MoLECULAR PaysIcs, 1999, VoL. 97, No 5, 685-693

&

. 1AY¢°

Dl

Thermodynamic properties of polydisperse hard spheres
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The virial expansion of a polydisperse system of hard spheres has been studied. The virial
coefficients are shown to be a function of the total number density and the first three moments
of the diameter distribution. The small number of moment variables identified is used to
construct a simple but physically reasonable model of a polydisperse hard sphere crystal.
Analytical expressions for the pressure and the moment chemical potentials are obtained.

1. Introduction

Understanding the stability of colloidal suspensions is
important to a wide range of industrial applications
including paint, detergent manufacture and the pro-
cessing of many foodstuffs. Surprisingly, given the enor-
mous economic importance of colloids the phase
behaviour of even the simplest realistic model for a col-
loidal system, a polydisperse mixture of hard spheres,
remains poorly understood [1] For instance, while the
phase behaviour of uniform hard spheres has been
known for in excess of thirty years [2] the equivalent
polydisperse phase diagram is still not established and
is a subject of active debate [3-6]

The reason for this difference is twofold. First, the
statistical properties of polydisperse mixtures have
been relatively little studied To our knowledge for
instance there is only one computer simulation study
of a crystal of polydisperse hard spheres [3] The liquid
state has scarcely fared much better, with just two inves-
tigations [3, 7] With the scarcity of simulation data
theoretical treatments of polydisperse systems have
either relied on uncontrolled approximations or ideal-
ized models [8] A second difficulty has been that solving
phase equilibria in a polydisperse system is considerably
more complicated than for a monodisperse system. The
standard thermodynamic procedure treats each particle
as a separate conserved component so that the equations
of equilibrium between coexisting phases become highly
nonlinear functional equations [8] Recently a systematic
scheme [9, 10] has been developed to solve the problem
in the case where the excess free energy depends on a
limited number of moments of the diameter distribution.
The powerful ‘annealed moments’ method of Sollich,
Cates and Warren reduces the problem to a few alge-
braic equations.
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In the present paper we develop simple analytical
expressions for the thermodynamic properties of
polydisperse solid and fluid mixtures of hard spheres
valid for slightly polydisperse systems (that is ‘close’
to the monodisperse limit). The main purpose of this
paper is to extend our earlier work [11] and to present
analytical results which we hope will form a useful
source for further work on polydisperse colloids. In a
subsequent paper it is planned to use these expressions
and the ‘annealed moment’ method to explore the effect
of polydispersity on the freezing transition in hard
spheres.

In section 2 we consider the virial expansion of the
equation of state of a polydisperse hard sphere fluid. For
low densities where the virial expansion is valid, the
statistical properties of a polydisperse mixture depend
on a small number of moment variables. The same sim-
plification is evident also in the approximate scaled par-
ticle and Percus-Yevick theories which are more
appropriate for high densities. Utilizing this symmetry
the excess statistical properties of a polydisperse system
may be identified formally with those of a suitably
chosen binary hard sphere mixture. In section 3 we
describe this mapping procedure in detail and in section
4 we apply it to a polydisperse crystal. Utilizing previous
simulation data for hard sphere mixtures we construct a
simple model of a polydisperse crystal. Predictions for
the pressure and the chemical potential are fitted to
symmetry-adapted analytical functions.

2. The Virial Expansion
A polydisperse hard sphere mixture is completely spe-
cified by the number density of spheres of every size. If
the size of each particle is drawn from a distribution

/(R) (with JdRf(R) =1) then the number density of

particles with diameter R is pf(R)dR, where p is the
total number density. In this section we demonstrate

Molecular Physics ISSN 0026-8976 print/ISSN 1362-3028 online © 1999 Taylor & Francis Ltd
http://www.tandf.co.uk/INLS/mph.htm
http: //www.taylorandfrancis.com/JNLS/mph.htm


http://www.tandf.co.uk/JNLS/mph.htm
http://www.taylorandfrancis.com/JNLS/mph.htm

686 P. Bartlett

that many of the key properties of a polydisperse system
may be expressed succinctly in terms of the moments of
the diameter distribution,

mi:Jde(R)Ri withi=1,2,.. ., (1)
rather than the complete distribution /(R).

