 
fig. 3b) resulting from the cleavage of the icosahedron of small spheres. 

3. Phase diagram 

The positions of these superlattice phases within the binary phase diagram 
were determined by observations made on some 25 samples prepared at seven 
fixed values of composition N,IN, = 2, 4, 6, 9, 14, 20 and 30. The surprising 
finding was that superlattice structures formed over a wide range of suspension 
compositions. Indeed a stable phase of either AB, or AB,, was found at all 
compositions studied except for suspensions with Nr,INA = 2, which showed, 
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rather unexpectedly, no observable crystallization during the course of our 
experiments. 

The densities of the superlattice phases formed at the fluid-solid phase 
boundary show a systematic variation as a function of the initial suspension 
number ratio N,IN,, which is illustrated in fig. 4a. Clearly, as one can best see 

NB /NA 
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Fig. 4. (a) Densities of the superlattice phases as a function of the composition, NH/N,,, of the 
suspension from which they crystallized. The data is for samples located within the two-phase 

region of fluid-solid coexistence. (b) Constant volume phase diagram. The points represent the 

samples studied. The approximate phase boundaries are marked by the solid lines; the region 
around N,IN, = 2 is shown dashed because no crystallization was observed in our experiments. 
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from the AB,, data, the compound phases are most stable (and thus form at 
the lowest densities) at the stoichiometric composition. Any deviations from 
this ideal stoichiometry tends to destabilize the resulting crystal which shifts the 
solid phase boundary to higher densities. This fact, combined with the different 
symmetries of the two superlattice structures, suggests that the equilibrium 
phase diagram will most probably be eutectic in form. 

Since colloidal systems are generally studied at essentially constant volume 
the binary phase diagram is most naturally discussed in terms of the partial 
volume fractions, 4A and &, of the two components. This constant volume 
representation has several convenient properties: first, samples with a constant 
number fraction lie on lines radiating from the origin whereas samples with a 
fixed total volume fraction, 4A + &, form straight lines which intersect the 4, 
and & axes at 1r/4; second, the volumes of the coexisting phases can be readily 
calculated from simple geometric arguments [13]. Fig. 4b shows a plausible 
form for the phase diagram which encompasses our current results. A striking 
feature is its complexity. The diagram contains four stable solid phases; the two 
superlattice structures (AB, and AB,,) which we have observed in this work, 
and crystals of both A and B which must be stable structures at the extreme 
limits of composition. In between each of these limiting compositions there is a 
constant-volume eutectic [13]. With an assumption of complete solid immis- 
cibility the phase diagram contains four regions of two-phase fluid-solid 
equilibrium (labelled by the coexisting phases in fig. 4b) and three triangular 
three-phase regions (describing, for instance, the equilibria between AB,, A, 
and a fluid phase). As can be seen from fig. 4b the current samples lie in the 
two-phase AB,, fluid and AB,,, fluid regions and the three-phase eutectic 
between AB ,3, B, and fluid. Consequently the exact structure of the phase 
diagram outside these regions must await further experiments. 

4. Comparison with theory 

In recent years the nature of the hard-sphere phase transition has been 
considerably clarified by the application of density functional arguments [14]. 
From these theories it is clear that the stability of the hard-sphere crystal is a 
result of a rather delicate balance between configurational and correlational 
entropy. While at low densities configurational entropy favours the disordered 
fluid state, with an increase in density correlational terms become increasingly 
dominant and ultimately stabilize the crystal at the highest densities. Phys- 
ically, localization results in a gain in correlation entropy since the additional 
“free-volume” in the crystal allows each particle to reduce its interactions with 
its neighbours by moving further apart. In a binary system, by the same token, 
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Fig. 5. Free-volume predictions for the regions where (a) ABI and (b) AB,, phases are stable with 

respect to a solid state phase separation into crystals of pure A and B. The dotted lines indicate the 

maximum close-packed densities (4,,,). The dot-dashed lines denote the close-packed density of 

the one-component fee crystal (c$,, = 0.7405) and are shown for reference. 

one would expect the stable crystal phases to be those in which the constituent 

spheres are packed so as to maximize the “free-volume”. 

The packing efficiency of a number of ordered binary structures has been 

explored by Murray and Sanders [15]. For the size ratios relevant here they 

found only two structures, AB, and AB,,, which have maximum densities 

comparable to the close-packed packing fraction of the pure component phases 

(&, = 0.7405). F or LY = 0.58 the maximum packing fractions of these two 

structures are $,(AB2) = 0.776 and +,(AB,,) = 0.713. Accordingly Murray 

and Sanders concluded from purely geometric arguments that while the AB, 

structure should be stable, the AB,, phase will be unstable with respect to a 

phase separation into pure A and B phases. 

The stability of the ordered AB, and AB,, phases are currently being 

investigated by computer simulation [16]. In the absence of these detailed 

calculations we describe the results of a simple free-volume model [17] which 

appears to agree reasonably well with the experimental data described above 

and in ref. [4]. Fig. 5 shows the predictions for the regions where the AB, and 

the AB,, phases are stable with respect to a solid separated mixture of pure A 

and B crystals. We see that while both phases are predicted to be stable at a 

size ratio of (Y = 0.58 the AB,, phase is stable at appreciably lower overall 

densities (as is indeed seen in the data of fig. 4a). 
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