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Metastable gels formed by weakly attractive colloidal particles display a distinctive two-stage
time-dependent settling behavior under their own weight. Initially a space-spanning network is
formed that for a characteristic time, which we define as the lag time τd, resists compaction. This
solid-like behavior persists only for a limited time. Gels whose age tw is greater than τd yield
and suddenly collapse. We use a combination of confocal microscopy, rheology and time-lapse video
imaging to investigate both the process of sudden collapse and its microscopic origin in an refractive-
index matched emulsion-polymer system. We show that the height h of the gel in the early stage
of collapse is well described by the surprisingly simple expression, h(τ)/h0 ∼ exp[−(τ/τc)β ], with
h0 the initial height, τ = tw − τd the time counted from the instant where the gel first yields, and
β ≈ 1.5. We propose that this unexpected result arises because the colloidal network progressively
builds up internal stress as a consequence of localized rearrangement events which leads ultimately
to collapse as thermal equilibrium is re-established.

PACS numbers: 82.70.Dd, 83.50.Fc, 05.40.+j

I. INTRODUCTION

Soft materials such as colloidal suspensions and emul-
sions form a remarkably rich variety of non-ergodic states
[1–3] – examples of which are familiar to us in our daily
life in products as diverse as foodstuffs, surface coatings,
fabric conditioners, and pesticides. Out-of-equilibrium
phases occur when suspensions are quenched deep into
a region of thermodynamic phase separation. Unable
to phase separate, amorphous solids form which are me-
chanically rigid but without the long-range translational
order characteristic of crystalline solids. Slow relaxation
dynamics prevents the system from reaching their un-
derlying global equilibrium configurations so these amor-
phous solids evolve slowly in a complex energy landscape
with a high number of local minima and as a result dis-
play glassy dynamics with a rich phenomenology of ef-
fects such as aging, non-linear responses, and spatial and
temporal dynamic heterogeneities.

One of the most dramatic macroscopic manifestations
of aging is the phenomenon of sudden network collapse
in gels. Gels consist of a network of particles linked to-
gether by long-lived attractive bonds. Sedimentation or
creaming of the particles within a gel imposes a buoyant
stress on the network. Weak gels, where the strength of
the attractive potential at contact Uc is only a few kBT ,
show a very unusual mechanical response. Initially, the
gel behaves as a solid but after a finite lag time τd, the gel
yields and catastrophically collapses. Sudden or ‘delayed’
network collapse is observed in a wide variety of materi-
als [4–13] and seems to be ubiquitous at small Uc/kBT .
However, while sudden collapse has been attributed to
channel formation within the gel [9, 10], the microscopic
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processes operating have never been fully established. A
better microscopic understanding of the origin of sudden
gel collapse is important not only because the distinctive
settling behavior is intriguing from a scientific viewpoint
but also because a quantitative prediction of gel stabil-
ity is a critically important issue in the formulation and
manufacture of many commercial products.

The aim of this paper is to report a detailed experi-
mental study of the stability of gels under gravitational
stress. We use a colloidal suspension of nearly monodis-
perse emulsion drops of radius a suspended in an index-
matched mixture of solvents, which has been well charac-
terized elsewhere [14]. Gelation is induced by long-range
attractive depletion forces. Using time-lapse video imag-
ing we measure the dependence of the height h of a gel
upon its age tw, counted from the moment when the gel
was formed. No macroscopic sedimentation is observed
initially but after a period of latency the gel undergoes
a rapid collapse as the system separates into colloid-rich
and colloid-poor phases. We investigate the collapse dy-
namics as a function of the strength −Uc/kBT of the
attractive interactions and the initial height h0 of the
gel. Remarkably we find that when collapse starts the
change in the height of the gel ∆h = h0 − h follows a
simple universal dependence on tw which is independent
of the initial height h0 of the gel. The observation of
height-independent collapse is surprising and contrasts
with the marked height dependence seen in short-range
gels studied to date [10, 15, 16]. Using a combination of
rheology, confocal microscopy and time-lapse video imag-
ing we speculate that the collapse of the gel network oc-
curs via a spatially heterogeneous process of localized
‘micro-collapses’ which leads to a build up of internal
stress within the gel.

The paper is organized as follows: Section II discusses
the preparation of the emulsion gels studied and the ex-
perimental techniques used. Section III details experi-
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mental results from both macroscopic and microscopic
measurements on the settling behavior of suspensions of
attractive particles. The interpretation of the results in
terms of internal stress relaxations is discussed in Sec. IV
before we summarize our main findings in Sec. V.

II. MATERIALS AND METHODS

A long-range attractive interaction was induced be-
tween emulsion colloids by polymer depletion. The emul-
sion consisted of poly(dimethyl siloxane) drops dispersed
in a solvent mixture of 1,2-ethane diol (ED) and wa-
ter (mass fraction of ED = 0.59). The solvent compo-
sition was adjusted to closely match the refractive in-
dex of the emulsion to minimize van der Waals attrac-
tions between drops and to enable confocal imaging to be
conducted deep within the sample. A particle radius of
a = 316 ± 11 nm and a size polydispersity of 0.17 ± 0.07
was determined from dynamic light scattering measure-
ments. The thickness of the polymeric stabilizing layer
surrounding each emulsion drop was evaluated by cen-
trifuging a suspension and equating the packing fraction
of the sediment to the jamming density of a hard sphere
system with the same polydispersity [17]. This procedure
gave a layer thickness of ≈ 7 ± 1 nm. The density mis-
match between emulsion drops and the continuous phase
is ∆ρ = −130 ± 10 kg m−3. To induce a depletion in-
teraction, we added the non-adsorbing anionic polymer
xanthan (Kelco, Mw = 4.66 x 106 g mol−1). The polymer
radius of gyration was determined as rg = 194±10 nm by
light scattering and viscometry. The strength of the de-
pletion attraction generated is a function of the polymer
concentration and its range is controlled by the relative
size rg/a = 0.62± 0.04 of the polymer and particle. The
polymer concentration is quoted here in terms of the di-
mensionless ratio cp/c

∗
p, where c∗p = 3Mw/4πr

3
gNA is the

overlap concentration (c∗p = 0.25 mg/ml) and NA is Avo-
gadro’s constant. Full details of sample preparation are
contained in Teece et al. [14].

