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A series of experiments on concentrated dispersions of hard colloidal spheres is discussed. The observed 
phase behavior is analogous to that of simple atomic systems: colloidal fluid, crystal and glass phases are 
found. The structure of the crystals, revealed by light diffraction, is a strongly faulted stacking of 
hexagonally-packed layers of particles. Dynamic light scattering confirms that the concentration of the 
metastable fluid phase for which long-ranged particle diffusion ceases coincides with the concentration 
where the glass transition is observed macroscopically. In studies of a binary mixture of colloidal spheres 
with a size ratio 0.61 eutectics, glass formation and the AB,, type alloy structure have been identified, 

KEY WORDS: Phase transitions, hard spheres, light scattering, concentrated dispersions, mixtures, glass 
transition. 

1 INTRODUCTION 

A fascinating property of colloidal dispersions is their ability to form structures or 
arrangements of particles with a periodicity comparable to the wavelength of visible 
light. Bragg reflection of light from these structures provides the beautiful colorful 
appearance of naturally-occurring colloids, such as gem opals, and synthetic colloids, 
such as dialyzed concentrated dispersions of polystyrene latex spheres. Two-dimen- 
sional ordering and the coexistence of ordered and disordered phases in dispersions 
of rod-shaped (tobacco mosaic virus and vanadium pentoxide) and disc-shaped 
(bentonite) particles were reported in the 1930's. An extensive presentation of these 
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observations was given by Langmuir in 1938. In 1957 it was established that particles 
of tipula iridescent virus, which have the shape of icosahedra, could form crystals 
showing three-dimensional order (Williams and Smith, 1957); a study by light 
scattering crystallography of the structure of these crystals was reported subsequently 
(Klug, Franklin and Humphreys-Owen, 1959). Nearly monodisperse polymer colloi- 
dal spheres were first synthesized in 1947. Some years later it was shown that these 
particles also form colloidal crystals and a number of studies of their optical 
properties was reported (Alfrey et al., 1954; Luck, Klier and Wesslau, 1963; Krieger 
and ONeill, 1968; Hiltner and Krieger, 1969). 

The analogy between the behavior of colloidal particles in dispersion and simple 
atomic or molecular materials was implicit in the early work of Einstein (1905-1911), 
Constantin (1914) and Perrin (1914). This analogy was subsequently placed on a firm 
statistical mechanical basis by McMillan and Mayer (1945) and Kirkwood and Buff 
(1951). Once the solvent-averaged potential of mean force among the dispersed 
particles is identified, the thermodynamic properties of a dispersion are formally 
equivalent to those of an atomic fluid with the same inter-atomic potential. Then 
statistical mechanics, combined with well-established theories of the liquid and solid 
states, can be used to calculate such properties as structure, phase behavior and the 
equation of state (van Megen and Snook, 1984). In this thermodynamic sense, a 
dispersion of identical colloidal spheres can be regarded as a one-component 
assembly of “super-atoms”. However, while we will not emphasize it in this paper, 
it is worth mentioning that the dynamic properties of colloids in dispersion are 
generally different from those of atoms (although, even here, intriguing similarities 
can be found (Hess and Klein, 1983; Tough et al, 1986)). 

In this paper we describe properties of concentrated dispersions of poly-(methyl- 
methacrylate) particles stabilized by a relatively thin steric barrier. The dispersions 
are made transparent, and therefore suitable for optical studies and direct observa- 
tion, by nearly matching the refractive index of the two-component suspension liquid 
to that of the particles. This index matching has the added advantage of minimizing 
van der Waals attractions between the particles. To a good approximation the 
interparticle interaction in these dispersions appears to be “hard-sphere”. 

Assemblies of hard spheres play an important role in statistical physics as models 
for simple liquids (Hansen and McDonald, 1976); they constitute what is probably 
the simplest system to show a freezing/melting transition. However hard-spherical 
atoms do not exist in reality. A major thrust of our recent work has been to interpret 
data obtained on these colloidal dispersions in terms of theories and computer 
simulations applied originally to the hypothetical hard-sphere atomic system. When 
viewed as an assembly of hard spheres the colloidal system has several useful 
properties. In principle, at least, the particle size can be varied over a wide range 
allowing, for example, precise choice of size ratio in the study of binary mixtures. 
The diffusive motions of near-micron sized particles in dispersion are many orders 
of magnitude slower than those of atoms. The consequent very slow structural 
relaxation times of concentrated dispersions allow one to prepare and study 
metastable fluid and glassy phases and to follow the time evolution of crystallization 
(Pusey and van Megen, 1987a,b). 
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In the next section we describe the particles and the preparation of samples. The 
phase behavior of the system is considered in Section 3; with increasing particle 
concentration we identify fluid, crystalline and glassy structures. In Section 4 we 
describe the determination of the crystal structure by “powder” light-scattering 
crystallography; we find a close-packed structure with a high degree of faulting in 
the stacking of the crystal planes. Section 5 deals with a study, by dynamic light 
scattering, of the divergence of the structural relaxation time of the metastable 
colloidal fluid as the glass transition is approached. Finally in Section 6 we review 
briefly some recent studies of a binary mixture of different sized particles. 

Most of the work to be described has been, or will be, published elsewhere. Here 
we give a general overview, omitting unnecessary detail. 

2 SAMPLE PREPARATION 

The particles used in this work were prepared by the polymerization of methyl- 
methacrylate in an organic liquid in the presence of a preformed stabilizer comprising 
a “comb” of poly-( 12-hydroxystearic acid) (phsa) on a poly-(methylmethacrylate) 
(pmma) backbone. Details of this preparation are documented elsewhere (Ant1 
et al., 1986). The polymerization process is followed by a “locking” stage, which 
chemically grafts the pmma backbone of the stabilizer onto the particle, and 
appropriate “cleaning” procedures. The resulting stock dispersion consists of pmma 
particles of approximately predetermined radius stabilized by a layer of phsa of 
10-15 nm thickness dispersed in an organic liquid, decalin in our case. The coefficient 
of variation of the particle radii, or polydispersity, was less than 0.05. Both this 
quantity and the average particle (hydrodynamic) radius were determined by dynamic 
light scattering on dilute samples. 

