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Small-angle neutron scattering experiments were performed on concentrated binary dispersions of ster- 
ically-stabilized poly(methy1 methacrylate) particles of size ratio -0.31 dispersed in a mixture of cis- 
decalin-hl8 and octane-dl8. Using a contrast match technique, we have, for the first time, studied the local 
structure of small spheres in a simple (hard-sphere) colloidal mixture. In particular, our experiments 
demonstrate that the small spheres show evidence of particle clustering. We show that this observation 
is in accord with a long-ranged attractive force between the small spheres resulting from the depletion 
of larger particles from between the surfaces of the small spheres. 

1. Introduction 

A major factor controlling the stability and flow prop- 
erties of colloidal dispersions is the state of aggregation 
of the colloidal particles. In a binary mixture of particles, 
A and B, the averaged microstructure may reflect either 
a tendency toward dispersion, in which an A species will 
have on average both A and B particles as neighbors, or 
association in which separate clusters of A and B form. 
A key feature of mixtures is that the relationship between 
the local structure and the interparticle potential is much 
more subtle than for the one-component case. Simple 
considerations showy1 for example, that there is always an 
effective attraction between particles of the same species 
in a binary mixture. In particular, an effective attractive 
interaction may arise in a mixture in which the component 
interaction potentials are themselves purely repulsive. 
Probably the best known example of this phenomenon is 
the depletion flocculation which occurs when a small 
amount of a free (nonadsorbing) polymer is added to an 
initially stable colloidal dispersion.2 The physical basis 
for this polymer-induced clustering has been qualitatively 
explained by a simple excluded-volume model first pro- 
posed by Asakura and Oosawa (AO)394 and later extended 
by Vrij5 to treat phase separation in these mixtures. 

In the A 0  model the polymer molecules and the colloidal 
particles are represented by a mixture of hard spheres of 
diameters up and uc, respectively. However while the 
polymer molecules behave like hard spheres toward the 
colloidal particles, they are assumed to be free to inter- 
penetrate each other such that the pair potentials have 
the normal hard-sphere form 

w if r < uij 
0 otherwise uij(r)  = 

but with nonadditive interaction diameters given by 

Qcc = 6, 

upp = 0 
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Since the cross-interaction diameter is finite, the centers 
of the small (polymer) spheres are excluded from a 
spherical shell around each colloidal particle (see Figure 
1). When two of the large spheres are close together, the 
volume inaccessible to the centers of the smaller spheres 
is smaller than when the particles are far apart (the 
difference is shown by the solid area in Figure 1). The 
result is an effective attractive potential which drives the 
two large (colloidal) spheres together. The form of this 
depletion potential is34 

otherwise 

(3) 

where np is the polymer number density. From the 
physical picture for the depletion interaction in Figure 1, 
it is apparent that the same arguments are applicable (at 
least in the limit of low densities, see below) to a mixture 
of hard spheres where in contrast to the A 0  model the 
diameters are additive, i.e. uij = (aii + ~ j j ) / 2 .  The depletion 
mechanism in such a hard sphere mixture has been 
described by Biben and Hansen.6 In the framework of 
the Percus-Yevick theory Biben and Hansen showed that 
there is an effective attraction between the larger spheres 
of diameter uii in a mixture when their mutual separation 
is in the range uii < r < uii + uj,; here ujj is the small sphere 
diameter. In this article we describe experimental evidence 
for the existence of this depletion force in an asymmet- 
rically sized mixture of colloidal particles. 