To monitor the collapse of the gels we used time-lapse
video recording to record images of the emulsions as they
cream. A low magnification image of the settling gel was
projected onto a CCD camera (Allied Vision Technolo-
gies F-080B). A regular sequence of images were captured
every 20 seconds. The image series was corrected for op-
tical distortion and non-uniformities in illumination be-
fore being calibrated using an accurate grid of lines. The
images near the center of the cells were analyzed and
the interface separating the upper (dark) phase from the
lower (bright) phase was identified automatically using
a image analysis routine. The height h of the interface
was extracted as a function of time with an accuracy of
about ±0.3 mm. To aid visualization a low concentra-
tion (≈ 0.001 mg/ml) of an adsorbing black dye, Sudan
black, was added. The dye preferentially partitions into
the index-matched PDMS drops so that the colloid-rich
phase appears dark in transmitted light. The colloid-

polymer mixtures were thoroughly mixed at the start
of the experiments before being loaded into cylindrical
glass vials with an internal diameter of d = 17 mm. The
cell diameter was varied between 15 – 23 mm and both
cylindrical glass and poly(styrene) cells were used, with
no significant change in collapse behavior. To eliminate
air bubbles which lead to irreproducible settling dynam-
ics we used a gentle slow tumbling of the sample vial to
thoroughly mix the samples before observation. Repeat
experiments showed that following this protocol the col-
lapse kinetics could be measured with a reproducibility
of about 10-15%.

Rheological measurements were performed at 23◦C
with a Bohlin HR Nano rheometer (Malvern Instru-
ments). To study simultaneously the temporal evolution
of the elastic properties and the height of the gel a novel
rheometric vane experiment was developed which allowed
visual observation of the gel as rheological measurements
were performed. The vane was made from stainless steel
and consisted of four blades (diameter 22.7 mm, height
10 mm). The vane was carefully inserted into clear poly-
carbonate sample vials (diameter 25 mm, height 65 mm),
10 mm below the top surface of the gel and a thin layer
of silicone oil added to minimize evaporation. The vane
remained inside the dense upper phase for the duration of
the rheological experiments, allowing the collapse process
to be continuously monitored. Oscillation measurements
were performed at 0.5 Hz at intervals of 200-250 s under
controlled stress conditions, within the experimentally-
determined linear viscoelastic region, while the height of
the gel was monitored simultaneously by time-lapse video
microscopy. The absence of wall slip was confirmed by
watching the movement of small air bubbles deliberately
introduced into samples.

To directly probe changes in the microscopic topology
of the gel during collapse we used fluorescent confocal
microscopy. The continuous phase of the gel was la-
beled with 0.02 mg/ml of the fluorescent dye rhodamine-
B which combined with the high transparency of the
emulsions provided by refractive-index matching allowed
high resolution optical visualization deep within the gel.
A light microscope (Zeiss, Axioskop S100) was mounted
horizontally on its side, at right angles to gravity, and
two-dimensional fluorescent images of regions 146 × 146
µm were acquired at 543 nm. The gel was contained in
a square cross-section glass vial, with an internal dimen-
sion of 13 mm, mounted on a low profile translation stage
so that the gel could be imaged at different vertical po-
sitions, throughout the full 30 mm height of the sample
[14]. Since the emulsion drop radius is below the optical
resolution limit of the confocal microscope we can not
identify individual drops. Instead, we concentrated on
the larger scale structure of the gel. The bicontinuous
network was identified by thresholding the confocal im-
ages to determine the location of the interface separating
the (dark) emulsion phase from the (bright) continuous
phase. To correct for in-plane variation in the fluores-
cence yield, each image was divided into 16 sub-images
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FIG. 1. (color online). State diagram showing gels stud-
ied. The solid curve corresponds to the gas-liquid binodal
calculated from the generalized free volume theory [19], for
a polymer-colloid size ratio rg/a = 0.62. The open trian-
gles identify the experimentally determined phase boundary.
The theoretical prediction for the critical point is shown by
the filled circle. The region below the coexistence line can
be separated into two kinetic regimes: a region of complete
demixing (I), and gelation (II). Quenched into region II, sus-
pensions form a space-spanning network consisting of thick
strands of particles. The vertical line indicates the constant
colloid volume fraction gels studied (φ = 0.213). The colored
symbols represent estimates of φ for the strands of particles
(blue squares) and the coexisting gas (red squares) after phase
separation is complete locally. Error bars represent the age-
dependent variation in φ from the same sample.

and a local threshold for each sub-image was determined
using a cluster-based algorithm [18]. A careful analy-
sis of the resulting binary images, backed up by direct
observation, showed that this approach reliably located
the shape and positions of the emulsion and aqueous do-
mains.

III. EXPERIMENTAL RESULTS

A. Collapse dynamics

To begin, the phase behavior of mixtures of emulsion
and polymer was investigated as a function of both the
emulsion volume fraction φ and polymer concentration
cp/c

∗
p. The state diagram plotted in Fig. 1 summarizes

the results and shows the locations of a stable liquid
phase, a narrow region of equilibrium gas-liquid demix-
ing (I) and a broad zone of non-equilibrium gelation (II).
The generalized free volume predictions (GFVT) [19] for
a polymer-colloid size ratio rg/a = 0.62 in a good solvent
are shown by the solid lines in Fig. 1. The agreement be-
tween the calculated gas-liquid binodal and experiments
is good confirming that the experimental system is accu-
rately represented by a simple mixture of hard spheres
and non-adsorbing polymer chains.

The sudden collapse of gels was investigated as a func-

50 150 200 250 300 350 40010025
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FIG. 2. (color online). Sudden collapse of a gel. (a) Time-
lapse images of an emulsion-polymer mixture, with compo-
sition φ = 0.21 and cp/c

∗
p = 3.6, as a function of the time

after shaking. Each image is labelled by the time elapsed tw,
in units of 103 s. The initial height h0 of the sample is 40
mm. The characteristic delay time τd after which the net-
work starts to collapse is indicated by the dashed arrow. The
solid line denotes the position of the interface between the
upper colloid-rich and lower polymer-rich phases. (b) The
normalized height h/h0 of the gel shown in part (a) as a func-
tion of the elapsed time showing the three stages of settling
characteristic of sudden collapse.

tion of both the strength of the attractions −Uc/kBT and
the initial height h0 of the sample. In the absence of poly-
mer, emulsions remained stable and showed no noticeable
separation so the mechanical instability seen is a conse-
quence of aggregate formation. The process of collapse is
exemplified by the time-lapse CCD images reproduced in
Fig. 2(a). Qualitatively we identify three distinct stages,
characterized by the interface velocity ν = dh/dtw, where
tw is the age of the gel. During an initial lag period (I)
the network of attractive particles produces a mechani-
cally stable solid, which is capable of supporting its own
weight. This regime of solid-like stability persists how-
ever only for a limited duration. On times longer than
τd, the lag time, the network yields and a clear interface
appears (identified by the solid line in Fig. 2(a)). The
interface velocity ν grows smoothly as the gel shrinks
and the collapse becomes progressively more rapid. This
period (II) of rapid collapse terminates when phase sep-
aration nears completion and the interface approaches
the final equilibrium plateau. In the final consolidation
stage (III), the settling velocity drops markedly as the
collapsed gel continues to slowly compress like a solid
under its own weight.