The properties of a polydisperse system are obtained
most readily by generalizing the properties of an n-com-
ponent finite mixture [12] Therefore we consider first an
n-component mixture of N; hard spheres of diameter R;
enclosed in a volume ¥ at the equilibrium temperature
T. The composition of this mixture may be described in
terms of the partial number densities, p; = N,/ V, or else
in terms of the total number density p = >_, p; and the
partial mole fractions x; = N;// N where N = >_, N, is
the total number of spheres.

For small densities, the pressure SP where P is the
pressure, B =1/kgT and kg is Boltzmann’s constant,
can be expanded in a virial series [13]

pP = ZB,,,/)’", (2)

)11:1

where B,, is the mth virial coefficient of the mixture (with
By =1). For a multicomponent mixture B, can be
decomposed further into partial virial coefficients
bw(Ri, R;,...) defined by analogy with the expression
for the second virial coefficient

B, = szijbz(Ri,R')- (3)
i=1 j=1

Here the partial coefficient bz(Ri, Rj) depends only on
the interactions between components i and j. Although
the calculation of the polydisperse-averaged second
virial coefficient B, is well known [12] we briefly
repeat the main steps here in order to illustrate the
basis for our treatment of the higher coefficients. To
transform to the polydisperse case, we let » — oo and
recognize that in a polydisperse system where the dis-
tribution function f(R) is continuous, no two spheres
can have the same diameter, so x; = x; = 1/n. The poly-
disperse generalization of the second virial coefficient is,
from equation (3),

_ ) 1 n n
B> :nllI?C;ZZbZ(Ri: Rj)v (4)
i=1 j=1
which may be written concisely as
1_92 = (bz(Ri, Rj)>ij (5)

where (.. ), = [ [dR,dR,f(R)f(R))(...). In the poly-
disperse limit the variables R; and R; are statistically
independent so, for instance,

(RIRY); = (R)(R)), = mym,. (6)
The second virial coefficient of a binary mixture of
spheres is well known,
_TI
12
_TI
12
so that the polydisperse average is simply,

52 = (%C) (m3 + 3m1m2). (8)

The polydisperse form of the third virial coefficient can
be obtained similarly from the exact expression for 53 in
a tertiary mixture [14] namely

bo(Ri, R) (R +R)’

(R} + 3R?R, + 3RR2+ R)),  (7)

by(Ri, Ry, Ry) = % [R'R} + R} R} + RIR}
+ 3R,R;R, (R, + R, + R,
< (RR;+ RR, + RiR)]. (9)
Averaging yields
B3 = (b3(Ri, Ry, Ry) i
— @Z[mg + 3m3 + Gmymoms]. (10)

Inspection of equations (8) and (10) reveals that the two
lowest virial coefficients are functions only of a limited
number of the set of possible moments. We demonstrate
below that this simplification holds also for all the
higher virial coefficients.

Although expressions for the second and third virial
coefficients are well known, no analytical results exist for
the general form of the fourth (or higher) coefficients
[14] Solutions exist, for instance, for b4 only in the
cases where either the particles are all of identical size
[15] or where there is a large size asymmetry [16] To
express the mth virial coefficient in terms of moments,
our starting point is the exact expression for b, [17}

el

bu(Ry.. Ry) = — ] Vdry...dr,, (11)
where the quantity 7, is the sum of all labelled stars [13]
with m points. Each star consists of a product of Mayer

/ functions which for hard spheres have the simple form:

-1 if j '
f = { sphe‘res i and j overlap, (1)
0 otherwise.