Although the difference between the refractive indices (n) of the pmma particles 
(n N 1.50) and decalin (n N 1.48) is small, near micron sized particles scatter visible 
light so strongly that, except at extreme dilution, the dispersions are opaque. Thus, 
the behavior in the bulk of the samples cannot, in general, be studied with visible 
light. We overcome this difficulty by adding the amount of carbon disulfide (n 1: 1.63) 
that provides (nearly) transparent dispersions. The resulting optically matched 
dispersions, prepared in cells of square (1 cm’) cross-section, can be brought to the 
required particle concentration by centrifuging at about lo00 g until a compact 
sediment forms, decanting a weighed amount of clear supernatant, then redispersing 
the particles by agitation of the sample. 

There is considerable evidence that some CS, is absorbed initially by the pmma 
particles (Ottewill and Livsey, 1987; van Megen and Underwood, 1989). However, 
the increase in particle radius in the refractive index matching CSJdecalin mixture, 
relative to that in pure decalin, is only a few percent. More significantly, the presence 
of CS, does not appear to alter the nearly hard-sphere form of the interparticle forces. 
As discussed in the following section, difficulties associated with uncertainties in the 
precise chemical compositions of the particles and liquid medium, due to this CS, 
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absorption, are essentially circumvented by expressing the dispersion volume frac- 
tions in terms of effective hard sphere volume fractions. 

3 PHASE BEHAVIOR 

In this section we discuss a study of the phase behavior of dispersions of pmma 
particles of radius, R = 325 nm Pusey and van Megen, 1986, 1987a. Nine samples at 
different concentrations were prepared by the procedure described in the previous 
section. 

Since colloidal solids are weak (Chaikin et al., 1987) slow tumbling (at about 
1 rev/s) of the samples imposes shear stresses sufficiently large to destroy any 
crystalline structures that may be present. Randomization of the particle positions 
in the dispersions is evident from their amorphous appearance after tumbling. 
Tumbled samples, labelled 2 to 10, were arranged in increasing order of concentration, 
illuminated by white light and left undisturbed for observation over several days. 

Within hours small Bragg-reflecting crystals were evident throughout the disper- 
sion in samples 3 to 7. It is important to emphasize that these crystallites formed 
without the aid of added nuclei. We can, therefore, describe this process as “homogen- 
eously nucleated crystallization” as distinct from “heterogeneously nucleated crystal- 
lization”, discussed below, which requires the assistance of a nucleating’ surface. 

The particles are slightly denser than the liquid. This, combined with the fact that 
the particles become more closely packed upon crystallization, causes gradual 
gravitational settling of the crystallites in samples 3 to 5 until, after about 24 hours, 
a distinct boundary appears that separates crystalline and disordered phases (see 
Plate 1). However, overall gravitational settling of the particles individually is very 
much slower and is only significant after 4 or 5 days. The crystallites in these samples 
appear randomly orientated and have linear dimensions of about 50 pm. The upper 
phase in samples 3 to 5 is disordered or fluid-like; the large particle concentration 
imposes significant short-ranged spatial correlation between the particles, but the 
amorphous appearance indicates the absence of long-ranged order (see Plate 1). These 
features are quantitatively represented by the static structure factor, discussed in the 
next section. In samples 6 and 7, the entire volumes are occupied by similar, but 
smaller, crystallites and even after 4 days, there is no evidence of their settling or 
phase separation. 

The height of the phase boundary, in samples 3 to 5, stabilized after 2 days and 
we assume that at this stage the boundary separated coexisting crystalline and 
fluid-like phases in equilibrium. Accordingly, for these samples, the proportion of 
crystallites was plotted as a function of the weight fraction of pmma (see Figure 1). 
Extrapolation of the resulting straight line to zero and 100 % crystals then provides 
the weight fractions at which crystallization (freezing) and melting occur. The 
hard-sphere model is now invoked by equating the weight fraction of the dispersion 
at freezing with the volume fraction 4F = 0.494, obtained from computer simulation 
for the freezing of a hard-sphere fluid (Hoover and Ree, 1968). The weight fractions 
of the other samples are converted accordingly and their concentrations will hence- 
forth be expressed as effective hard-sphere volume fractions, 4. The melting volume 
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PHASE BEHAVIOR OF HARD SPHERES 211 

Plate 1 (See Color Plate XI11 at the back of this publication.) (a) View of the samples illuminated obliquely 
from behind, numbered 2 to 10 from the right, in order of increasing volume fractions. Actual effective 
hard sphere volume fractions are indicated in Figure 1. (b) Close-up of samples 7 to 9. The middle sample 
(8) is completely occupied by large heterogeneously nucleated crystals. At higher volume fractions, the 
samples are mainly amorphous. 
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Figure 1 Phase diagram of hard-sphere colloidal dispersions. Arrows at the top indicate the effective 
hard-sphere volume fractions of the dispersions of the 325 nm radius pmma particles. Arrows at the bottom 
indicate the freezing, melting and random close-packed volume fractions known for hard spheres. 

fraction of the dispersion thus obtained, c $ ~  = 0.536, is slightly below the theoretical 
value of 0.545 for the melting point of the hard sphere crystal (Hoover and Ree, 
1968). The difference between these values is probably within experimental error, 
although the small polydispersity of the samples or the slight departure of the actual 
interparticle particle potential from the hard-sphere interaction could also be respon- 
sible for a slightly lower melting volume fraction. This way of stating the particle 
concentration has a firm thermodynamic basis and avoids the need to specify the 
exact chemical composition of the particle and adsorbed layer. 