In this work, the structure of a bimodal mixture of 
spheres of size ratio -0.31 was studied with small-angle 
neutron scattering (SANS) measurements. Our experi- 
menta were designed to probe the local organization of the 
small spheres which, arguments outlined in section 2 
indicate, should be most strongly influenced by depletion 
interactions. To emphasize the small sphere microstruc- 
ture, we have used a contrast matching technique. Large 
hydrogenated poly(methy1 methacrylate) (PMMA) spheres 
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Figure 1. A pair of colloidal particles of diameter uc. The centers 
of the small (polymer) spheres, of diameter up, are excluded from 
the dashed zone around each colloidal sphere. The solid volume 
shows the overlap of the depletion zones which occurs at small 
interparticle separations r. 

were mixed with smaller deuterated PMMA spheres. The 
scattering length density pm of the dispersion medium was 
adjusted, by altering the ratio of cis-decalin-hl8 to octane- 
d18, so that it approximately matched that of the larger 
hydrogenated spheres. The scattered intensity profile, 
measured under these conditions, contains information 
about the distribution of the smaller deuterated spheres. 
Although several experiments on binary colloidal sus- 
pensions have been reported in the literature,'* these 
experiments are the first to study the structure of a fluid 
phase of an asymmetric mixture of purely repulsive 
colloidal particles. 

2. Theoretical Background 
The Potential of Mean Force. The problem of finding 

the effective pair potential between two large spheres in 
a mixture of smaller spheres has been considered by several 
auth0rs.~J0Jl Here we shall limit ourselves to the low- 
density limit in which the situation is clearer. Consider 
a binary mixture of hard spheres in which the two different 
sized species are labeled as i and j .  The statistically 
averaged force between a pair of tagged particles of species 
i, say 1 and 2, when immersed in a dispersion containing 
only particles of species j defines the potential of mean 
force Vii(rl2). The gradient of this effective potential 
-dVii/drlz gives the force between particles 1 and 2 after 
averaging over the equilibrium distribution of all the 
remaining j-type particles.12 The relationship between 
the potential of mean force Vii(r12) and the tagged inter- 
particle potential uii(r12) can be seen clearly from the 
formally exact density expansion13J4 

(4) 
m=l 

where 

€1(r12) = CZ('12) 

t2(rI2) = d3(r12) + 2d4(rlZ) + 1/2d5(r12) 

and 

The corresponding cluster integrals c2, d3 ... d5 are given in 
a diagrammatic form in Figure 2. The first-order term in 
the density expansion, eq 4, contains the integral 
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Figure 2. Irreducible cluster integrals cz, d3, dd, and ds. Each 
bond represents the Mayer f-function of the particles i and j 
associated with the bond connecting circles i and j .  The value 
of a diagram is defined by an integration of the corresponding 
product of f-functions over the positions of the bath particles 
represented by the unlabeled black circles. The result is a 
function of the coordinates of the tagged particles labeling the 
white circles. 

'2('12) = J f13f23 dr3 

where particle 3 is a j-type sphere. The Mayer f-function 
is related to the interparticle potential u(r) by the 
expression 

which for the hard-sphere interaction (eq 1) becomes 

(7) 

Consequently the cluster integral c2(r12) represents the 
volume common to two spheres of radius aij separated by 
a distance r12 

The complexity of the higher order terms (52 and above) 
in the density expansion increases rapidly with order, so 
that their evaluation becomes a difficult (and in general 
an analytically insoluble) problem. Only in a few, rather 
unique, cases are the highest order terms known explicitly. 
If, for example, the bath spheres are perfectly permeable 
to each other, i.e. ajj = 0, then all the terms tm(r12) with 
m 1 2 are zero. To see this, consider the integral d3(r12) 
which can be written as 

(9) d3(r12) = - J dr3d'3(r12,r131r23) 

where 

For hard spheres d'3 is the volume common to three 
spheres, two of radius ai, and one of radius a,,, which for 
u;j = 0 is zero. Similar arguments apply to the other cluster 
integrals so that overall E2 is zero. Physically this corre- 
sponds to a situation in which the bath spheres are 
behaving ideally so that the unbalanced osmotic pressure 
driving the tagged particles together must be linear in the 
number density nj. In the context of the A 0  model, in 
which the spheres i and j are identified with the colloid 
and polymer species, respectively, the resulting effective 
potential is given by eqs 4 and 8 (together equivalent to 
eq 3). 
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The situation for an asymmetric hard-sphere mixture, 
for which ujj # 0, is however a little different. The terms 
Fm,m 2 2, are now nonzero so that the conventional 
depletion expression 