The number of star integrals that contribute to the mth
virial coefficient increases rapidly with m, so to illustrate
our arguments we shall look in detail only at the fourth
virial coefficient. The integrals that contribute to b4 are
conveniently represented pictorially:
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Integration is over all possible positions of the different
particles, represented by the nodes of the diagram, with
one particle fixed. Each solid line, linking pairs of par-
ticles, denotes the combination of f functions which
appear in the integrand. From equation (12) the contri-
bution to the cluster diagram is nonzero only if the two
connected particles overlap.

Our first task is to establish how the value of each of
these diagrams depends upon the diameter of one of the
spheres, for instance the ith sphere. Consider first the
final diagram in the third line of equation (13), in
which all pairs of the four particles overlap. The con-
tribution to this diagram from the integration over dr;
depends upon the locations of the spheres j, k and /. It is
nonzero only when all four spheres overlap, so for the
configuration illustrated in figure 1 particle / must
overlap the hashed region K. The volume v, subse-
quently mapped out by the centre of particle i (the
sum of the hashed and shaded regions in figure 1) may
be estimated using the tools of integral geometry [18] It
is clear from figure 1 that v,, is the volume of the parallel
body K, consisting of all points which lie within a dis-
tance < R;/2 of K. Since the intersection of two convex
sets is itself convex, the region K must be convex. For a
convex body, Steiner's formula [18] gives the parallel
volume v, as

Ap Mo T3
Vp =V TR+ TR LR (14)

o /

Figure 1. Specific configuration of three different size par-
ticles (j, k and /). A fourth sphere of diameter R; will over-
lap the spheres j, k¥ and / when its centre is located inside
the subvolume v, (shown outlined in bold). The inner
hashed region K represents the region of overlap of the
three fixed spheres j, k¥ and /. The star integral is nonzero
only when the centre of sphere i lies inside the region v,.

where v is the volume of K. The quantities 4 and M in
equation (14) denote the surface area and the integral
mean curvature of the boundary 6K of the region K

a=| .
0K

1 1 1
M= 2LK (Rl N RZ)df. (15)

Here df is the area element on K and R; and R, are the
principal radii of curvature of the boundary oK.

Clearly the shape of the region X depends upon the
positions of the three spheres (j, kK and /) so that the total
value of the diagram may be written as
1/v[J[v,drdr dr. To evaluate this integral we
substitute in equation (14) and write the result in the
form

Oe9,
." = ap + aR; + R} + a3R} (16)
020 |

where the coefficients are independent of R; and are
fixed by the diameters of the species j, ¥ and /. The
diagram must be symmetric in the diameters of the dif-
ferent spheres. Incorporating this symmetry equation
(16) may be generalized further to

GYy(i) a4 3
: ZOZO ) ZO‘%lmz,an?lR}?ZRZ“R?“a (17)
n1=0ny= ny=

where the coefficients are now purely numerical. Dimen-
sional considerations restrict the possible combinations
of the exponents so that only terms with n; + n;+
np +n; =9 contribute to the sum. The polydisperse
average of equation (17) is (with mg = 1)

3
X Z Cnyng,nzng Mg Mgy M3 My (18)

n4=0

which depends on/y on the moments, m; through to ms,
of the diameter distribution. It is straightforward to
show that the sum of the diagrams in the first two
lines of equation (13) also can be expressed in an equiva-
lent form (the complete analytical expression for this
combination of diagrams is given in [16]). Consequently
the polydisperse fourth virial coefficient is a function
solely of the first three diameter moments. We conjec-
ture that this conclusion holds for all the higher virial
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coefficients so that in general we may write the mth
polydisperse coefficient in the form

BN Zamnanmn, (19)

n1=0n=0 1, =0

withmo = 1 and 21 n; = 3" ", In three dimensions the
virial equation of state is a function solely of the vari-
ables p and m through to ms.