We now discuss, in the framework of the hard-sphere model, the phase behavior 
(summarised in Figure 1) of all the samples leading to the situation, shown in Plate 
1, taken 4 days after tumbling. The most dilute sample 2, 4 = 0.477 (i.e. below 
freezing) did not show any sign of crystallization (apart from a small sedimentary 
crystal, discussed below). Samples 3 to 5 have volume fractions between 4F and 4M 
and show increasing proportions of crystalline phase. Samples 6 and 7 (both with 
4 > &) are fully occupied by homogeneously nucleated crystals. On increasing the 
volume fraction beyond 4M the thermodynamic driving force for crystallization 
increases. This results in larger concentrations of nuclei and the ultimate formation 
of smaller crystals as can be seen in Plate 1 by comparing the size of the crystals in 
samples 3 to 5 with those in samples 6 and 7. 
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However, the reduction of the particle mobility (or increase in viscosity of the 
dispersion) with increasing 4, leads to progressively longer crystallization, or structur- 
al relaxation, times. In fact sample 8 (4 = 0.596) is unable to crystallize homogen- 
eously and undergoes a much slower epitaxial crystallization which is nucleated 
heterogeneously at the meniscus and cell walls. In the most concentrated samples 9 
and 10 (with 4 = 0.620 and 0.636, respectively) the loss of particle mobility is so 
severe that after several days only some crystallization was evident at the meniscus 
(see Plate 1). However, even after many months these samples were still pre- 
dominantly amorphous. We therefore designate the state of those samples with 
6 > +g N 0.60 which fail to crystallize fully as “colloidal glass”. It is interesting that 
the volume fraction of sample 10, 4 = 0.636 is very similar to the value 0.64 found 
by Bernal for the random close packing of hard spheres. 

The appearance of the samples after 4 days, shown in Plate 1, wzrrants further 
comment. As mentioned above, gravitational settling of the particles, a much slower 
process than the crystallization discussed above, also occurs. After about 4 days this 
is evident at the bottom of the most dilute sample by the formation of sedimentary 
crystals. In the lower region of samples 3 to 7, gravitationally compacted crystals are 
evident from the Bragg reflections at shorter wavelengths (giving rise to the pre- 
dominantly greenish appearance). We suggest two possible mechanisms for the partial 
crystallization of samples 9 and 10. As mentioned above, these samples showed no 
sign of any crystallization for 2 to 3 days. One possibility is that the slight settling 
of particles over this time reduced the concentration near the meniscus to the point 
where crystallization was nucleated. Alternatively, ordering could be induced by the 
shear associated with the weak flows which could persist for a considerable period 
after tumbling these very viscous samples. This crystallization then proceeded 
downwards until it stopped in a region of higher concentration. 

The phase behavior displayed in Plate 1 (and summarized in Figure 1) illustrates 
an advantage of dispersions of near micron sized particles over atomic systems as 
model fluids; the structure, in particular the difference between disordered and 
crystalline phases, can be seen directly. However, the visual similarity of the dis- 
ordered phase in samples 2 to 5 and the amorphous portions of samples 9 and 10 
disguises very significant differences in the dynamic properties of the equilibrium 
fluid-like phase and the long-lived metastable glass phase. For example, the shear 
viscosity of samples 9 and 10 is about five orders of magnitude larger than that of 
the disordered dispersions in samples 2 to 5. The large viscosity of the higher volume 
fraction dispersions is a manifestation of the very small mobility of the particles. For 
4 > de, the mobility is so small that the structural rearrangements required for 
crystallization of the metastable amorphous state do not occur on an experimentally 
accessible time scale. Dynamic light scattering results, presented in Section 5, show 
a close correspondence between the volume fraction at which the dispersion no longer 
crystallizes and that where the structural relaxation times become essentially infinite. 

From the discussion of Section 1 it should be apparent that the freezing transition 
exhibited in Figure 1, is similar in nature to the fluid-solid transition expected in a 
supercritical atomic material (see, for example, Egelstaff, 1967). (At temperatures well 
above the critical temperature any attractive part in the inter-atomic potential has 
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little effect on the material properties). An important difference in the usual experi- 
mental studies of colloidal and atomic systems is the following: A monodisperse 
colloidal dispersion is effectively a one-component system of interacting particles in 
an inert incompressible liquid medium. Studies are usually made at constant volume 
(or volume fraction) and temperature. Thus, as we have seen, when a volume fraction 
between 4F and 4M is chosen an initially metastable dispersion will separate into an 
equilibrium state composed of coexisting colloidal fluid and colloidal crystal phases; 
the osmotic pressure of the dispersion (the analogue of the pressure in an atomic 
system) will adjust itself to the value required by the equation of state. By contrast, 
atomic systems are frequently studied at constant pressure and temperature. Then 
phase coexistence is essentially impossible to achieve since the temperature cannot 
be set precisely and will, in practice, be slightly above or slightly below the melting 
temperature at the pressure chosen. At constant pressure and temperature, therefore, 
the practically-achieved equilibrium state of the system will be a single-phase solid 
or fluid. 

4 THE CRYSTAL STRUCTURE 

In these colloidal suspensions the naturally-occurring homogeneously-nucleated 
crystallization process provides samples composed of many small randomly-oriented 
crystallites which are ideal for the light scattering equivalent of powder crystallo- 
graphy. For materials composed of N identical spheres which are in an orientation- 
ally-invariant state such as a fluid or a powder of crystallites the intensity of scattered 
light can be written 

where the magnitude of the scattering vector q is defined by 
I (q)  = P(q)S(q) (1) 

47c . e 
q = sin -. 