(10) 
remains valid only in the limit of a low density of j-spheres 
where the higher order terms may be ignored. Note that 
the original form for this expres~ion~?~ was derived with 
the implicit assumption that ui >> uj. As is evident from 
above, this restriction is not strictly necessary. For the 
case in which the tagged (A) spheres are larger than the 
remaining (B) spheres, the effective potential may be 
written as 

Vii(r12) = uii(r12) - kTnjc2(r12) 

-- - 
kT 

for R < 1 

- 3R(y + 1)' + 2(r + U3I for 1 < R < (1 + y) 

otherwise 

(11) 
where R is the scaled interparticle separation r / u u ,  4~ is 
the volume fraction of the smaller (B) spheres, and y is 
the diameter ratio UBB/UAA (i.e. y I 1). Conversely the 
effective potential between a pair of small (B) spheres in 
a dispersion of large (A) spheres is given by the expression 
VBB(R') -= 
kT 

for R' < 1 

otherwise 

(12) 
where now €2' is r/UBB and 4.4 is the volume fraction of the 
large spheres. Inspection of eqs 11 and 12 reveals that if 
y is small, the effective potential between the large spheres 
is strongly attractive (with a minimum at R = 1 of -3kT- 
I$B/2y) and short-ranged while conversely the small sphere 
potential is lona-ranged but shallow (with a minimum of - -  &kT at R' = 1). 

Finally it should be noted that the expression for the 
potentid of mean force (eq 4) is only valid in the limit of 
vanishingly small tagged particle densities. In general the 
effective potential will be a function of the density of the 
tagged species. Consequently the conventional treatment 
of polymer-induced clustering15 in which eq 3 is used as 
a density-independent potential in a one-component model 
is a rather severe approximation. While the density de- 
pendence of the depletion potential is minimized if, as is 
normally the case for polymer-colloid mixtures, the 
depleted particles are considerably smaller than the tagged 
particles (i.e. ujj << uii), recent simulation resultsl6 still 
show that the Asakura-Oosawa potential results in an 
overestimation of the tendency of the colloidal particles 
to cluster. 

Second Virial Coefficients. The effect on the mi- 
crostructure of the depletion potential can be gauged by 
considering the corresponding second virial coefficient b, 
defined as 

b = 2~ JOm [1 - e~p-"( ' ' /~~]  r dr (13) 
For the potentials given by eqs 11 and 12, this integral is, 
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in general, nonanalytic. However, considering the densities 
at which eqs 11 and 12 are valid, the second virial 
coefficients may be approximated, to first order, by the 
expressions 

w =  1 - 2 ( 1 2  + 1.57 + 6y2 + y3) 
b A 

where b u  ( ~ B B )  is the effective virial coefficient between 
a pair of A (B) spheres in a dispersion of B (A) spheres and 
b A  ( b ~ )  is the corresponding hard-sphere result 4 4 A  (4413). 
Clearly the effect of the depletion interaction is to reduce 
the second virial coefficient of both the large and small 
spheres. Note however that the reduction is much more 
marked for the smaller spheres. Indeed in the limit of a 
very asymmetric mixture, where y approaches zero, while 
the normalized second virial coefficient of the large spheres 
remain finite at 1 - 34B/2 the value for the smaller spheres 
diverges as 1 - ( 4 ~ / 8 y ~ ) .  Evidently the depletion inter- 
actions in a binary mixture are most strongly manifested 
among the smaller sized component. As we shall show in 
the next section, this conclusion remains valid at densities 
where eqs 11 and 12 are no longer applicable. 