The structure of the virial coefficients leads to two
important conclusions. First, all of the excess thermo-
dynamic properties of a polydisperse mixture depend,
like the equation of state, solely on p and the moments
m1 to m3. To see this, consider, for instance, the excess
free energy per unit volume, /& = F*/ v, which may be
expressed in terms of the pressure using the result

B = pré/i (@(p_{x_}l - 1). (20)

0P P’

Inserting equation (2) into equation (20) gives the fol-
lowing expansion for the finite-mixture case

Bua(p 1)), (21)

=S
)11:1

where the coefficients, when generalized to the polydis-
perse limit, become functions of (p, mj, mz,m3). Second,
the (excess) chemical potential L of a species with dia-
meter R is a cubic polynomial of R. This is seen readily
from the expression for the excess chemical potential of
species i, Uf* = of/ 6p;, which for a finite mixture is,
from equation (21),

B =

m= 1

m+1 ,
TP bm+1 (22)

The chemical potential in the polydisperse system is
therefore

1
ﬂl’lex Zm’: m<bm+l(R Rl . Rm)> 1..m> (23)

m= 1

where the coefficients are obtained by integrating the
partial coefficients b,,+; over the variables R;... R,. It
follows from equation (17) that the chemical potential is
therefore a cubic function of the diameter R. For
instance, to first order the excess chemical potential is,
from equation (7),

BU(R) = 2p(ba(R, R;));
:LE6E{R3 +3mR* + 3mR + my}. (24)
The virial expansion is, of course, rigorously conver-
gent only for low densities. (The radius of convergence

of the virial series is not known for polydisperse hard
spheres but for uniform-sized spheres a truncated seven-

term virial series [2] for the pressure agrees within 107
with the data from computer simulation over the whole
of the stable fluid phase. This suggests that the virial
expansion may provide useful information over a wide
range of densities up to freezing.) For high densities,
approximate theories such as the scaled particle and
Percus—Yevick predictions agree more closely with
data from machine simulation [15] These theories,
although approximate, display the same symmetry as
the more exact virial expansion described above. For
instance, within scaled particle theory the pressure of a
mixture of hard spheres may be shown readily to be an
explicit function of just three diameter moments [19]
The same simplification is evident also in the approxi-
mate equation of state (EOS) obtained from the Percus—
Yevick closure [20] for a system of polydisperse hard
spheres. For instance, in the case of the ‘improved’
EOS obtained by Boublik [21] and Mansoori et al. [22]
from an interpolation between the Percus—Yevick virial
and compressibility equations, the pressure of a polydis-
perse fluid of volume fraction ¢ is given explicitly as

=4 (729202
6ﬁPBM‘m3(1—¢ * mi \1—¢

; (%)3 (1—%)3[3 — g (25)

in terms of the three diameter moments m; through to
m3. Using this expression it is then straightforward to
show that the excess chemical potential is a third-order
polynomial in R of form

3
3T m\ (¢ —2)
{6ﬂPBM * (Wl3> 1—¢

Buzu(R) = R

_2(29 In n(l- ¢)}

+ R2{3(Z_;>l_iL¢+ 3(:—?)2(1—_%

+ 3(Z—§>Zm(1 —¢)}

+3R(Z—§>1+¢¢—ln(l—¢). (26)

Motivated by these observations we shall assume in the
remainder of this paper that first the excess properties of
all hard sphere systems depend only upon p and m;
through to m3, and that second u™ is a polynomial of
third order in R.
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Table 1. Distribution function f (R), ith non-central moment m;, and skewness vz for log-normal, Schultz and triangular
distributions. Here R is the mean diameter and o is the standard deviation in units of R.

/(%) N
1+ —In? [(1 + &) Y*(R/R)] (1
RPrin(1+ )] eXp{ 2In(1+ &) (1+7) 2 36"+ 6
1(c2 s’ ol _ -1
R (o) (%) exp [—0 2%] g(l + ko) 26"
6021132(\]_601_2 —IR = RI) WKH \féc)'+2+ (1- \féc)'+2—2] 0