The lag time τd is a strong function of the polymer
concentration and hence the strength of depletion attrac-
tions. Fig 3(a) shows normalized sedimentation profiles



4

(a) (b)

(c) (d)

0.01 0.1 1
0.4

0.6

0.8

1.0

τ / τc  

 

h'
 (τ

)
FIG. 3. (color online). Scaling of collapse dynamics at fixed height. (a) Time evolution of a gel with various polymer
concentrations but the same initial height, h0 = 40 mm. Only data in the lag and collapse regimes is shown for clarity. (b) The
heights replotted as a function of the dimensionless time τ/τc where τ = tw − τd is the time elapsed after yielding. The scaling

time τc is chosen so that the data collapses onto a single master curve. The solid line is the function, h′(τ) = exp−(τ/τc)3/2.
Symbols are the same as in (a). (c) Exponential dependence of characteristic times τc and τd on polymer concentration. The
inset diagram shows that the height displays a compressed time-dependence with exponent β ≈ 3/2. (d) Comparison between
the experimentally-measured lag times τd (filled points) and the average lifetime τesc of an individual particle bond (solid
line), as a function of polymer concentration. Lag times were measured for gels in both glass (triangles) and poly(styrene)
vials (squares). The dashed line, which reproduces the experimental data reasonably well, equates to a fixed number of bond
lifetimes (τd ≈ 240 τesc).

h/h0 measured from gels at different polymer concentra-
tions from cp/c

∗
p = 2.4 to 4.8, at a fixed initial height

of h0 = 40 mm. Inspection reveals two striking fea-
tures. First, as reported in previous work [7, 8], τd grows
strongly with increasing polymer concentration. Indeed
the concentration dependence of the lag time is well de-
scribed by the exponential relationship, τd ∼ exp(cp/c

∗
p),

as shown in Fig. 3(c). Second, the curves of normalized
interface height h/h0 as a function of time are remark-
ably similar in shape when plotted in a linear-log repre-
sentation. The height profile at a low polymer concentra-
tion may be mapped onto a high concentration sample
by simply shifting the collapse profile to the right along
the logarithmic time-axis. To explore this scaling behav-
ior quantitatively, we focus purely on the portion of the
height profile in the collapse regime and replot h/h0 as a
function of the shifted time variable τ = tw−τd, the time
counted from the instant when the network first yields.
Fig. 3(b) demonstrates that remarkably all of the shifted
data falls onto a single master curve if the normalized
height h′(τ) = h(τ + τd)/h0 is plotted as a function of
the dimensionless time ratio τ/τc where τc is a suitably-
chosen time scaling factor. The existence of this scaling
relation suggests that there is a single common mecha-

nism governing the sudden collapse of the gel at different
polymer concentrations. We shall return to this point in
Sec. IV to speculate on the origin of this scaling behav-
ior. We note that an alternative scaling law has been
suggested previously by Kilfoil et al. [20]. Although this
approach does yield a simplification of the settling data
at a fixed height, it fails to scale data measured at dif-
ferent heights, because as we show below τd and τc show
different dependencies on the initial height h0 of the gel.

To determine the characteristic time τc for collapse,
the shifted interface height h′ was fitted to the stretched-
exponential form

h′(τ) = exp[−(τ/τc)β ] (1)

where τc is a characteristic time for collapse and β is the
stretching exponent. Values of β less than 1 correspond
to a so-called stretched exponential while β > 1 describe
a compressed relaxation. Optimum values for τc and β
were determined from the collapse data using a non-linear
regression routine. The solid lines in Fig. 3(a) are the re-
sults of fits to Eq. 1, which as can be seen describe the
gel settling data accurately over a reasonable range of τ .
Results for the relaxation time τc and the stretching ex-
ponent β are shown as a function of the polymer concen-
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FIG. 4. (color online). Height-independent lag times. (a)
Temporal evolution of a gel with different initial heights but
a fixed composition, φ = 0.213, and cp/c

∗
p = 3.6. The arrows

indicate the lag time τd. (b) The lag time τd as a function
of the initial height h0 of the gel, for a number of different
polymer concentrations. The open symbols denote data ob-
tained in glass-walled cells while the filled symbols indicate
measurements in poly(styrene) cells. The nature of the cell
wall has no noticeable effect on the delay time measured.

tration in Fig. 3(c) and the inset diagram, respectively.
Clearly, the shape of h′(τ) is inconsistent with the simple
exponential dependence β = 1 identified previously in the
compaction of strong gels [15, 16]. Instead the best fits
to the collapse curves give β ≈ 1.5, with no systematic
variation with polymer concentration (inset Fig. 3(c)).
The simple compressed form h′(τ) = exp[−(τ/τc)3/2] is
in excellent agreement with all of the data recorded at dif-
ferent polymer concentrations, as shown by the accurate
reproduction of the data given by the solid line drawn in
Fig. 3(b).