The Percus-Yevick Approximation. The equations 
derived above are strictly only valid in the limit of small 
dispersion densities. At higher densities a more convenient 
(and accurate) route to the structural correlations present 
in a binary mixture is via an integral equation approach, 
such as the Percus-Yevick closure.13 While the PY 
approximation, as applied to hard spheres, is known to be 
quantitatively in error at very high densities,13 and possibly 
also at extreme size ratios,17 the solutions are a t  least 
qualitatively reliable and mathematically simple. Since 
our primary aim here is physical insight, we shall limit our 
discussion to the PY level although, as pointed out by 
Biben and Hansen,17 more accurate self-consistent ap- 
proaches may be required to understand quantitatively 
the structure of highly asymmetric mixtures (where y - 
0). 

In general the pair structure of a two-component mixture 
may be described by three partial pair distribution 
functionsgjj(r) ( i j  = A or B) and their Fourier transforms, 
the partial structure factors Si.(q). The functions Sij(q) 
can be related to Cij(q)/(ninj)lIi, the Fourier transform of 
the Ornstein-Zernike direct correlation function cij(r), by 
the matrix equation 

S(q) [I- C(q)I = I (16) 
where I is the unit matrix and S(q) and c(q) are 2 X 2 
matrices with the elements Sij(q) and Cij(q), respectively. 
Baxterla has shown that if the direct correlation function 
cij(r) can be assumed to vanish when r > l/2(uii + ujj), then 
the matrix Z - c(q) may be factorized as follows 

I - ecq, = QT(-q)Q(q) (17) 

The explicit form of the matrix elements &q), for a mul- 
ticomponent system of (additive) hard-spheres, has been 
given by Vrij.19 With these results the matrix I - c(q) 
may be analytically inverted and the partial structure 
factors obtained. Here rather than quote the full result 
we concentrate on the q = 0 limit. I t  is straightforward 
to show that the limiting P Y  forms of the partial structure 

(15) See, for example: Gast, A. P.; Hall, C. K.; Russel, W. B. Faraday 

(16) Meijer, E. J.; Frenkel, D. Phys. Reu. Lett. 1991, 67, 1110. 
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factors in a binary mixture of hard spheres are 
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where, with i, j = A or B 

and 

4 = 4 A  + 4 B  
4 A  4 B  ?=-+- 
UAA ~ B B  

An expansion of these expressions in powers of &A and 413 
gives identical results for the second virial coefficients to 
those found above (eqs 14 and 15). 

The asymmetry in the structure of a mixture of very 
differently sized spheres is seen clearly from eqs 18-20. In 
the limit as y approaches zero the self-structure factors 
reduce to the expressions 

Inspection of eqs 21 and 22 reveals, as first pointed out 
by Biben and Hansen? that the small sphere structure 
factor diverges a t  small q as the size ratio y - 0 while the 
large sphere structure factor remains finite. Hence, as 
expected from the depletion arguments, the distribution 
(reflected by the long wavelength density fluctuations 
Sii(0)) of the two differently sized particles is very different. 
The deviation from a purely random mixture of spheres 
is most readily seen for the smaller species where there is 
a tendency toward particle clustering. On the contrary, 
within the Percus-Yevick approximation, the low q limit 
of the structure factor of the large spheres is much closer 
to the one-component PY result (1 - 4 ~ ) ~ / ( l +  24A)2. Note 
that this is only true at  the PY level. Other integral 
equations (see ref 17) give different results for the low q 
limiting form of the large sphere structure factor in a hard- 
sphere mixture. 

Small-Angle Neutron Scattering. The differential 
cross section for neutrons scattered from a unit volume of 
a binary colloidal dispersion containing spherical particles 
A and B can be expressed as 
d 2  
$q) = nAP2(q)S,(q) + 

where nA and ne are the particle number densities, PA and 
PB are the single particle scattering amplitudes, Sfi ,  SAB, 
and SBB are the three partial structure factors introduced 
above, and q is the usual scattering vector. The scattering 
amplitudes PA, etc., are a function of the internal structure 

of the particles and the scattering length density (p,) of 
the suspension medium (as well as the scattering vector 
q). By an appropriate manipulation of Pm the partial 
intensities can be extracted from the measured total cross 
section. For details of this procedure see ref 9. In 
particular if pm is chosen so that the single particle 
scattering from the large spheres is negligible, Le. P A ( @  
= 0, then eq 23 becomes 