3. Binary mapping

The small number of variables identified in hard
sphere mixtures suggests a simple way to calculate the
unknown properties of a polydisperse system. We look
at an ‘equivalent’ system with equal values of p and m,
to m3 whose properties are known. From the discussion
above, the excess properties of this simpler system must
equal those of the unknown polydisperse mixture. Since
a binary mixture has four degrees of freedom (the dia-
meters and densities of each of the species) the simplest
‘equivalent’ system is a binary mixture. To establish the
link between the two we shall find it more convenient to
use the standardized central moments v;:

o = | drs(R), )

where & = (R —R)/R is the fractional deviation of a
particle’s diameter from its mean value R = m;. With
this definition, v, is simply the square of the convention-
ally defined polydispersity (v, = o*) while v3 measures
the skewness of the diameter distribution. Values of v3
for distributions which are of particular interest in
colloid science are collected together in table 1. The
relationship with the non-central moments m; used
above is

mi; = R,
my = ]_32(1 + Uz),
m3:1_€3(1+3u2+1)3). (28)

A polydisperse system may be described either in terms
of the density p and the moments (mj,m2,m3) or else in
terms of p, the mean diameter R and the central
moments (v,v3) whichever is more convenient. Using
the central moment description it is easy to show that
the binary mixture, defined in table 2, is ‘equivalent’ to a
polydisperse system of density p, mean diameter R and
central moments (1, v3) if the two parameters & and A

Table 2. A binary mixture of hard spheres with
a fixed value for the total number density of
particles of p and a mean diameter of R. The
properties of the mixture are a function of the
variables & and A.

Species 1 Species 2
Number density p; p(l ;A) p(l ;A)
. - (149 - (1=9)
Diameter R; R(l—A) R(1+A)
are chosen so that
S— 20 — 1y
_(403_’_ U% 1/2°
p=—2— (29)

(4034_0%)1/2'

The two systems are then statistically equivalent, in the
sense that both have the same set of first moments and
so, following the arguments of section 2, identical excess
thermodynamic properties. With this formalism the
pressure of a polydisperse mixture, P, is equal to that
of an equivalent binary system P, of diameter ratio o
and composition x; (the fraction of large spheres):

_ i (am g (1o =4) _1;A>
_ﬁRPb(pR’ CTa+o(+ay VT2 )

(30)

This identity is, of course, exact by construction if the
equation of state is a function only of the first three
diameter moments. This simplification, as we have
seen, is exact for low densities, and furthermore is dis-
played by many of the successful fluid equations of
states which describe hard spheres at high densities. In
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the following section we shall assume furthermore that
this identity is also valid for crystalline phases.

4. Polydisperse solid

The starting point for any calculation of phase equi-
libria is knowledge of the pressure and the chemical
potentials. If the excess free energy is solely a function
of the central moments v; then the thermodynamic con-
ditions of equilibrium between two phases 4 and B may
be expressed concisely in terms of the moment chemical
potentials [9, 10] 1f* = of/opu, as

y?X(A) = y?X(B) fori=0,1,2, etc.
P(4) = P(B). (31)

The moment potentials are physically just the coeffi-
cients of the polynomial describing the ¢ dependence
of the conventional particle potential, as is seen readily

from the expansion
of . 8Ut ex i
5pf Z opu Of (R Z - (32

IJeX(

To calculate the pressure and moment potentials of
the polydisperse crystal we look at the binary substitu-
tionally disordered crystal which is isostructural with the
polydisperse crystal. It is well known that a bi-disperse
hard sphere system of very different sizes phase sepa-
rates in the solid state. Computer simulation [23] and
density functional calculations [24] have suggested that
only for a diameter ratio above a limiting ratio
o ~0.82 is the substitutionally disordered crystal
stable. Consequently the mapping described in section
3 will remain valid only for sufficiently narrow distribu-
tions such that

%ﬁ%{ﬁ% > o (33)

