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Reentrant Melting in Polydispersed Hard Spheres
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The effect of polydispersity on the freezing transition of hard spheres is examined within a moment
description. At low polydispersities a single fluid-to-crystal transition is recovered. With increasing
polydispersity we find a density above which the crystal melts back into an amorphous phase. The range
of densities over which the crystalline phase is stable shrinks with increasing polydispersity until, at a
certain level of polydispersity, the crystal disappears completely from the equilibrium phase diagram.
The two transitions converge to a single point which we identify as the polydisperse analog of a point
of equal concentration. At this point, the freezing transition is continuous in a thermodynamic sense.
[S0031-9007(99)08638-X]
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Freezing and melting are probably the most common
and striking physical changes observed in everyday life.
All experiments, to date, demonstrate that the crystalliza-
tion of a simple liquid is a first-order transition, in three
dimensions. So for instance, the sharp Bragg peaks of
the crystal, which reflect the long-range spatial modula-
tion of the density r�r� and which distinguish a crystal
from a liquid, disappear abruptly as a crystal melts [1].
This sharp microstructural change is also mirrored by dis-
continuities in the first derivative of the free energy so that
experimentally, melting is accompanied by a finite density
and entropy change.

Although the experimental situation is clear, in an early
analysis Landau [2] argued that, under certain conditions,
a crystal can transform continuously into a liquid. In a
simple Landau-Alexander-McTague theory [3] the excess
free energy of the crystal (relative to the isotropic liquid)
has the following form:
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where the order parameters nG are the Fourier components
of the crystal density, rs�r� � rs 1 dr�r�, at the recip-
rocal lattice vector G (rs is the uniform crystal density)
and the coefficients of the expansion are analytic functions
of the temperature T and pressure P. Equation (1) con-
tains cubic terms because the order parameter sets �nG�
and �2nG� describe physically distinct crystals with dif-
ferent energies. As a consequence, the freezing transition
is generally first order. However, since both T and P can
be independently varied the possibility exists that r and u3
can be made to vanish at a single point in the T -P plane.
At the resulting Landau point the liquid-solid transition is
continuous in a mean-field description [4]. Landau theory

makes two further distinctive predictions. First, the Lan-
dau point must lie at the intersection of, at least, three first-
order lines of transitions [2] which separate the liquid from
two conjugate crystalline phases, C1 and C2, with identi-
cal symmetry but which differ in the sign of dr�r�. Sec-
ond, in three dimensions, symmetry considerations should
uniquely favor a bcc structure [3].

In spite of these interesting predictions it is not clear
if, in a liquid-solid system, the point at which the cubic
coefficient u3 vanishes is experimentally accessible. On
the face of it, one of the most promising candidates is a
system of polydisperse hard spheres where the constituent
particles have different sizes. The freezing of polydis-
perse hard spheres has been studied extensively in recent
years [5–14] motivated, in part, because it is a realis-
tic model of a colloidal suspension [15]. These studies
have focused mainly on the effect of size polydispersity
s, defined as the ratio of the standard deviation to the
mean of the diameter distribution, upon the fluid-solid
transition. Calculations have been made using a variety
of theoretical and computational techniques, for various
size distributions, and in both two and three dimensions.
Yet the picture that has emerged is remarkably similar.
On increasing s, from zero the density discontinuity at
the transition Dr � rs 2 rl decreases, vanishing alto-
gether at a “terminal” polydispersity [16], s � st , above
which no liquid-solid transition is found. A number of
key questions have, however, been left unanswered. First,
why do the densities of the coexisting phases converge
as s ! st? If the liquid-solid transition is continuous,
then the singularity at st must correspond to a Landau
point. The phase diagram should therefore contain two
crystal phases, in contradiction with the theoretical work
to date. Furthermore, while the C1 crystal has the normal
bcc structure with spheres at the cube corners and cen-
ter, the C2 crystal has particles at interstitial sites. The
unfavorably low packing of the C2 crystal (fm � 0.20)
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makes it unlikely that this phase could be important in a
dense system. If the vanishing density discontinuity at st

is not critical in origin, then what is its true nature? And
finally, why is the polydisperse phase behavior apparently
universal? In this Letter we reexamine the freezing of
polydisperse hard spheres using simple mean-field mod-
els for the polydisperse crystal and liquid phases. Our
results suggest that the polydisperse solid-liquid transi-
tion at st is not critical. We show that the vanishing of
the density discontinuity at the terminal polydispersity is
a consequence of a reentrant solid-liquid transition in a
polydisperse system.