(24) 

and the measured intensity reflects only the small sphere 
microstructure. 

d 2  
s ( q )  - nBP2(q)SBB(q) 

3. Experimental Section 
Sample Details. The experiments were carried out with 

mixed nonaqueous suspensions of hydrogenated and deuterated 
poly(methy1 methacrylate) (PMMA) latices. The uniform spher- 
ical particles were preparedm by a dispersion polymerization of 
either hydrogenated or deuterated methyl methacrylate in the 
presence of a comb copolymer of poly(l2-hydroxystearic acid) 
(PHS) and poly(glycidy1 methacrylate-methyl methacrylate). 
The latex was purified by repeated centrifugation, decanting the 
supernatant and replacing it with fresh cis-decalin-hla each time. 
The resulting particles have a composite structure, with a core 
of either hydrogenated or deuterated PMMA and a grafted 
stabilizing layer of hydrogenated PHS. One-component sus- 
pensions of these particles have been studied extensively in the 
last few years (for a short review see ref 21) and these experiments 
have established that the interparticle potential is predominantly 
repulsive and closely approximated by a hard-sphere interaction. 
There is no evidence for an attractive component in the pair 
potential. 

The respective number averaged diameters of the hydrogenated 
and deuterated particles were determined from dynamic light 
scattering measurements as 315 * 2 and 97 * 2 nm giving a 
diameter ratio of approximately 0.31. The corresponding size 
polydispersities (standard deviation divided by the mean) were 
found from electron micrographs to be 0.05 f 0.01 and 0.13 & 
0.01. 

Stock dispersions of each latex were made in cis-decalin-hle. 
Because the density of the composite core-shell particle was not 
known precisely, the effective volume fraction [volume occupied 
by the composite particles/total sample volume] could not be 
determined reliably from the dispersion weight fraction. Here, 
as in previous work,2l an alternative approach based on the 
observation of the position of the fluidaolid phase transition 
was adopted. First, accurate values for the particle core volume 
fractions dc were calculated from the measured suspension dry 
weight fraction using literature values for the densities of 
hydrogenated (1.188 g cm-3) and an estimated value for deu- 
terated PMMA (1.282 g cm-3). Then the particle core volume 
fraction at which colloidal crystallization first occurred (the 
freezing transition) was identified with value found, from 
computer simulation, for hard spheres, namely & = 0.494. All 
other core volume fractions were then scaled by the same factor 
to give effective hard-sphere volume fractions &. For the large 
(hydrogenated) latex the ratio waa found to be 1.193 cor- 
responding to an effective hard-sphere radius approximately 9 
nm larger than the core and in close agreement with estimates 
for the thickness of the PHS layer. The smaller (deuterated) 
particles were sufficiently polydisperse so that the fluid-solid 
phase transition was suppressed. Consequently, in the absence 
of freezing data, the effective hard-sphere volume fraction of the 
smaller particles was estimated by assuming the ratio &hJ& was 
unchanged from that found for the hydrogenated particles. This 
gave a better agreement between the scattering data and theory 
than the scaling previously used.9 

(20) Antl, L.; Goodwin, J. G.; Hill, R. D.; Ottewill, R. H.; Owens, S. M.; 

(21) Pueey, P. N.; Van Megen, W.; Underwood, S. M.; Bartlett, P.; 
Papworth, S. Colloid Surf. 1986, 17, 67. 
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Table I. Partial Volume Fractions and Compositions of 
the Exwrimental SamDles. 

~~ 

sample QA QB ndna 
1 0.455 0.017 1.4 
2 0.455 0.025 2.1 
3 0.452 0.034 2.8 
4 0.451 0.051 4.3 
5 0.451 0.068 5.7 

a Here A labels the larger and B the smaller sized colloidal spheres. 
The dispersion medium was 12.9%, by weight, octane-dl8 and 87.1 % 
cis-decalin-hl8. 