For a Schultz distribution, for instance, this condition is
satlsﬁed by distributions with normalized widths
= 0.10 or less. Presumably crystalline phases with
broader diameter distributions will be mechanically
unstable For a sufficiently narrow distribution
(» < vy) the pressure of the polydisperse crystal P,
may then be equated to the pressure of the equlvalent
binary substitutional crystal P;, from equation (30). For
further analysis clearly it is desirable to represent the
polydisperse pressure by an analytical function of p, v
and uvs. In the limiting situations where either Lp_or
p— 0 the dimensionless polydisperse pressure SR’ P,
must converge to the well known monodisperse hmlt
BR*Pono (for which we use the hard sphere crystal
EOS described by Young and Alder [25]). Therefore
we have used the following general form for the poly-

disperse pressure:
BR’P,(pR’, 0y, U3) = PR’ Pryono(PR’)

+ZC1J/( pR

i),k

) (10*0,) (03/ )",
(34)

where we take 7,7 = 1 and k = 0. This functional form
was fitted to 2499 solid state pressures, calculated from
equation (30) and the simulation data of Kranendonk
and Frenkel for the bi-disperse crystal [26] on an
equally spaced grid of values

1L0<prR*< 12,
0.0< ()2 < 0.09,

3< 1/} <3, (35)

which span the region where a polydisperse crystal is
expected to be mechanically stable [4, 5] The fitted coef-
ficients C;;, are given in table 3. Since the functions to
which we fit are not orthogonal the coefficients are
strongly correlated. Consequently we have quoted the
coefficients with a large number of digits to minimize
the effects of roundoﬂ" errors. The maximum absolute
error in the fit to BR*P is in the region of 0.005.

To evaluate the moment chemical potentials we note
that, from the Widom insertion principle [27], the chemi-
cal potential in a binary crystal f;* may be regarded,

Table 3. Coefficients C;; for the polynomial fit
defined in equation (34) for the pressure of
the polydisperse crystal.

J k Cijk

2387574730 54E + 00
- 3.245594701 55E+ 00
- 8.378147624 76E—01
1.739954 321 08E + 00
1.694 840738 32E— 04
- 1.408 82761492E—03
1.32927061091E—03
- 6.506 832296 S4E— 08
4.425776743097E—07
- 6.146 520969 27E— 04
7.434642398 15 E— 4
- 1.276976 54731E— 04
1.920875038 81E— 07
- 8.288283721 38E— 08
- 1.04120407215E—06
- 1.197462451 84E—05
1.87824729388E~ 05
- 6.918060 118 77E—06
6220680202 96E — 08
- 6.536346 104 12E— 08

[NSIN ST (S I NS T S I NS R i == e i e R e R e R e J e Sl e R ]

N— RO~ BABRNDPBARNOO—~,RARNDPROD—BRWND—
WWININND—WWRNRNDNDWWRNIN /= —
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formally at least, as a continuous function of R. Conse-
quently the size-dependent chemical potential must have
the functional form

BUE(R) = bo + b1R + byR* + b3R’, (36)

where the chemical potential is defined in terms of the
probability W(R) for inserting an arbitrary size test
sphere into the crystal from the expression B (R) =
—In W(R). From the discussion above, it follows that
the probability W(R) should be equal at any value of R
for the polydisperse and the equivalent binary crystal.
With this identification equation (36) may be simplified
further by using the known [28] exact small and large R
limits for p™(R). These constraints fix two of the four
unknown coefficients in equation (36),

by = —11’1(1 - d)),

by = gﬁP. (37)

The remaining unknown coefficients (»; and 5,) in the
polynomial for p™(R) (equation (36)) may be deter-
mined by looking at particles with sizes equal to those
of the two species in the binary crystal, for which the
chemical potentials are known from the data of Kranen-
donk and Frenkel [26] Values for »; and b, together
with equation (37) fix the size dependence of the poly-
disperse potential as a function of the density pR” and
the two central moments v, and vs. We have determined
the central moment chemical potentials (™ (defined in
equation (32)) using the simulation data of Kranendonk
and Frenkel [26] as input and fitted the results to the
following expressions:

B (PR, 12, 13) = Biono(PR’)
+ZD1J/( PR 104[&) ( )

i,k

ﬂul PR U, B3 ZGIJ/( PR 104 )j( /122)](:

i),k

B (PR, 2, v3 =D Hi (pR?) (10°0) (n/ B), (38)

i),k

where Uono 1S the excess chemical potential of the
monodisperse hard sphere crystal (obtained from [25]).
The fitted coefficients are given in tables 4-6. The third
moment potential L5" is given in terms of the expression
for b3 (equation (37)) as

B = BR'P,. (39)

where P, is the polydisperse pressure.