/. 2 

1 is the wavelength of the light in the dispersion and 0 the scattering angle; P(q)  is 
the single-particle form factor, determined by the refractive index profile of the 
particles, and S(q)  is the static structure factor defined by 

" 

where rj is the position of particle j .  The particle form factor P(q) can be obtained 
by measuring I ( q )  for a dilute dispersion (for which S(q)  = 1). For the pmma particles 
we find P(q) to have the form expected for spherically-symmetric core/shell objects 
which generally show strong scattering at small q and weak subsidiary maxima at 
larger q. The structure factor (in arbitrary units) of a concentrated sample is obtained 
by measuring Z(q) and dividing by the P(q) measured on the dilute suspension. 

To make the powder diffraction measurements a laser beam was expanded so that 
about 1 cm3 of the sample, containing at least lo6 crystallites, was illuminated (Pusey 
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et al., 1989). A photomultiplier tube, preceded by suitable optics, rotated about the 
axis of the cell under computer control. Angular scans from 20" to 140", in steps of 
0.25", took about 10 min. 

Figure 2 shows structure factors obtained from a sample of spheres of radius 
170 nm at a concentration just above melting (the phase behavior of this system of 
particles will be described in the next section). The lower curve was measured 
immediately after the sample had been mixed well by slow tumbling. It has the general 
form expected for a metastable fluid. The upper curve was obtained about 80 minutes 
later when the sample appeared to be fully crystalline. The form of this structure 
factor is rather unusual for a crystal in that, in addition to a sharp Bragg reflection, 
a broader band of diffuse scattering is evident. Furthermore this diffuse scattering 
has approximately the same amplitude as the structure factor of the metastable 
fluid, indicating that it must arise from short-ranged rather than long-ranged order. 

To interpret this result we speculate on possible crystal structures. It is generally 
expected that the structure of crystals formed by particles with short-ranged isotropic 
interactions should be close packed. As is well-known, close-packed structures can 
be made by stacking hexagonally-packed layers of particles (Guinier, 1963). Each 
layer can take one of three lateral positions, A, the reference position, B, obtained 
by an in-plane displacement relative to A of 1/3a + 2/3b and C obtained by the 
displacement 2/3a + 1/3b, where a and b are hexagonal lattice vectors in the planes. 

0 1 2 3 
5 

X I  0 
S c a t t e r i n g  v e c t o r  q ( c r n 3  

Figure 2 Structure factors (in arbitrary units) for the dispersion of 170 nm radius pmma particles at 
4 = 0.54, i.e. just above melting. The lower result applies to the metastable fluid, the upper result, shifted 
up one division for clarity, to the crystalline phase. The dashed solid line represents the theoretical result, 
as discussed in the text. 
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The sequences.. ABABAB . . gives a hexagonal close-packed (HCP) structure whereas 
. . ABCABC . . gives face-centred-cubic (FCC). However, the only essential require- 
ment for close packing is that adjacent layers, n and n + 1, have different positions. 
For hard spheres there seems no reason to expect much “communication” between 
layers n and n + 2. We therefore postulate that hard spheres may adopt a randomly- 
stacked sequence such as . . ABACBCA . . . For generality we assign a probability a 
that layers n and n + 2 have different positions. Thus a = 0 gives HCP and a = 1 
FCC. 

Calculation of the powder diffraction pattern of a crystal comprises two steps, 
determination of its structure in reciprocal space and orientational averaging (Guin- 
ier, 1963). The reciprocal-space structure of a close-packed crystal, random-stacked 
in the sense described above, was calculated many years ago (Hendricks and Teller, 
1942; Wilson, 1942,1949). It contains points, which give rise to those Bragg reflections 
in real space that are common to both HCP and FCC structures, and modulated 
lines resulting from the random stacking, which provide broad bands of diffuse 
scattering. The nature of the modulation of these lines, and therefore the form of the 
diffuse bands in the structure factor, depends on the stacking probability a. When 
reciprocal space contains such lines the orientational-averaging procedure involves 
subtleties not found in the case of a perfect crystal; these are discussed elsewhere 
(Pusey et al., 1989). 

We have calculated powder diffraction patterns for a range of values of a. Other 
adjustable parameters are an overall scaling factor and the average dimensions of 
the crystallites perpendicular and parallel to the close-packed planes; the latter 
determine the diffraction-broadening of the pattern. We should emphasize that the 
term “close-packing” is used above to characterize the average spatial arrangement 
of the particles. It does not imply that the particles are necessarily touching. In fact, 
the volume fraction, c # ~ ~  = 0.545, of the hard sphere crystal at melting is well below 
the volume fraction, 0.74, of touching close packing. Thus particles in a crystal at 
4 N 4M have significant freedom for Brownian motion about their lattice sites which 
will give rise to thermal diffuse scattering and reduction of the Bragg reflections by 
the Debye-Waller factor. We have included thermal motion in the calculations by 
assuming a simple Einstein (independent oscillator) model of the crystal and taking 
the mean-square displacement of the particles about their lattice sites to be that found 
in computer simulations of hard spheres (Young and Alder, 1974). 

The dashed line in Figure 2 is the powder pattern for a = 0.5, calculated by the 
procedure just described. It agrees well with the experimental data. We conclude, 
therefore, that the crystal structure of this sample is completely random-stacked in 
the sense that following an AB stacking of two layers, positions A and C of a third 
layer are equally likely. 

Elsewhere (Pusey et al., 1989) we have published diffraction patterns of two other 
samples of the same particles. In one case the concentration was somewhat lower, 
between 4F and 4M. At this reduced “supersaturation” the sample took longer, about 
a day, to show complete crystallization and phase separation. The diffraction pattern 
of the polycrystalline phase could be fitted by that calculated by the procedure 
described above but now with a = 0.58. The second sample contained a crystal 
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formed over several weeks by sedimentation of particles from a relatively dilute, 
4 N 0.25, suspension. Then a N 0.8 was required to describe the structure factor. 