Table 11. Coherent Scattering Length Densities (p) 

materid pD0-S A-2 material p/10" A-2 

PMMA-h 1.07 cis-decalin-hla -0.03 
PMMA-d 7.02 octane-dl8 6.42 
PHS-h -0.06 

The two stock dispersions were then mixed thoroughly together 
with an accurately weighed quantity of octane-dle to give bimodal 
dispersions with a fixed medium scattering length density of pm - 0.87 x 1V A-* (12.9% by weight octane-d3. Under these 
contrast conditions the small (deuterated) spheres scatter much 
more intensely then the larger (hydrogenated) spheres. The 
component volume fractions and compositions of the five samples 
studied are summarized in Table I. The volume fraction of the 
large particles was held fixed at  #A = 0.45, sufficiently far below 
the freezing transition to ensure that the equilibrium state of all 
the samples studied was fluid. 
SANS Measurements. The neutron scattering experiments 

were performed at  the Institute Laue-Langevin, Grenoble, on 
the diffractometer D11. Colloidal dispersions were contained in 
1 mm path length quartz cella thermostated at  25 "C. Mea- 
surements were made at  a single sample-detector distance of 
35.7 m which with an incident neutron beam wavelen h of 10 
A gave an experimental q range of 1 X 10-3 to 8 X %. The 
scattered intensity was collected on a two-dimensional detector 
and subsequently radially averaged. Corrections for sample 
attenuation, scattering from the quartz cell, and detector 
sensitivity were made by standard ILL procedures. 

4. Results and Discussion 
In these initial experiments contrast conditions were 

chosen so that the scattering from the smaller (deuter- 
ated) spheres dominated the measured intensity. This 
was readily achieved because of the very different scat- 
tering length densities of the hydrogenated (see Table 11) 
and deuterated PMMA particle cores. However because 
of the composite core-shell nature of the system we used, 
the scattering from the larger spheres could not be 
completely eliminated at all wavevectors. At medium 
contrasts between the scattering length densities of the 
core and shell, complete destructive interference occurs 
only at certain unique values of q. For all other wavevec- 
tors the interference between neutrons scattered from the 
core and the shell is only partial and the scattered intensity 
remains small but finite. The choice of the medium 
contrast is thus within certain limits somewhat arbitrary. 
Here we chose a medium contrast of pm = 0.87 X lo+ A-2 
intermediate between the scattering length densities of 
the PHS shell and the hydrogenated PMMA core. In 
Figure 3, the averaged form factors of the small ( 0 )  and 
large (0) spheres are presented. The curves have been 
scaled so that each corresponds to the scattering from a 
dispersion containing an equal number of particlea. As 
can be seen from this figure the smaller deuterated particles 
scatter much more intensely over most of the q-range 
although at the lowest q values the scattering from the 
large spheres still remains appreciable. The solid lines 
show theoretical form factors which were calculated using 
core-shell models for the two particles determined from 

Langmuir, Vol. 8, No. 8, 1992 1923 

lo' i 

 loo^"""" 2 4 6 8 
~ / 1 0 - 3 ~ - '  

Figure 3. Measured form factors of the small, deuterated ( 0 )  
and large, hydrogenated (0) PMMA particles in a mixture of 
cis-decalin-his (87.1% by weight) and octane-dla (p, = 0.87 X 
lo4 A-2), The solid lines are theoretical form factors calculated 
from the polydisperse core-shell model, described in the text, 
with the parameters listed in Table 111. The curves have been 
scaled so that the intensity levels are for the same particle number 
density . 
Table 111. Model Description of the Particle Form Factors 

quantity species Ab species B 
p J lo4 A-2 1.07 7.02 

0.04 0.16 
2 1 0 4  A-2 0.74 1.15 
ARIA 90.0 90.0 

FJA 1466 375 

a The core has a scattering length density of pe, a mean radius of x, and apolydispersity of uc. The shell is of width AR and scattering 
length density pa. A and B are the large hydrogenated and small 
deuterated PMMA spheres, respectively. 

a separate series of contrast variation experiments de- 
scribed e l se~here .~  Instrumental resolution corrections 
were included following the procedures described by Ra- 
makrishnan,22 The models are summarized in Table 111. 
Agreement is seen to be very satisfactory. 