In figure 2 we show the effect of o on the pressure
calculated for a polydisperse system. Two features are
striking. First, the effect of increasing polydispersity is

Table 4. Coefficients D, for the polynomial
fit defined in equation (38) for the zero
order central moment Bug* of the polydis-
perse crystal.

D

i,k
4.9727795952E + 00
- L115877719E+ 01
7.254490 173E+ 00
- 1.020223 113E+ 00
- 2.915092900E—03
3.550802611E—03
- 5.512759 696E— 04
- 1.310283 588E—07
4.750313909E—07
- 2.613788 868E— 06
- 1.029201 075E—03
1.801 003 695E — 03
- 8.635348 552E—04
9.387749902E — 05
3.747 694 880E — 07
- 2.749597974E—07
- 1.392407811E—05
3.011842029E —05
- 1.633843239E—05
5.966026 102E — 08
- 6.148884367E—08

DO PR PR R R, R R, OO0 | &

N WINR WINPRWN—RLINDWNR WD WD~
WWERNNWWNRNNNFWWNNN /=~

Table 5. Coefficients G for the polynomial fit
defined in equa uation (38) for the first central
moment Ui of the polydisperse crystal.

Gijk

- 1.7971033849E + 03
5.320803 395 5E + 03
- 5.2321668770E+ 03
1.7391323532E+ 03
1.979820767 6E + 00
2.164916 510 5E + 00
- 1.077331676 6E+ 01
6.719731981 8E+ 00
- 1.214058 7800E — 03
- 1.4502203598E—03
3.116085953 8E—03
7.987846 1029E —07
- 1.075139058 OE + 00
3.3430269778E+ 00
- 3.4933300357E + 00
1.229479231 7E+ 00
- 1.300693 699 8E — 03
1.278460 548 9E — 03
3.035809994 7TE—07
7.132580982 SE—04
- 1.8970212632E—03
1.6552203114E—03
- 4.717358 5242E—04
- 4.034913604 2E—08

— WNR, ORI = WNRORWN—RWND—OWN —O
WRNNODNDWNON—R,— ), WP~ — 0000 |~
[N ST NS I NS [ R el el e N e N el e el e el e i e Ra R Iy
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Table 6. Coefficients H;;, for the polynomial
fit defined in equatlon (38) for the second
central moment Bu5* of the polydisperse

crystal.

i j k Hjj

0 0 0 - 1.592587 102E + 03
1 0 0 4.708423777E+ 03
2 0 0 - 4.632828411E+ 03
3 0 0 1.538993488E + 03
0 1 0 - 9.746903 189E — 01
1 1 0 9.090570281E + 00
2 1 0 - 1.568 524 068E + 01
3 1 0 7.635577376E + 00
1 2 0 5.858 690 060E — 04
2 2 0 - 3.894632807E—03
3 2 0 3.724822978E—03
1 3 0 6.385702771E—07
0 1 1 = 1.060209 846E + 00
1 1 1 3.306204 721E+ 00
2 1 1 - 3.462990053E + 00
3 1 1 1.221 108 119E+ 00
1 2 1 - 8.742177575E— 04
2 2 1 5.538426 804E — 04
3 2 1 2.942 647 615E — 04
1 3 1 2.783232803E—07
0 2 2 7.099 636 534E — 04
1 2 2 - 1.887268 984E — 03
2 2 2 1.641798433E—03
3 2 2 - 4.649114167E—04
1 3 2 - 3.703404903E — 08

very different for a crystalline as compared with a fluid
system. For a crystal, increasing o raises the pressure,
while in a fluid the converse is true. Second, the pressure
of a polydisperse crystal is very sensitive to even a rela-
tively moderate level of polydispersity, whereas by con-
trast the pressure of a fluid phase is fairly insensitive to
o. Figure 3 shows that similar trends are also seen in the
dependence of the moment chemical potentials on o.