Earlier studies [10, 21] of gel collapse have suggested
that the mechanism of collapse depends sensitively on the
initial height h0 of the gel. Gels formed in short sample
cells display steady or ‘creeping’ sedimentation where the
height falls continuously with age at a rate which decays
exponentially with time while taller samples show sud-
den collapse. To test whether this behavior is intrinsic
to the long-range systems studied here we have varied
the initial height h0 and monitored the evolution of the
height of the gel with time. In all the samples reported
here, polymer concentration from cp/c

∗
p = 2.4 − 4.0 and

heights h0 = 22−63 mm, sudden gel collapse was always
observed and we saw no transition to creeping sedimen-
tation. Fig. 4(a) shows a representative set of data where

the time evolution of the interface height h(tw) is plotted
for a range of initial heights and a single polymer con-
centration (cp/c

∗
p = 3.6). Inspection of the data reveals

that rather surprisingly the time τd during which the gel
is solid-like is largely independent of the initial height
h0 of the sample. Measurement of the variation of τd
with height for a wide range of polymer concentrations,
presented in Fig. 4(b), confirms this observation. We
have checked that this is not due to solid friction between
the gel and cell wall [16] by repeating measurements at
cp/c

∗
p = 2.4 using cylindrical poly(styrene) cells to alter

the degree of wall adhesion. The results, shown as the
filled data points in Fig. 4(b), are in excellent agreement
with the data obtained in the glass vials (open points),
demonstrating that wall friction is unimportant.

Since the gel is initially a solid, the top of the sam-
ple vial is subject to a gravitational stress σg, which is
generated by the full buoyant stress of all of the sus-
pension below, so σg = ∆ρgφh0. Taking φ = 0.21 and
∆ρ = −130 kg m−3 we estimate that σg varies from be-
tween approximately 5 to 15 Pa for the heights used here.
The values for the buoyant stress considerably exceeds
the yield stress of the gel network, which we estimate
from rheological measurements as σy ∼ 0.1 Pa, so even
while σg is an order of magnitude larger than the stress
required to break the gel’s load-bearing structure the gel
does not collapse macroscopically. The insensitivity of
τd to h0 means we can rule out the possibility that the
initial period of latency of the gel is determined purely
by the breaking of single uncorrelated bonds. Collapse
clearly requires a substantially larger degree of restruc-
turing of the network than is necessary simply for me-
chanical yielding.

To explore the effect of height on the kinetics of col-
lapse we focus on the initial rate of collapse of the gel.
The excellent fit achieved to Eq. 1 suggests that at short-
times (τ � τc) the height of the gel should follow the
algebraic expression

h(τ) = h0 −Aτ
3
2 (2)

where A is a constant scale factor. Consequently, a plot of
the height of the settling gel against τ

3
2 should be linear

with a gradient −A. Figure 5 shows this expression cap-
tures well the initial height variation for gels with a wide
variety of different starting heights and polymer concen-
trations. The gel therefore does not collapse with a fixed
time-invariant velocity but rather the interface velocity
ν = dh/dτ behaves at short times like τ1/2, a behaviour
which hints at a surprisingly novel mechanism of collapse.
To further investigate this mechanism we have studied
the dependence of the initial slope A = d∆h/dτ3/2 on
the height and polymer content of the gel. Fig. 5(c)
shows that rather remarkably, for all the gels studied,
the rate of collapse A does not change with the initial
height of the gel. Since the gravitational stress σg on
the gel increases linearly with its height, this result con-
firms the relative unimportance of σg in determining the
rate of collapse, at least under the conditions of our ex-
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periments. The central role of thermally-induced bond
dissociation is seen in Fig. 5(d) where it is revealed that
the collapse rate scales exponentially with cp, equivalent
to an exponential dependence on the depth of the inter-
action potential. Consequently, the process of collapse is
thermally rather than stress-activated.

To interpret these striking observations we model the
deformation of a gel using the poroelastic formalism first
introduced by Buscall and White [22]. In this approach
the gel is treated as a biphasic fluid-saturated porous con-
tinuum with the pore pressure P as a state variable. The
gels consists of two distinct phases: a solid phase of con-
nected strands of emulsion particles, and a second liquid
phase consisting of a fluid solution of a non-adsorbing
polymer. To collapse the particle network must expel
fluid so any description must allow for relative movement
between the fluid and solid components of the gel. Defin-
ing v as the macroscopic velocity of the fluid flow through
the gel and w as the local displacement of the solid net-
work along the gravitational z-axis then using Darcy’s
law,

− ∂zP =
η(1− φ)

k
(v − ∂tw), (3)

where k is the permeability of the network, and η is the
viscosity of the continuous phase. Continuity demands

(1− φ)v = −φ∂tw (4)

which, since φ < 1− φ, implies that the fluid velocity |v|
must be small [15] in comparison to |∂tw|. Consequently,
if the displacement of the gel varies as τ3/2 then, from
Eq. 3, the pressure gradient at the top of the gel, adja-
cent to the interface, must be increasing as τ1/2. This
time dependence rules out a simple compression of the
gel as a consequence of gravity because the pressure gra-
dient would then be a constant, ∂zP = −∆ρgφ, and the
gel would accordingly shrink linearly with time [15]. The
τ1/2 dependence of P suggests instead a diffusive process
may be responsible for the unusual collapse dynamics
seen. We can however rule out a bulk diffusive process of
conventional syneresis, akin to the shrinkage of a poly-
mer gel undergoing a phase transition [23]. In this case,
the contraction of the matrix as the phase separation
ensues would generate an increase in P which leads to
the expulsion of fluid and a shrinkage of the gel as t1/2

[24] rather than the t3/2 dependence seen here. Further-
more, this process would require fluid to be transported
through the full length of the system so the rate of diffu-
sion would depend on the height of the gel, which is also
incompatible with our data. Clearly, a new mechanism
is required to correctly explain the observed data.

B. Microstructure

Sudden collapse reflects a dramatic loss of mechanical
integrity as the gel ages. To understand the origin of this

mechanical failure, we first examine the evolution of the
elastic properties of the gel while simultaneously record-
ing the height of the gel. Figure 6 shows the rheology
and interface height h(tw) during the settling of a repre-
sentative gel. At the earliest times recorded, the sample
is solid-like with an elastic shear modulus G′ which is
larger than the viscous modulus G′′. The measurements
however reveal that the elasticity of the gel far from re-
ducing with time, as one might naively expect, actually
increases continuously up to the point tw = τd when the
gel starts to collapse. Immediately collapse starts, G′

also drops, but only by a relatively small amount (less
than 10%), before finally growing steadily as the emul-
sion volume fraction in the upper phase increases with the
onset of phase separation. Comparable measurements on
a short-ranged gel (rg/a ∼ 0.05) have been reported [5].
We see no sign of large-scale hydrodynamic mixing, re-
circulation, and the development of channels which have
been seen in some other studies of gravitational collapse
[5, 9, 10].