The intensities measured for the binary dispersions as 
a function of the volume fraction 4~ of small spheres are 
shown in Figure 4. In all these samples the medium 
contrast and the volume fraction of large spheres were 
fixed at pm = 0.87 X lo+ A-2 and #A = 0.45, respectively, 
while the small sphere volume fraction varied from between 
0.017 (Figure 4A) to 0.068 (Figure 4E). This corresponds 
to a composition range AB1.4 to ABS.,. Qualitatively the 
most notable feature is that on raising the volume fraction 
of small spheres, the intensity scattered at  small q increases 
drastically. This feature is connected with the increase, 
highlighted in section 2, of the low q limit of the partial 
structure factor SBB(Q) as the small spheres increasingly 
cluster in the dispersion. Note that the low q scattering 
is large but finite so that while the correlation length 
increases it does not diverge. This is in line with visual 
observations of the samples which showed no signs of a 
macroscopic phase separation. 

Although it can be seen that the qualitative features of 
the experimental data are in accord with the depletion 
arguments given in section 2, a complete comparison 
between experiment and theory requires model calcula- 
tions for hard-sphere mixtures. Furthermore since, in 
practice, a colloidal dispersion always has a distribution 

(22) Ramakrishnan, V. J. Appl .  Crystallogr. 1985, 18, 42. 
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Figure 4. SANS intensity measured for bimodal dispersions of 
volume fractions 4~ = 0.45 and (A) 4~ = 0.017, (B) 4~ = 0.025, 
(C) 4~ = 0.034, (D) = 0.051, and (E) 4~ = 0.068. Thedispersion 
mediumwasamixtureof87.1% cis-decalin-hlsand 12.9% octane- 
d18 (pm = 0.87 X 1O”A-2). The solid lines are the resultscalculated 
from the hard-sphere model fits described in the text. 

of particle sizes, polydispersity effects must also be 
considered. Polydispersity does not normally alter the 
qualitative features of the scattering but is essential if a 
quantitative comparison with theory is required. Fortu- 
nately for hard spheres the effect of a distribution of 
interaction diameters may be treated, at  the P Y  level, 
using the expressions developed by Vrij.19 Approximating 
the continuous distribution of large sphere diameters by 
a number (am=) of closely spaced modes and a similar 
number (b& for the smaller particle distribution, eq 23 
can be generalized as follows 

for the case of a polydisperse binary dispersion. Here i 
and j label large particle modes while k and 1 represent 
the smaller sized modes. In terms of Vrij’s analysis, the 
scattered intensity (eq 25) may be expressed, after some 
lengthy but straightforward manipulation, in terms of 
various angular averages of the distribution of scattering 
amplitudes (the Pi(@ functions). These averages are 
calculated for our system using the form factor models 
given in Table 111. The resulting intensities were then 
smeared by the procedure described by Ramakrishnan22 
in order to take the finite angular resolution of the dif- 
fractometer and the polychromaticity of the neutron beam 
into account. Model fits of the experimental intensity 
data were carried out by making a visual comparison, 
adjusting only a multiplicative scaling factor which was 
fixed at  the same value for all samples, to obtain close 
agreement. This factor allowed for any systematic errors 
in the intensity calibration. The solid lines is Figure 4 
depict the resulting fits. Comparison with the experi- 
mental data shows that the polydisperse hard-sphere 
model describes the measured intensities rather well. 
Calculations demonstrate that the low q scattering derived 
predominantly from the small deuterated particles with 
the larger hydrogenated spheres contributing less than 
5 % to the measured total intensity. A close inspection of 
Figure 4 reveals that the model intensities are slightly too 
low at high q values, which may suggest there are some 
errors in the modeling of the single particle form factors. 
However in view of the overall agreement between theory 
and experiment, obtained essentially with no sample-de- 
pendent fitting parameters, the results can be regarded as 
a confirmation of the validity of the hard-sphere model. 