5. Conclusions

We have investigated the virial expansion of a contin-
uous polydisperse system of hard spheres. Our analysis
shows that the polydisperse virial coefficients are a func-
tion of the total hard sphere number density and the first
three moments, m; through to ms3, of the normalized
diameter distribution. This observation has two import-
ant consequences. First of all, it demonstrates that, at
least for low densities, the excess free energy (above that
of the polydisperse ideal gas) is purely a function of a
finite set of moments. Second, the excess portion of the
particle chemical potential is a third-order polynomial
of the particle diameter.

In order to reduce the strictly infinite number of equa-
tions for polydisperse coexistence to a finite set, previous

30
251 /t
=0.08
207 B
& - f—
S0 ¥
0.06
I CC 107 -
enl
5-//0.04’-
0.027
O 0.08 [
I I I

1.00 1.05 1.10 1.15 1.20
=3
pR
Figure 2. Variation in pressure AP = P, — Pmono With den-
sity for a polydisperse crystal for deferent levels of poly-
dispersity o. The reduced pressure SR AP is calculated
from equation (34). The degree of skewness is fixed at
vy = 26". The dashed line shows, for comparison, the

pressure of the polydisperse fluid (o =0.08) calculated
from the BMCSL equation of state [21, 22]
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Figure 3. Effect of dens1ty pR* on the zero order moment
potential A(1G° — Hmono) for different levels of polydisper-
sity o. The solid lines depict results for the crystalline
phase while the dashed line shows, for comparison, the
results for the fluid phase. The curves are calculated from
equations (38) and (A 1).

authors [9, 10] have assumed that F* can be approxi-
mated by a function of a finite number of moments. The
current analysis demonstrates that the ‘finite moment’
assumption is exact for 3D hard spheres, at least in the
region where the virial expansion is convergent (see text
following equation (24)). Indeed, since the same simpli-
fication is apparent also in both the scaled particle and
Percus-Yevick predictions, the finite moment approxi-
mation is probably a reasonable approximation at all
densities.
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One of the most interesting features of the prediction
that F** depends on a small number of variables is that it
allows the properties of a polydisperse system to be
‘mapped’ onto those of a much simpler binary mixture.
Using this approach we have developed a physically
reasonable model of a slightly polydisperse crystal. In
the current paper we have extended our previous work
[11] to include a description of the effect of both the
width and the skewness of the diameter distribution.
Furthermore, we present approximate analytical expres-
sions for the pressure and moment potentials.

Finally, we stress that although we believe the micro-
scopic foundation for the current model is reasonable it
is undoubtedly somewhat arbitrary. For instance, it is
difficult to believe that all of the distortion introduced
into a crystalline lattice by a continuous range of dif-
ferent sized spheres can be reproduced by considering
just two different sizes. However, we hope that the cur-
rent results will stimulate further investigations into the
structure of polydisperse crystals.

Appendix. Central moment potentials for the
polydisperse fluid
The central moment chemical potentials pf* for the
BMCSL polydisperse fluid [21, 22] are given by the
expressions:

B =5 BP R’ = (2013 + 1)(in2 = 1) In(1 = ¢)

+ 3(my + ;742)—L + 3m3

I=¢ " P (1-g)

B =5 BPouR® = 6(n3 = i) In(1— g)

+ 320+ 7o) 7 f¢+ 6}75(1 _¢¢)2

B = 2Py R — (63 — 3m3) In(1— ¢)
- _¢ - ¢ —39(¢—2)
+3m11_¢+3m2(1_¢)2+3m2 1—p

B = ZpPyy R} — 23 In(1— ¢)

v =2, (A1)

where m; is the moment ratio

— m; —~3—i
m; :_R3 . (A2)
m3
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