Thus there appears to be a correlation between the rate at which the crystals are 
formed and a tendency to show increasingly longer sequences of FCC stacking, a + 1. 
We might conjecture therefore that the true equilibrium state of a hard-sphere crystal 
is FCC but that the difference in free energies between this and other close-packed 
structures is small. When the crystal is grown slowly the particles have more time 
to explore possible sites on the faces of the crystallite and to achieve the equilibrium 
state. By contrast, on rapid growth, long-lived, but strictly non-equilibrium, states 
can be formed. 

Indeed several calculations have indicated that the free energy of the FCC 
hard-sphere crystal is slightly lower than that of the HCP structure (Frenkel and 
Ladd, 1984; Colot and Baus, 1985; Igloi, 1986); however, the.difference is comparable 
to error in the calculations. 

To our knowledge, while a significant degree of faulted stacking can be found near 
a structural phase transition, (Edwards and Lipson, 1942), no simple atomic material 
shows the essentially complete stacking randomness observed in Figure 2. Faulted 
stacking in crystals of colloids was considered previously by Sanders (1968) who 
showed that the resulting diffuse scattering plays an important role in determining 
the optical quality of gem opals. 

5 

In Section 3 we showed that dispersions can be concentrated to a metastable state 
that for 4 > &#, remains amorphous for an essentially indefinite period. This property 
is a consequence of the slow translational diffusive motion of the near micron-sized 
particles in the dispersions. However, even at lower volume fractions (& < 4 < 4J, 
the structural relaxation times are sufficiently large to allow observation of the 
metastable states that exist after tumbling the dispersions but prior to the formation 
of crystals. By contrast, atomic fluids, in which the motions are typically 11 orders 
of magnitude faster, cannot be compressed or quenched rapidly enough to achieve 
a glass state. 

Naturally occurring glasses generally consist of aspherical molecules in which the 
suppression of rotation or the formation of bonded networks are dominant factors 
in preventing crystallization during supercooling of the fluid. On the other hand, the 
formation of the glass state in systems composed of spherical units, be they atoms 
or spherical particles, can only be associated with the suppression of translational 
motion. However, for systems of spherically interacting particles (eg. Lennard-Jones 
atoms and hard spheres) the only evidence for the existence of the glass state and its 
properties is contained in a considerable body of computer simulation and theory 
(for example Woodcock, 1981; Ullo and Yip, 1985; Bengtzelius, 1986). This work 
provides the following picture of the fundamental processes leading to the glass 
transition: 

In the fluid phase (4 < &) a typical particle or atom is able to diffuse throughout 
the sample although its progress is impeded by temporary entrapments in an 

PARTICLE DYNAMICS AROUND THE GLASS TRANSITION 

P.T.-F 
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evanescent cage formed by neighboring particles. With increasing concentration, into 
the metastable fluid regime (& < 4 < 4J, the probability of a particle escaping from 
an increasingly compact neighbor cage decreases. As the glass transition is ap- 
proached, the particle becomes essentially trapped in its cage but still retains some 
freedom to move within it. 

The dynamics of systems of (near micron sized) colloidal particles can be de- 
termined by dynamic light scattering. This procedure is analogous to the inelastic 
scattering of neutrons by atomic fluids (Copley and Lovesey, 1975); the “contrast” 
of the scattering medium, which determines the relative proportion of coherent and 
incoherent scattering, can, for colloidal dispersions, be adjusted by altering the 
relative refractive indices of the particles. With suitably prepared dispersions, dynamic 
light scattering (DLS) allows measurement of the incoherent dynamic structure factor 
(van Megen and Underwood, 1989). This provides the statistical properties of the 
single particle displacement and allows the above picture of the particle motion in 
a fluid as the glass transition is approached to be tested directly. However, cessation 
of large scale translation of the particles, at the glass transition, must be accompanied 
by the partial “freezing-in” of concentration fluctuations on all spatial scales. 
Therefore, equally valuable insight into the nature of the particle dynamics around 
the glass transition is contained in the coherent dynamic structure factor. The latter 
expresses the decay of particle concentration fluctuations and, moreover, can be 
obtained by DLS on dispersions that are much more easily prepared than those 
required for incoherent scattering. 

For a large number, N, of identical spherical particles in the scattering volume the 
(coherent) dynamic structure factor is defined by 

N N  m, T) = N - c 1 (exp iq . Cr,M - rAO)I), (4) 
j = 1  k = l  

where rj(z) is the position of particle j at time z. F(q, z) can also be expressed as 

m, 4 = (P(49 z)P*(q, 0))  (5 )  
i.e. as the temporal autocorrelation function of the spatial Fourier component 
p(q, z) = Z:= expciq * rk(z)] of the concentration fluctuations. Note that F(q, 0) = 
S(q), the static structure factor defined by Equation (3). 

The experimental arrangement and the procedure necessary to effect the ensemble 
average, indicated by the angular brackets in Equations (4) and (3, of the non-ergodic 
metastable states found near the glass transition are beyond the scope of this article 
and are presented elsewhere (Pusey and van Megen, 1987b). Here we focus the 
discussion on the measured coherent dynamic structure factors and their connection 
with the phase behavior of the dispersions in the vicinity of the glass transition. 

The dispersions of pmma particles (of radius 170 nm) on which the discussion in 
this section is based, were also used for the static structure factor measurements 
discussed in Section 4. They exhibit a phase behavior similar to that described in 
Section 3 for dispersions of larger particles. The crystallization concentration was 
determined and, as discussed in Section 3, equated with the freezing volume fraction, 
&, of the hard-sphere fluid. In terms of the effective hard-sphere volume fractions, 
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aspects of the phase behaviour of this dispersion, pertinent to this section, can be 
summarized as follows: Samples at volume fractions in the range 0.494 < 4 < 0.542 
crystallized within several hours after tumbling but the sample at a slightly greater 
volume fraction, 4 = 0.554 took several days to crystallize. In all these cases, 
crystallized within several hours after tumbling but the sample at a slightly greater 
observed for volume fractions in excess of 0.565, although, after several days, two 
samples at 4 = 0.565 and 0.582 showed some crystallization nucleated heterogen- 
eously at their menisci. From this phase behavior we conclude that the glass transition 
is located at 4g N 0.560. (It is not clear why this value of +g is somewhat lower than 
the value, 4g II 0.60, found in the samples discussed in Section 3). 