I t  is also interesting to compare the forms predicted by 
the hard-sphere model for the averaged partial structure 
factors which are defined as follows: 

The summation indices are limited to either only large or 
only small particle species to give a polydisperse gener- 
alizationg of the two binary self-structure factors S u ( q )  
and SBB(q) .  Such averaged structure factors can be 
quantitatively compared with experiment. A selection of 
averaged structure factors is given in Figure 5 which 
illustrates the effect of varying the small sphere volume 
fraction. As already mentioned the two functions differ 
markedly in form, especially at  low wavevectors. In 
particular, according to fluctuation theory 

( ( n i  - ( n i ) l 2 )  
lim Sii(q) = (27) 
q+ ( n , )  

where ni is the local number density of i-type spheres and 
( ... ) denotes an ensemble average. Consequently the low 
value for the small-q limit of the large sphere structure 
factor reflects the difficulty in creating local fluctuations 
in the packing of the large spheres. Correspondingly the 
large upturn in the small sphere structure factor as q = 
0 is approached is connected with the clustering of the 
small spheres which generates regions of significantly 
different local number densities. It can also be seen that 
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Figure 5. Averaged (A) smallsphere and (B) large sphere partial 
structure factors for the fitted hard-sphere model shown in Figure 
4. The full, dashed, and dotted lines refer to the dispersions of 
volume fractions C$A = 0.45 and +B = 0.017, 0.034, and 0.068 
respectively. 

the peaks of the large sphere structure factor shift to larger 
momentum transfer with increasing small sphere content. 

(23) Lebowitz, J. L.; Rowlinson, J. S. J .  Chem. Phys. 1964, 41, 133. 
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This reflects the observation that the large spheres reside 
more closely, on average, in the mixtures. 

Finally, we point out that although we have presented 
evidence for the clustering of emall spheres in an additive 
hard-sphere dispersion, we see no sign of a macroscopic 
fluid phase separation. Indeed Lebowitz and R o ~ l i n s o n ~ ~  
have shown that, within the PY approximation, an additive 
hard-sphere mixture remains completely miscible at all 
compositions and diameter ratios. The possibility that 
inaccuracies in the PY approximation may, at extreme 
size ratios, permit a fluid phase separation has been 
suggested recently by Biben and Hansen." Using various 
self-consistent integral approximations, which are expected 
to be more accurate than the corresponding PY expres- 
sions, they have demonstrated that a hard-sphere mixture 
may phase separate at  size ratios y less than 0.2. This has 
been attributed to an enhanced depletion effect in these 
mixtures. Our binary dispersions at a size ratio of 0.31 are 
above this limit and thus might be expected to be miscible 
at all compositions. This should be contrasted with the 
very different phase behavior found in colloid-polymer 
mixtures.2 In this case the nonadditivity in the colloid- 
polymer interaction diameter is known to strongly favor 
homocoordination and a fluid phase separation. 

5. Conclusions 
The present experiments demonstrate that the micro- 

structure of a dispersion containing a mixture of very 
differently sized colloidal species can be understood in 
terms of depletion interactions. This model is appealing 
because of the physical insight it offers into the properties 
of binary dispersions. In particular the asymmetry in sizes 
of the two colloidal species results in very different forms 
for the effective attractive forces. While the interaction 
between the large spheres may be understood in terms of 
a short-ranged and deep effective potential, that for the 
smaller spheres is long-ranged and shallow. As a conse- 
quence, clustering is much more evident in the structure 
of the small spheres. This is confirmed by a small-angle 
neutron scattering study of the small sphere partial 
structure factor in a bimodal dispersion of nearly hard- 
sphere colloids. 
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