While the rheological measurements provide a mechan-
ical insight into gel settling, they do not clarify the link
between the macroscopic processes of collapse and the
microscopic structural reorganization occurring during
aging and sedimentation. Indeed, at first sight, it seems
counter-intuitive that a gel which is becoming gradually
stiffer with time should ever collapse at all. To probe
the link between the microscopic and macroscopic length
scales, we have examined the temporal evolution of the
gel microstructure using confocal microscopy. The coars-
ening is illustrated by the binary two-dimensional im-
ages reproduced in Fig. 7. In the rectangular cell used
for imaging experiments, the delay time was measured as
τd ≈ 1.3×105 s so both images refer to the latency period
before collapse starts. Clearly, although the gel remains
mechanically stable during this period there is a slow
but continuous evolution in the microscopic nature of the
particle network and the system is not arrested. A closer
look at the data in Fig 7 reveals that the interface be-
tween the continuous and particle phases is quite rough,
suggesting that surface tension is unimportant and the
dense portion of the gel is not a fluid. Direct observation
show that particle diffusion is strongly suppressed and
particles move infrequently between the strands of the
network, indicating that the interaction network is prob-
ably glassy. The images in Fig 7 illustrate two further
microstructural characteristics which will be important
to our later discussion on the mechanism of network col-
lapse. First, with time, it is evident that the thickness
of the backbone of the gel grows slowly but continuously
with time, a fact which probably explains the increase
of G′ with tw seen in Fig. 6. Second, the thickness of
the network of particle strands is not uniform. The gel
contains a relatively large number of thin junction points
where two or three arms (in 2D) are connected together.
Simultaneous breakage of the particle bonds at these rel-
atively weak junction points would lead to a rapid break
up of the whole network.
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FIG. 5. (color online). Initial τ3/2–collapse dynamics. (a) The height h of a gel plotted as a function of the 3/2–power of the
time elapsed after the gel yields, for different initial heights h0. Curves are labelled by the initial height. The samples have
fixed polymer concentration cp/c

∗
p = 3.6, and colloid content φ = 0.213. (b) Similar time-dependent settling observed in gels

with cp/c
∗
p = 2.4. (c) Invariance of the initial rate of collapse A = − limτ→0 dh/dτ3/2 with the height of the gel. Curves are

labelled by cp/c
∗
p. (d) Exponential dependence of A on the polymer concentration, highlighting the activated nature of the

collapse process.
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FIG. 6. (color online). Simultaneous measurements of lin-
ear viscoelasticity and height h of gel as a function of time
elapsed since preparation tw. Gel had an initial composition
of cp/c

∗
p = 3.6, φ = 0.213 and a measured delay time of

τd = 1.2 × 105 s (indicated by dashed line). The elastic G′

and loss G′′ moduli were measured by applying a oscillatory
stress of magnitude 0.0025 Pa at a frequency of 0.5 Hz and
measuring the strain response. The gel stiffens continuously
with age until the elastic modulus drops at tw = τd as the gel
begins to collapse.

To quantify the change of the microstructure with
time, we use chord methods developed to analyze sta-
tistically random heterogeneous materials [25]. We su-
perimpose on the images of Fig 7 a uniform grid of hori-
zontal and vertical lines. The two-phase interfaces divide

20 20 μm20 20 μm

(Α)(Α) (Β)(Β)

FIG. 7. Continuous coarsening of gel with age. Two-
dimensional binary representation of a gel with composition
cp/c

∗
p = 2.4, φ = 0.213 after (a) 3.6×103 s, and (b) 1.12×105 s

from preparation. Gravity points vertically downwards and
the scale bar corresponds to 20 µm.

each grid line into chords that are either inside the dense
part of the network or else lie within the solvent back-
ground. We define a chord as the line segment between
two consecutive intersections of the random line with the
bounding two-phase interface. Focusing only on those
chords that lie within the dense strands of the network,
we count the number of chords N(l) with lengths in the
range l and l + dl. If N is the total number of chords
then the degree of linear ‘connectedness’ of the gel may
be characterized in terms of a probability density func-
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tion, p(l), where

p(l)dl =
N(l)

N
. (5)

The quantity p(l)dl is the probability that a randomly-
chosen chord has a length between l and l + dl. We find
that the chord length distribution p(l) displays a char-
acteristic shape, with p(l) first increasing with growing l
before reaching a maximum at a finite l and finally de-
caying exponentially for larger l. The diameter of the
strands of particles within the gel may be characterized
either from the value at which p(l) takes a maximum
value or from the mean chord length lg

lg =

∫ ∞
0

lp(l)dl, (6)

which we use here because it displays a smaller statistical
error. Finally, the chord functions also provide an effi-
cient means to estimate the volume fraction of the high
density colloidal regions in the gel. If we assume the gel
is isotropic and the two-dimensional images are chosen
randomly then the fraction χ of the volume of the gel
occupied by the dense regions is

χ =
1

L

∑
l

N(l)l (7)

where L is the total length of the original lines. The
volume fraction of colloids, φg, in the dense regions of
the gel is given by the ratio φ/χ, where φ is the initial
colloid volume fraction.

Next we characterize the slow evolution of the gel
structure. Fig. 8 shows the age dependence of the mean
chord length lg and the volume fraction φg prior to col-
lapse. A key observation is that during the latency period
when the height of the gel is unchanged structural reor-
ganization is never fully arrested but continues, albeit
rather slowly. So, for instance, the growth of the mean
chord length is well described by a power law, lg ∼ tαw,
with an exponent α. The growth law is always much

slower than the t
1/3
w dependence expected for the diffu-

sive regime of classical liquid-gas phase separation. The
growth exponent α depend rather strongly on the poly-
mer concentration with α decreasing markedly as cp/c

∗
p

is increased. Similar slow growth has been identified pre-
viously in simulations of deep quenched Lennard-Jones
systems [26] and has been interpreted as indicating that
the dense domains of the gel are actually glassy. Con-
sistent with this picture, Fig. 8(b) indicates that while
the colloid volume fraction φg in the dense regions of the
gel initially increases with the age of the gel, in all cases
it eventually saturates at a plateau of ≈ 0.55, which is
compatible with repulsive glass formation.