DLS measurements were performed on two equilibrium fluid-like samples at 
effective volume fractions 4 = 0.480 and 0.494; recall that the latter value equals (PF, 
the effective hard-sphere volume fraction of the disordered phase that coexists with 
the crystalline phase (as seen, for example, in samples 3 to 5 in plate 1). Measurements 
were also performed on several samples at volume fractions 4 > 4F after they had 
been extensively tumbled to obtain their metastable states. The light scattering 
measurements were made at a scattering angle corresponding to the position, q,, of 
the main peak of the static structure factor, S(q). In this choice we were guided by 
the availability of computer simulation data and theoretical predictions (Ullo and 
Yip, 1986; Bengtzelius, 1986). Physically, the wavelength Iz  = 2z/q,, of the largest 
amplitude concentration fluctuations, is approximately equal to the mean inter- 
particle spacing. In this sense the temporal decay of F(q,, z) represents a measure of 
the structural relaxation. Several features are evident from the results of F(q,, z) 
shown in Figure 3. Firstly, each of the dynamic structure factors has an initial decay 
noticeably faster than the long-time decay. In accordance with the above picture 
describing the particle dynamics, this rapid initial decay is associated with the local 
motion of the particles within their (average) neighbor cages, whilst the slower 
decaying component of F(q,, z) describes the more hindered particle diffusion over 
larger distances. Secondly, the time constant, TL, of the slow decay increases much 
more rapidly with volume fraction than the time constant, T,, of the initial fast decay. 
A detailed analysis of the data, (van Megen and Pusey, 1989), indicating that, 
T,  1: 0.03 sec. and varies only slightly over the volume fraction range (0.480 < 4 < 
0.582) studied by DLS, but TL varies from about 0.1 sec at 4 = 0.480 to 5 sec. at 
4 = 0.542 and diverges for 4 > 0.554. This divergence of the decay time, TL, evident 
from the non-decaying part of F(q,, z) shown in Figure 3, can be attributed to the 
spatial localization of the particles and the consequent partial freezing-in of con- 
centration fluctuations of wavelength 2n/q, at the glass transition. However, even 
when large scale motion has essentially ceased, the significant initial decay of F(q,, T) 
reflects the existence of some local motion of particles constrained or trapped in the 
amorphous glassy structure. 

An important feature of these results is the correlation between the microscopic 
particle dynamics, as revealed by DLS, and the observed macroscopic phase be- 
havior, summarized above. Samples at volume fractions 4 < 0.542 crystallized within 
several hours and their dynamic structure factors were roughly exponential at long 
times with decay times, TL, less than about 5 sec. The lowest volume fraction sample 
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Figme 3 
pmma particles. The curves are labelled by effective hard-sphere volume fraction. 

Dynamic structure factors, F(q, r), for the metastable fluid states of the dispersions of the 170 nm 

studied, 4 = 0.554, for which TL diverged, took several days to crystallize. All samples 
studied a higher volume fractions showed a non-decaying component in F(q,, z); 
correspondingly, the metastable amorphous dispersions did not transform into a 
homogeneously nucleated crystalline phase over any period. Thus, the DLS measure- 
ments indicate the cessation of large scale particle motion at approximately the same 
volume fraction, 4g 21 0.56, at which the glass transition was located visually from 
the phase behavior. 

Although the above results and discussion pertain to DLS measurements made 
only at q = qm, the position of the primary maximum in S(q), measurements were also 
performed at several other scattering vectors, both below and above qm. At all values 
of q studied the dynamic structure factor displays a non-decaying component as 4g 
is approached. This substantiates the assertion, made earlier in this section, that the 
suppression of large scale particle translation is accompanied by the partial freezing-in 
of concentration fluctuations of all spatial scales. 

Quantitative comparison between the dynamic structure factors F(q,  z) measured 
on colloids and those obtained for atomic systems by theory and computer simulation 
is difficult due to the different natures of the particle motions in each case and the 
widely disparate timescales. Nevertheless we have devised a time-scaling procedure, 
based on diffusion times at the freezing concentration for each system, which leads 
to essentially quantitative agreement between our measurements of F(q, z) and those 
calculated by Bengtzelius (1986) for Lennard-Jones atoms. Details of this comparison 
will be given elsewhere (van Megen and Pusey, 1989). 
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6 BINARY MIXTURES 

Computer simulation techniques have been used extensively to study the freezing 
transition of single-component liquids (Frenkel and McTague, 1980), but so far no 
complete calculations have been made of the crystallization of binary fluids. This is 
not surprising since the properties of mixtures are much more varied and the phase 
behavior correspondingly more complex. Even a mixture of hard spheres, which may 
be viewed as conceptually the simplest model of a binary mixture, has three 
independent parameters (as opposed to one for the single-component case). The 
thermodynamics of a mixture of hard spheres of size ratio b = RB/RA (we shall assume 
RA > RE so 0 < p < 1) may be described either in terms of the partial volume 
fractions 

4.n 
3 q5i = - piR: (i = A or B) 

or the total volume fraction 4 = 4,A + 4B and the number fraction xA = pA/p, where 
pi is the number density of component i and p = p A  + p B .  