Our model consists of N hard sphere particles in a
volume V , at an overall density of r � N�V . Each
particle has a diameter R drawn from a distribution
r�R� so that r �

R
dRr�R�. The distribution r�R� is

conveniently characterized by the set of generalized mo-
ments mi �

R
dRr�R�wi�R� where the weight function

wi�R� � �R�R̄ 2 1�i . The zeroth moment is simply the
total number density r. The “shape” of the diameter distri-
bution, r̃�R� � r�R��r, is taken here for simplicity, as the
Schultz distribution, r̃�R� � gaRa21 exp�2gR��G�a�
with a � 1�s2 and g � a�R̄. The (excess) chemical
potential mex�R� in a polydisperse system is in general a
complex and unknown function of the particle size. But
with the assumption that there is no critical point at st the
excess chemical potential must, first of all, be an analytic
function of R. Formally, mex�R� may be calculated from
the probability, W�R�, for insertion [17] of a test sphere of
diameter R. At large R, the leading term in mex�R� is the
PV work required to generate a cavity sufficiently large
to accommodate the test sphere. This contribution varies
as R3. Motivated by this we assume that in a hard-sphere
crystal or fluid mex�R� has the simple analytic form

mex�R� � 2kBT ln W�R�

� l0 1 l1R 1 l2R2 1 l3R3, (2)

where consistency demands that the coefficients li depend
only on the four moments m0, . . . , m3 of the polydisperse
distribution [12]. Two of the four unknown coefficients
may be determined from the known small and large R
limits of W�R�. This fixes bl0 � 2 ln�1 2 f� and l3 �
p

6 P with f the volume fraction and b � 1�kBT .
Having specified the general form expected for mex�R�,

we now outline the calculation of the size-dependent
chemical potential in the crystal. From Eq. (2) the proba-
bility to insert an arbitrary-sized test particle into any two
hard-sphere systems will be equal if the two distributions
have the same first four moments [12]. In this sense the
two systems may be termed “equivalent.” Since a binary
mixture can always be chosen so as to match any four mo-
ments we look at the “equivalent” binary substitutionally
disordered crystal, for which simulation data is available
[18]. By looking at test particles with sizes equal to the

two species in the binary mixture, for which the chemical
potentials are known, the remaining two unknown coef-
ficients (l1 and l2) in the general expression for mex�R�
are determined. The resulting predictions for the poly-
disperse crystal have been compared with simulation data
previously [12]. Agreement is good.

For the polydisperse fluid accurate expression for
mex�R� is available. We use the approximate BMCSL
[19] equation of state which for a Schultz distribution has
the closed form

p

6
bPfR̄3 �

j

1 1 s2 1
3j2

1 1 s2 1 �3 2 f�j3, (3)

where j � � 1
11s2 � f

12f . The excess free energy per
particle is found by integrating Eq. (3). Differentiation
then yields an expression for the particle potential mex�R�
which is of the form of Eq. (2).

The total polydisperse free energy f (with f � F�V )
consists of ideal and excess terms, f � fid 1 fex, which
depend in a very different manner on the distribution
r�R�. The excess free energy, fex �

R
dRr�R�mex�R�,

is a function only of the four moments variables
m0, . . . , m3. The ideal term bfid �

R
dRr�R� ln�r�R�	,

by contrast, depends upon the detailed shape of the
function r�R� so formally, at least, the total free energy f
resides in an infinite dimensional space. Sollich, Cates,
and Warren [20] have shown that the full polydisperse
phase diagram can be approximated by replacing the ideal

free energy by a projected term cfid��mi�� which includes
only those contributions that depend on a finite set of mo-
ment variables. The remaining contributions to the ideal
free energy, from those degrees of freedom of r�R� which
can be varied without affecting the selected moments,
are chosen to minimize the free energy. The power of
this approach is that by including more moment variables
the calculated phase diagram approaches, with increasing
precision, the actual phase diagram. The position of equi-
librium is fixed by the equality of the “moment” chemical
potentials, mi � ≠bf�≠mi and the pressure P among all
phases with bf the projected free energy. For polydisperse
hard spheres the excess moment chemical potentials
are simply combinations of the (known) coefficients
�li� in mex�R� [Eq. (2)] since m�R� � dbf�dr�R� �P

i�≠bf�≠mi�wi�R� �
P

i miwi�R�. The first two ideal
moment potentials are [20], ignoring unimportant factors,
m

id
0 � ln r 2 a ln R̄ and m

id
1 � 2aR̄.