C. Origin of lag time

Having characterized the macroscopic process of col-
lapse, we now discuss the mechanism for the initial failure

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6
0 . 4

0 . 5

0 . 6

t w  [ s ] 

 

 

φg          c p  /  c *
p

    2 . 2
    2 . 4
    2 . 8
    3 . 2

(a)

(b)

FIG. 8. (color online). Evolution of colloidal network with
time. (a) Average chord length lg in the colloid phase, in units
of the particle diameter. The rate of increase of lg is always

slower than the diffusive growth, lg ∼ t
1/3
w (shown by dashed

line) characteristic of classical spinodal decomposition [26],
and slows down considerably with increasing polymer concen-
tration cp/c

∗
p. (b) Average colloid volume fraction φg within

dense regions of the gel, as a function of elapsed time. The
density of the particle strands within the network increases
progressively with age and approaches a density characteristic
of a hard-sphere glass (φ ∼ 0.55) at long times.

of the particle network. A gel is a metastable phase with
a high free energy density whose consolidation is driven
ultimately by the thermodynamic driving force for phase
separation. However once a stable percolating network of
strands of particles is formed the dynamics of phase sep-
aration is slowed down considerably because, as evident
from Fig. 7, the strands of the network are many parti-
cles wide so large scale rearrangements of the gel require
the simultaneous dissociation of all of the particle bonds
within the cross-section of a strand, which will be very
rare. The network accordingly lowers its free energy via
a series of small-scale structural reorganizations which
proceed through the rupture of essentially single parti-
cle bonds. The breakup of an energetic bond between
particles, diffusion to dense region of the network, and
a reformation of the broken bond allows a net increase
in the number of nearest neigbouring particles with a
concomitant lowering of the free energy of the system.
For the network to coarsen, the system must overcome
the energetic barrier associated with single bond rupture.
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This could be achieved, in principle, either thermally or
as a result of an applied stress. The observation that
the delay time is unaffected by the initial height of the
gel strongly suggests that the delay time and hence the
rupture of individual bonds is controlled primarily by
thermal fluctuations rather than being stress-driven.

To calculate the average lifetime τesc of an individ-
ual particle bond due to thermal fluctuations, we assume
that a single bond ruptures on a scale comparable to
the time it takes a Brownian particle to escape from an
attractive ramp potential with the same range δ/a and
depth −Uc/kBT as the interparticle depletion potential.
The mean escape time in the overdamped limit is given
by the Kramers expression [27]

τesc =
δ2

Dt

exp(−Uc/kBT )− (1− Uc/kBT )

(Uc/kBT )2
(8)

where Dt is a translational diffusion constant. We esti-
mate Dt from the short-time self diffusion constant in
a hard sphere suspension at the same φ, which since
the dense regions of the gel have a volume fraction
≈ 0.55 is about 20% of the dilute free particle limit,
D0 = kBT/(6πηLa). The limiting low shear viscos-
ity ηL was determined by extrapolating measurements of
the steady-shear rheology of the polymer solution to a
vanishing shear rate and fitting to the Martin equation,

ηL

η0
= 1 + [η]cp exp (kH[η]cp) (9)

which has been found to correlate well viscosity in dilute
and semi-dilute polymer solutions (cp/c

∗
p < 10). Here [η]

is the intrinsic viscosity, η0 is the viscosity of the mixed
solvent, cp the polymer mass concentration, and kH is a
constant (equivalent to the Huggins constant at low cp).
Fitting data in the range cp = 0.6− 1.2 mg/ml to Eq. 9
gave [η] = 2.32 ml/mg and kH = 1.2. The width of the
depletion zone δ and the potential at contact −Uc/kBT
were estimated using the generalized free volume theory
for mixtures of hard sphere colloids and excluded-volume
polymer chains, as detailed in Ref. [14]. Figure 3(d)
shows a comparison between the measured delay time
τd and the average lifetime τesc of a single particle bond,
estimated from Eq. 8. The ratio of the two timescales
is very nearly constant, for a wide range of polymer con-
centrations, with the delay time approximately 240 times
the estimated Kramers escape time. This strong corre-
lation highlights the pivotal role of spontaneous thermal
fluctuations in determining the latency period of the gel.

To explore the microscopic mechanism by which ther-
mal fluctuations lead to delayed failure we used real-space
confocal imaging to follow the time evolution of the gel.
Since the load-bearing nature of the network is clearly
important we concentrate on changes in the connectivity
of the strands of particles which constitute the gel. Fig-
ure 9(a) shows two-dimensional confocal slices taken from
the same physical region within an aging gel before col-
lapse occurs. Because of the finite bond energy, the net-
work structure slowly but continuously evolves, with fluc-
tuations in both the number and type of junction points.

(a)

tw = 47 x103 s tw = 76 x103 s tw = 104 x103 s

2 0 4 0 6 0 8 0 1 0 0 1 2 0
0
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2 0
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FIG. 9. (color online). (a) 2D confocal images of coarsening
gel network formed at φ = 0.213, and cp/c

∗
p = 2.4. The

particles are shown in white. The solid (blue) circles indicate
network junctions which have formed in the preceding 3600 s.
The dashed (red) circles indicate positions where the network
has, in the same interval, broken. The scale bar is 30 µm
long. Network collapse occurs at τd ∼ 120 × 103 s. (b) The
number of reassociation Nlink and rupture Nbreak events per
hour as a function of the age tw of the gel. The dashed lines
are guides to the eye. The inset shows the tw-dependence of
the fraction f of rupture events.

By comparing 2D images of the fine-stranded structure
of the network at hourly intervals we identified discrete
strand association and dissociation events occurring over
this period. Examples where the strand network is rup-
tured are indicated by the red dashed circles in Fig. 9(a)
while the blue solid circles identify new cross-links formed
by the reassociation of strands. Counting the number of
reassociation Nlink and rupture Nbreak events recorded
per hour, as a function of the age of the gel, results
in the data shown in Fig. 9(b). There is gradual re-
duction over time in the number of reassociation events
Nlink, as the network is formed in an open high-energy
state and then relaxes slowly into a lower more com-
pact structure. Strikingly however, we see that the rate
of bond rupture does not show the same slowing-down.
Nbreak is essentially independent of age, presumably be-
cause rupture is an activated process which is dominated
by the single particle bond energy barrier. The conse-
quence of the different time dependence seen for asso-
ciation and rupture is that the proportion of breakage
events f = Nbreak/(Nbreak +Nlink) (shown in the inset of
Fig. 9(b)) grows with the age of the gel. The increasing
proportion of strand ruptures ultimately leads to failure
of the stress-bearing backbone of the gel and the initia-
tion of collapse.
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D. Heterogeneous aging

Work in the last decade [1, 28, 29] has shown that the
slow dynamics of soft glassy materials is frequently het-
erogeneous in character. In materials where the elastic
behavior of a material dominates over its viscous response
any deformation due to a local rearrangement can prop-
agate macroscopic distances so the size of regions which
undergo correlated rearrangements can be sizeable. If
this holds true in our system, then it should be feasible
to see signs of the long-range distortion field generated
by local rearrangement events by microscopy.