Binary hard-sphere mixtures of all size ratios /3 are known to be completely miscible 
in the fluid phase (Alder, 1964; Lebowitz and Rowlinson, 1964). In contrast simple 
packing arguments suggest that the composition and structure of the equilibrium 
solid phase is determined primarily by the size ratio B. Density functional calculations 
predict that spheres of comparable diameters crystallize into substitutionally dis- 
ordered close-packed structures (Barrat, Baus and Hansen, 1987). As the diameter 
ratio B decreases the degree of mutual solubility decreases and the phase diagram, 
presented as a function of temperature and number fraction at constant pressure, 
changes from a spindle shape to an azeotropic diagram and finally to a eutectic 
diagram (note that, as discussed in Section 3, experiments on colloidal systems are 
usually performed under constant volume conditions). At the most extreme size ratio 
reported of B = 0.85, the solid phase separation results in a pure close-packed crystal 
of small spheres and a substitutionally-disordered crystal containing largely big 
spheres. Mixtures of spheres with smaller size ratios might be expected to form 
ordered binary alloy structures. A simple free volume argument suggests that binary 
structures with touching close-packed densities in excess of the close packed volume 
fraction for monodisperse spheres of 4 = 0.7405 should be preferred at least at high 
pressures. It seems reasonable to expect that similar structures will be important at 
freezing even though the particles are not touching (see Section 4). Touching 
close-packed densities of a wide range of binary alloy structures have been calculated 
by Sanders and Murray (1980). With decreasing size ratio, the number of potential 
structures increases rapidly but for b > ,,h - 1 high-density close-packed binary 
alloys are found for size ratios of fi = 0.566 (cubic AB,,, 4 = 0.760), p = 0.527 
(hexagonal AB,, 4, = 0.782) and /3 = 0.414 (cubic AB, 4, = 0.793). (Rather surpris- 
ingly, and in contrast to our findings below, recent density functional calculations 
(Rick and Haymet, 1989) of the freezing of 1 : 1 hard sphere mixtures predict that the 
stable solid phase at freezing for all size ratios is the substitutionally disordered FCC 
structure.) 

P . T . 4  
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The similarity of concentrated dispersions of pmma particles to hard sphere liquids 
makes them ideal candidates to test these ideas experimentally. In comparison with 
the rather limited range of diameter ratios found in atomic and molecular systems 
monodisperse colloidal spheres can be synthesised with a much wider range of mean 
diameters. Our most extensive set of measurements has been made on a system of 
size ratio p = 0.61. Both individual components, of radii of about 335 and 203 nm, 
showed phase behavior similar to that described in Section 3. As before the 
concentration at which crystallization of each component first occurred was identified 
with a hard sphere volume fraction of 4 = 0.494. All other volume fractions were 
scaled identically. 

Binary dispersions were prepared at thirteen different number fractions x A .  At each 
composition, volume fractions 4 werqchosen so that the dispersion was in the vicinity 
of the equilibrium freezing line. The observed phase behavior was strongly dependent 
on the initial composition of the dispersion. Light scattering measurements identified 
four distinct solid phases corresponding to randomly stacked crystals of pure 
component A or component B, the ordered cubic binary alloy AB,, and a binary 
glass. The partial volume fractions of the dispersions in which each of these solid 
phases was observed is summarized in Figure 4. The dotted lines (of constant 
composition) separate samples which at equilibrium freeze into different solid 
structures. 

0 0.2 0.4 0.6 
V o l u m e  f r a c t i o n  c o m p o n e n t  A 

Figure 4 Constant volume phase diagram illustrating the binary dispersions investigated. The phase 
diagram is divided into four regions, I-IV, on the basis of the observed fluid-solid phase equilibria. 
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With increasing volume fraction, all binary dispersions of number fraction xA > 
0.43 (region 1 of Figure 4) separated into colloidal crystals and a coexisting binary 
fluid. Light scattering measurements together with scanning electron microscopy of 
dried crystalline samples showed that this crystalline phase consisted of large 
irregularly-stacked close-packed regions of component A with a similar structure to 
the crystals discussed in Section 4. Any occluded B spheres were present in amorphous 
grain boundaries consistent with almost total immiscibility of components A and B. 
Electron micrographs indicated that the solubility of component B in crystals of 
component A was less than 1 %. The coexisting fluid phase was correspondingly 
enriched in B particles. A similar degree of solid immiscibility was found for crystals 
formed from dispersions rich in component B of number fraction xA less than 0.05 
(region IV of Figure 4). In this region the phase separation resulted in a single 
crystalline phase containing component B and a coexisting fluid enriched in compo- 
nent A. 

The most remarkable sequence of phase behavior occurred in the four samples 
with a number fraction x A  N 0.057, containing approximately 17 small B spheres to 
1 large A sphere. Crystallization was first observed in dispersions of total volume 
fraction 4 = 0.51 1 in which at equilibrium a single solid phase of irregularly stacked 
crystals of component B coexisted with a fluid phase. On increasing the volume 
fraction to 4 = 0.535 equilibrium was observed between three phases, one fluid and 
two solids. The diffraction pattern of the solid phase contained features characteristic 
of pure B crystals and also a regular progression of low q reflections implying a 
structure with a large lattice parameter. Detailed calculations (Bartlett, Ottewill and 
Pusey, 1989) demonstrate that the observed scattering intensity is consistent with 
powder diffraction from the ordered binary alloy AB,, .  The structure of this 
compound can be considered in terms of a simple cubic subcell with A spheres at 
the cube corners. The cube contains a body-centred B sphere surrounded by twelve 
nearest neighboring B spheres at the vertices of a regular icosahedron. The unit cell 
is constructed from eight subcells with each adjacent icosahedral cluster rotated by 
4 2  about a simple cubic axis. On further increasing the volume fraction to 4 = 0.554 
the binary dispersion crystallized totally into what appeared to be a single solid phase 
consisting of crystals of component B. No evidence was seen of a coexisting crystal 
phase of component A. Presumably the relatively small number of A particles were 
situated in amorphous grain boundaries. 