In order to understand the qualitative features of the
polydisperse transition, we consider first the simplest de-
scription in which only the lowest moment (m0) is re-
tained in the projected free energy. In this limit, there is
no size fractionation so the normalized diameter distribu-
tion, r̃�R�, is fixed and equal in all phases. The location
of the fluid-solid transition is determined by equating P
and m0, the chemical potential of the mean-sized particle,
in each of the crystal and fluid phases. In this way we
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obtain the phase diagram of Fig. 1. At low densities
we find, in qualitative agreement with previous work
[5–10,12–14], that the density discontinuity at freezing
Dr reduces with increasing polydispersity and eventu-
ally vanishes at the point st � 0.0833 and rt � 1.111.
However, at high polydispersity, the calculated diagram
contains a novel feature. For 0.07 # s # 0.083 we find
a further transition from the crystal back to a disordered
phase [21]. The location of this polydispersity-induced-
melting transition varies sharply with polydispersity. The
range of densities for which a crystal is found shrinks with
increasing polydispersity until at st the crystal of den-
sity rt disappears completely from the phase diagram. At
the point �rt , st� the line of fluid-to-crystal transitions in-
tersects an upper line of crystal-to-amorphous transitions.
At all points in the �r, s� plane the freezing transition re-
mains first order so the singularity at �rt , st� is equivalent
to the point of equal concentration [22] seen in molecular
mixtures and is not a critical point—so providing an an-
swer to the second of our questions.

We now turn to the vanishing density discontinuity in
the vicinity of the point of equal concentration. The Gibbs
free energy difference Dg � gs 2 gl (with g � G�N)
between the solid and liquid phases as a function of pres-
sure for three fixed values of s is shown in Fig. 2. The
reentrant nature of the freezing transition is very evident
with a stable crystal appearing only in an intermediate
range of pressures bounded by the two transitions where
Dg � 0. The density change Dr at the liquid-solid tran-
sition is given by the slope of the free energy curve at
the point Dg � 0 since ≠Dg�≠r � �1�rs� 2 �1�rl�. In-
creasing the polydispersity raises the free energy of the
solid relative to the fluid, displacing the Dg curve ver-

FIG. 1. Phase diagram of a polydisperse system of hard
spheres showing the reentrant freezing transition. The density
discontinuity Dr � rs 2 rl vanishes at the point of equal
concentration, marked by the filled circle. The inset shows
the phase boundaries near this point in greater detail.

tically and as is evident from Fig. 2 reduces the density
jump at the transition. At the terminal polydispersity the
solid just touches the fluid curve so the tangent is horizon-
tal and Dr � 0. In a system of hard spheres (where the
internal energy is constant) the condition Dr � 0 neces-
sarily requires the entropy change at this point to also van-
ish. Clearly while the underlying microscopic transition
remains first order the first derivatives of the thermody-
namic potential are continuous at st . A conventional clas-
sification of this transition, following the ideas of Ehrenfest
[23], is clearly inappropriate.

Retaining more moments in the projected free energy
allows the possibility of different-sized particles to be
partitioned between phases. To establish the effect of
fractionation we have recalculated the phase equilibria
with two moment variables. The phase diagram, now
given by equating P and the moment potentials m0 and
m1 in all phases, is unchanged in topology from Fig. 1.
The point of equal concentration is retained although
shifted slightly to �rt , st� � �1.115, 0.0831�. Hence our
prediction of a reentrant freezing transition seems to be
robust. The extent of fractionation is generally small,
although increasing as s ! st , with the larger particles
preferentially found in the crystal phase. Details of our
calculations are given elsewhere [24].

The appearance of an equilibrium amorphous phase
may be understood simply from maximum packing ar-
guments. For uniform-sized spheres the maximum den-
sity of a randomly packed Bernal glass (rrcp 
 1.22) is
significantly smaller than the geometric limit of a close-
packed hexagonal of fcc crystal (rcp �

p
2). The greater

packing efficiency of the crystal ensures that at high
densities, particles have more freedom and so a higher

FIG. 2. The Gibbs free energy difference (per particle) Dg
between crystal and fluid phases as a function of the pressure,
for different polydispersities. The circles are the first-order
fluid/solid transitions. The filled circle marks the point of equal
concentration.
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entropy than those in the fluid phase [25]. The stable
high density phase of uniform hard spheres is there-
fore crystalline. Polydispersity affects crystalline and
disordered phases in different ways. In an amorphous
phase, small particles pack in the cavities between large
particles and rrcp increases with s while the constrained
environment of a fixed repeating unit cell causes the maxi-
mum density of a crystal rcp to decrease with s.
Computer simulations [11,26] indicate that the limiting
densities of amorphous and crystalline structures become
equal at s � 0.05. For higher polydispersities disor-
dered structures fill space more efficiently than ordered
ones. Consequently, the appearance of an equilibrium
amorphous phase and the ensuing reentrant freezing tran-
sition should be a universal feature of all polydisperse
systems—so answering the last of our questions.

In conclusion, we have presented a simple mean-field
model of polydisperse hard spheres which suggests that
the equilibrium state at high polydispersities and densities
is amorphous. An equilibrium crystal is found only at
intermediate densities. The growing stability of the fluid
phase with polydispersity causes a singularity in the
density-polydispersity phase diagram which we identify
as a point of equal concentration. Finally, although we
use mean-field theory, our results should be robust with
respect to fluctuation effects since the transition we find
is not critical and the thermodynamic functions are not
singular at this point.
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