To test these ideas we have used confocal microscopy
to monitor the time evolution of the network structure
as a function of the vertical z-position within a gel. A
series of 2D-confocal images were collected at regularly-
spaced 1 mm heights from a colloid-polymer gel with a
total height of h0 = 15 mm. Images were acquired for
≈ 7 hours after the cessation of mixing, until the point at
which gel collapse occurred. The characteristic domain
size of the network Rc(h, tw) at a height h and time tw
was calculated from the static structure factor S(q, tw)

S(q, tw) =
1

2πq∆q

∫
q≤|q′|≤q+∆q

dq′
〈
Ĩ(q′, tw)Ĩ(−q′, tw)

〉
(10)

where Ĩ(q, tw) is the two-dimensional Fourier-transform
of the image intensity I(r, tw) at time tw, ∆q = 2π/W ,
and W is the image width. The domain size is Rc =
π/ 〈q〉 where 〈q〉 =

∫
dq qS(q)/

∫
dqS(q). Measure-

ments of Rc for different sample ages tw are plotted in
Fig. 10 and confirm that the aging of the gel network
shows considerable spatial diversity: the domain size is
large in some regions of space and small in others. Im-
mediately after mixing, we observe the formation of a
very uniform network with an average domain size of
〈Rc〉 = 17.5 µm and a spatial variation of just 1.4%
(standard deviation/〈Rc〉). But after tw = 2 h, while
the mean size has grown only slightly to 〈Rc〉 = 21.3 µm
the spatial variation in Rc has increased to 3%. After
5 h, the variation in the domain size has increased still
further to 9% (〈Rc〉 = 26.7 µm). Clearly the data reveals
that aging of the network is heterogeneous with spatial
variation increasing with sample age.

IV. DISCUSSION

The most striking feature of our results is the appear-
ance during collapse of the 3

2 -power law dependence of
the height h(τ) on the elapsed time τ . A natural ques-
tion is the physical origin of this unusual behavior. We
propose that the dominant mechanism for collapse is the
appearance of random micro-collapsed regions through-
out the gel. On a microscopic level, the basic idea is
that the particles comprising the gel attract each other
relatively strongly so over time the gel spontaneously re-
structures locally to create small regions of more dense
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FIG. 10. The domain size Rc in a gel of height h0 = 15 mm
(cp/c

∗
p = 2.4) as a function of the distance measured from the

base of the cell. Note growth seems to be hindered near the
boundaries of the gel.

packing. Since the collapsing particles are attached quite
strongly to strands of the network as they rearrange they
induce a local pressure field. This induced field, as a con-
sequence of the poroelastic character of the gel, expands
relatively slowly into the bulk of the gel. It is this long-
range pressure field which we hypothesize generates the
characteristic collapse dynamics evident in our experi-
ments. Similar arguments have been invoked to account
for the anomalous microscopic motion evident in dynam-
ical light scattering of colloidal gels [28, 29] but not, as far
as we are aware, for the macroscopic settling dynamics of
gels. While our discussion has some features in common
with the purely elastic models used previously [28, 29], we
focus here on deformations at large (macroscopic) length
scales where poroelastic fluid flows are important.

For the moment, we idealize the gel as a one-
dimensional chain of particles. Then if two particles
leaves their equilibrium positions to stick together the
left-hand particle imposes a force +f0 on the left part
of the chain at z′, while the right-hand particle imposes
an equal and opposite force −f0 on the right-hand side
of the chain located at z′ + δz′. The net effect of the
rearrangement is therefore the creation of a local dipo-
lar force f(z′, t′) at the random position z = z′. The
intensity of this dipolar force, the dipole moment µ, is
the product of the force f0 and the displacement vector
δz′ in the limit as δz′ → 0. At the dipolar stress center
the fluid pressure P rises rapidly to a high value while
further away P is almost unchanged. The resulting pres-
sure gradient drives a flow through the porous medium
and as fluid exits from around the applied force the gel
deforms locally and more of the load is borne by the net-
work. Eventually, the pressure at all points reaches the
same value and the gel relaxes so that the applied load
is everywhere balanced by the elastic stresses in the net-
work. The time scale for this equilibration is determined
by a diffusion constant Dg, with the deformation in the

gel occurring over a length scale ≈
√
Dgt in a time t.
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The gel diffusion constant Dg is [30, 31]

Dg =
Kk

ηL(1− φ)
. (11)

where k is the permeability of the network, ηL is the vis-
cosity of the continuous phase, and K is the bulk modu-
lus of the network. Using measurements of the low shear
viscosity (ηL ' 0.1 Pas), the elastic modulus of the gels
(K ' 10 Pa), and literature values for the permeability
of similar density gels [15] (k ∼ 10a2 ' 10−12 m2) we es-
timate a diffusion constant in our system of Dg ' 10−10

m2s−1. Both the pore pressure and, in general, the per-
meability will change with time as the gel contracts lo-
cally. However in the initial stages of collapse the gel
is uncompressed, the permeability is constant, and the
equations of linear poroelasticity apply [32]. The bulk
shrinkage of an unconstrained gel is linear so it is natural
to assume that the dipole intensity will also be a linear
function of time, µ(t) = µ0t.