With the observation of the binary crystal AB13 the phase diagram must contain 
at least three solid phases of A, B and AB, , .  We might thus expect two eutectic 
points corresponding to the solid equilibria Be AB, ,  and A e  AB,, .  The three 
coexisting phases seen in the sample of x A  = 0.057, 4 = 0.535 suggests that this 
sample lies in the eutectic region between B and AB,,.  Dispersions prepared with a 
number fraction xA N 0.28 (region I1 of Figure 4), which might be expected to lie in 
the vicinity of the eutectic between A and AB, , ,  remained amorphous. Preliminary 
measurements by dynamic light scattering suggested binary glass formation. Since 
samples of comparable volume fractions but different compositions all readily 
crystallized we associate this composition with an enhanced tendency for glass 
formation. Glass formation at deep eutectics is commonly observed in other binary 
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systems such as metallic alloys. It has been attributed to the combined effect of an 
increased thermodynamic resistance to homogeneous nucleation at a eutectic and 
the kinetic restraints on crystal growth present in a binary mixture (Spaepen and 
Turnbull, 1984). 

Unfortunately our data are not sufficiently complete to determine experimentally 
the full details of the phase diagram. In the absence of any theoretical predictions 
we have used a simple model for the freezing of binary hard spheres which predicts 
the form of the phase diagram under the conditions of constant volume relevant to 
our experiments. We model the system by a binary mixture of hard spheres, of size 
ratio /3, which through miscible in the fluid phase are assumed to be totally immiscible 
in the solid phase. The experimental data, outlined above, suggest this is a reasonable 
approximation for dispersions of composition within the ranges x A  > 0.43 and 
x A  < 0.05. Using accurate equations of state for both the binary hard sphere fluid 
(Mansoori et al., 1971) and the hard sphere single component crystal (Young and 
Alder, 1979) the densities of coexisting fluid and crystals may be readily determined. 
Figure 5 shows a section of the eutectic phase diagram in the partial volume fractions 
( $ A ,  &) plane calculated for a diameter ratio of 0.61. 

In region (a) the binary fluid is the only stable phase, while in regions (b) and (c) 

t 
c 
c 0 .6  
0 
(1 

0 
v 

E 

c 0 . 4  
0 

c 
U 

.- 

0 
c 

0.2 

> 
0 

0 0.2 0 .4  0 .6  
V o l u m e  f r a c t i o n  c o m p o n e n t  A 

20 ( n m )  

Figure 5 The + A ,  +B projection of the phase boundaries for the freezing of a binary hard sphere fluid 
into immiscible crystals. A diameter ratio of 0.61 has been assumed. Illustrative tie lines which connect 
coexisting states at constant osmotic pressure are shown dashed. On the inset diagram the predicted lattice 
parameters are compared with the experimentally determined lattice parameters found for crystals of 
component A. 
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the fluid is in equilibrium with a pure crystal phase. The states corresponding to the 
end of each tie line are the coexisting fluid and solid phases at a defined (osmotic) 
pressure. Each point on the tie line corresponds to the overall composition of the 
initial system which at equilibrium will phase separate into the states represented by 
the ends of the tie line. Samples prepared within region (d) will phase separate at 
equilibrium into three phases of eutectic fluid and crystals of A and B represented 
by the three vertices. Within this region the phase rule dictates that the equilibrium 
pressure is fixed. Finally in region (e) the system has totally solidified and crystals 
of A are in equilibrium with crystals of B. In practice the equilibrium states expected 
in regions (d) and (e) may not be achieved due to the intervention of glass transitions. 

For dispersions rich in component A (region b of Figure 5 )  the osmotic pressure 
increases as the number fraction of the larger component is reduced and the total 
number density p increases. Coexisting crystals are correspondingly compressed. The 
subsequent change in the crystal density and hence the crystal lattice parameter 
predicted by the phase diagram of Figure 5 accurately mirrors the observed lattice 
parameters of crystals formed in the regions of solid immiscibility x A  > 0.43 and 
x A  < 0.05. The inset in Figure 5 shows the measured lattice parameters of crystals 
formed from binary dispersions of x A  > 0.43 against the predictions of the calculated 
phase diagram of Figure 5. Agreement is excellent and demonstrates that this simple 
model accurately predicts the phase behavior of dispersions rich in component A or 
component B. 

In conclusion, these experiments demonstrate the complexities of colloidal binary 
hard sphere phase diagrams. In dispersions in which either the large or small 
components predominates we find that colloidal spheres at freezing are almost 
completely immiscible. In a very narrow range of intermediate compositions the 
ordered binary alloy phase AB,, is formed. Although the full details have still to be 
determined, the experimental evidence suggests that the phase diagram contains at 
least two eutectic compositions. 

7 CONCLUDING REMARKS 

We have described a variety of phenomena related to the phase behavior of one- and 
two-component dispersions of hard-sphere colloids. The analogy with the hypotheti- 
cal hard-sphere atomic system has been emphasized. In several cases it has been 
possible to compare experimental results directly with theories and computer simula- 
tions applied originally to atoms. 

We hope that future development of this program will contynue to elucidate 
properties of simple materials in their fluid, crystalline and glassy states. For example, 
in view of the dominance of homogeneous nucleation, the slow growth rates and the 
possibility of observing the particles directly by light microscopy, these colloidal 
dispersions should constitute good models for further study of a simple freezing 
transition. Investigation of the behavior of binary mixtures of colloids, viewed as 
analogues of metallic alloys, should help to separate those properties determined 
largely by packing considerations from those which depend on detailed features of 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
B
r
i
s
t
o
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
0
:
3
1
 
9
 
O
c
t
o
b
e
r
 
2
0
1
0



226 W. VAN MEGEN. P. N. PUSEY AND P. BARTLETT 

the inter-atomic potential such as softness, attractions and directionality. In our study 
at just one size ratio we have already identified eutectics, glass formation and the 
colloid analogue of an intermetallic compound. 
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