For simplicity, we first consider the isotropic deforma-
tion produced in the gel by the supposition of three con-
tinuous orthogonal stress dipole centers (a single center
of compression [33]). Rudnicki [34] has shown that the
pore pressure at a distance r from a single continuous
center of compression in a fluid-saturated porous solid is
of the form

Ps(r, t) =
Q

4πDgr
erfc(ξ/2), (12)

where ξ = r/(Dgt)
1/2, Q is proportional to µ0, and erfc

is the complementary error function [35]. As t → 0,
ercf(r/2

√
Dgt) → 0, and the pressure is zero. At finite

times, the fluid has an opportunity to diffuse away from
the origin, and the spherically symmetric pressure wave
expands. In Fig. 11 we plot a time series of the spread-
ing pressure field as it diffuses away from the origin. The
length scale where the pressure is finite is controlled by
fluid diffusion within the gel and is thus time-dependent.
From the figure it is clear that the spatial extent of the
pressure field is of order 6(Dgt)

1/2. Finally, as t → ∞,

ercf(r/2
√
Dgt) → 1, and the pressure field approaches

the pure 1/r-elastostatic solution, expected for a contin-
uous dipole source [32].

We assume that at the start of collapse the gel contains
centers of compression which are randomly distributed
throughout the height of the gel, with a certain number
ρ per unit length. To calculate the velocity of the gel in-
terface ∂tw we note that, from Darcy’s law (Eq. 3), ∂tw is
fixed by the total pressure gradient at the bottom of the
gel. If we assume that each micro-collapse contributes in-
dependently then the pressure gradient is simply the sum
of the gradients generated by individual events occurring
at different heights zj within the gel. For simplicity we
ignore the true vectorial nature of the problem and use a
one-dimensional scalar approximation. A single center of
compression located a distance zj from the gel interface
creates a pressure gradient, θj = ∂rPs, which from Eq. 12

is

− θj(zj , t) =
Q

4πz2
jDg

erfc(
zj

2
√
Dgt

)

+
Qe
−

z2j
4Dgt

4π3/2zjD
3/2
g

√
t
. (13)

The experimental data in Fig. 10 suggests that micro-
collapse events preferentially occur within the bulk of the
gel, i.e. at distances z ≥ λ away from a surface. This
seems plausible since the energy barrier for a rearrange-
ment near an interface will probably be higher than for
the same event in the bulk of the gel, as the strain in-
duced by the creation of the dipole is larger. Inspection
of the data in Fig. 10 suggests that λ here is of order a
few millimeters. Hence, we assume that micro-collapses
are uniformly distributed over the interval from z = λ to
z = h0 − λ. The total pressure gradient at the base of
the gel is therefore,

∂zP
∣∣∣
base

= ρ

∫ h0−λ

λ

θ(z, t)dz. (14)

Since experimentally the rate of collapse does not depend
on the total height h0 of the gel the upper limit of the
integral can be extended to z = ∞ without significant
error. After inserting Eq. 13, the resulting integral can
be performed exactly with the result:

− ∂zP (t) =
ρQ

4λ2π3/2D
1/2
g

√
te
− λ2

4Dgt

+
ρQ lnλ

4π3/2D
3/2
g

√
t
. (15)

In the regime where t � λ2/4Dg, which from our esti-
mates for Dg and λ equates to t � 103 s and holds for
all but the shortest times studied, the expression for the
pressure gradient simplifies to

− ∂zP (t) ≈
t�λ2/4Dg

ρQ

4λ2π3/2D
1/2
g

√
t. (16)

The confocal data, presented in Sec. III C, reveals that
micro-collapses first appear in gels with an age tw of ≈ τd
so the time t available for the propagation of the pressure
wave in Eq. 16 is τ = tw − τd. By combining Eq. 3, 4,
and 16 we obtain

∆h(τ) =

[
ρkQ

4η(1− φ)λ2π3/2D
1/2
g

]
τ3/2. (17)

where we have assumed that the flow of fluid through
the network determines the initial rate of collapse, and
t � λ2/4Dg. This expression is in very good agreement
with the experimental results where a similar exponent of
3/2 has been found, thus providing convincing evidence
for our simple phenomenological model. In addition, our
arguments predict that the coefficient of τ3/2, which we
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t = 0.25 t = 1.00 t = 4.00

FIG. 11. An illustration of the pore pressure field generated
by a continuous compression center placed at the origin of a
gel. Times and distances are scaled so the diffusion constant
Dg is unity. The ring of radius r = 6(Dgt)

1/2 parameterizes
the spatial extent of the induced pressure field.

identify with the scale factor A in Eq. 2, should be a
system constant, independent of the initial height of the
gel. This agrees with the height-independence seen in
the experimental data presented in Fig. 5(c). Finally, we
expect that the formation of micro-collapses is thermally
activated so their number density ρ will be of the form

ρ = ρ0 exp

(
−∆E

kBT

)
(18)

where ∆E is an energy barrier for rearrangement. Since
∆E/kBT will scale with the strength of the interparticle
potential Uc/kBT one expects that the scale factor A
will depend exponentially on the interparticle potential,
or equivalently the polymer concentration, in agreement
with the experimental data plotted in Fig. 5(d).

V. SUMMARY

We have studied the gravitational collapse of a colloidal
gel by a combination of confocal microscopy, time-lapse
video imaging, and rheology focusing particularly on the
effect of the initial height h0 of the gel and the strength
of attractions Uc/kBT . The gels are made of emulsion

drops suspended in a refractive index-matched mixture
of ethylene glycol and water, with a high molecular poly-
mer added to induce a weak long-range attraction. For
all systems, the height h(tw) of the gel shows a charac-
teristic two-step decay as a function of age tw: for tw less
than the lag time τd the system resists gravity and there
is no significant deformation, but for tw > τd the gel
abruptly yields and collapses. The change in the height
∆h = h0−h(tw) of the gel during collapse has a number of
distinctive features. First, we find that the initial degree
of settling is well described by the expression, ∆h ∼ τ3/2,
with τ the time counted from the moment when collapse
first starts. Second, both the rate of collapse and the
lag time τd are independent of the initial height of the
gel. Microscopically, the gel consists of a network of in-
terconnected strands of particles. Confocal microscopy
reveals that continuous restructuring of this network oc-
curs which, with increasing age, leads to the breaking of
bonds between particle strands and a progressive weak-
ening of the network. The subsequent reduction in the
large scale connectivity of the network eventually triggers
a macroscopic collapse. Measurement of the microscopic
structure of the gel during settling show that the age-
dependent changes in the network are not isotropic but
are concentrated around large inhomogeneities within the
sample. We hypothesize that the collapse of the gel is de-
termined by the rate at which fluid can be expelled from
the gel. A simple phenomenological model of fluid flow
driven by the formation of random compression centers
within the gel correctly accounts for the behavior exper-
imentally observed.
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