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Thermodynamic properties of polydisperse hard spheres
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The virial expansion of a polydisperse system of hard spheres has been studied. The virial
coe� cients are shown to be a function of the total number density and the ® rst three moments
of the diameter distribution. The small number of moment variables identi® ed is used to
construct a simple but physically reasonable model of a polydisperse hard sphere crystal.
Analytical expressions for the pressure and the moment chemical potentials are obtained.

1. Introduction

Understanding the stability of colloidal suspensions is
important to a wide range of industrial applications
including paint, detergent manufacture and the pro-
cessing of many foodstu� s. Surprisingly, given the enor-
mous economic importance of colloids, the phase
behaviour of even the simplest realistic model for a col-
loidal system, a polydisperse mixture of hard spheres,
remains poorly understood [1]. For instance, while the
phase behaviour of uniform hard spheres has been
known for in excess of thirty years [2] the equivalent
polydisperse phase diagram is still not established and
is a subject of active debate [3± 6].

The reason for this di� erence is twofold. First, the
statistical properties of polydisperse mixtures have
been relatively little studied. To our knowledge for
instance there is only one computer simulation study
of a crystal of polydisperse hard spheres [3]. The liquid
state has scarcely fared much better, with just two inves-
tigations [3, 7]. With the scarcity of simulation data
theoretical treatments of polydisperse systems have
either relied on uncontrolled approximations or ideal-
ized models[8]. A second di� culty has been that solving
phase equilibria in a polydisperse system is considerably
more complicated than for a monodisperse system. The
standard thermodynamic procedure treats each particle
as a separate conserved component so that the equations
of equilibrium between coexisting phases become highly
nonlinear functional equations[8]. Recently a systematic
scheme [9, 10] has been developed to solve the problem
in the case where the excess free energy depends on a
limited number of moments of the diameter distribution.
The powerful ànnealed moments’ method of Sollich,
Cates and Warren reduces the problem to a few alge-
braic equations.

In the present paper we develop simple analytical
expressions for the thermodynamic properties of
polydisperse solid and ¯ uid mixtures of hard spheres
valid for slightly polydisperse systems (that is c̀lose’
to the monodisperse limit). The main purpose of this
paper is to extend our earlier work [11] and to present
analytical results which we hope will form a useful
source for further work on polydisperse colloids. In a
subsequent paper it is planned to use these expressions
and the ànnealed moment’ method to explore the e� ect
of polydispersity on the freezing transition in hard
spheres.

In section 2 we consider the virial expansion of the
equation of state of a polydisperse hard sphere ¯ uid. For
low densities where the virial expansion is valid, the
statistical properties of a polydisperse mixture depend
on a small number of moment variables. The same sim-
pli® cation is evident also in the approximate scaled par-
ticle and Percus± Yevick theories which are more
appropriate for high densities. Utilizing this symmetry
the excess statistical properties of a polydisperse system
may be identi® ed formally with those of a suitably
chosen binary hard sphere mixture. In section 3 we
describe this mapping procedure in detail and in section
4 we apply it to a polydisperse crystal. Utilizing previous
simulation data for hard sphere mixtures we construct a
simple model of a polydisperse crystal. Predictions for
the pressure and the chemical potential are ® tted to
symmetry-adapted analytical functions.

2. The Virial Expansion

A polydisperse hard sphere mixture is completely spe-
ci® ed by the number density of spheres of every size. If
the size of each particle is drawn from a distribution
f (R) (with dR f (R) = 1) then the number density of
particles with diameter R is q f (R) dR, where q is the
total number density. In this section we demonstrate
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that many of the key properties of a polydisperse system
may be expressed succinctly in terms of the moments of
the diameter distribution,

mi = dR f (R)Ri with i = 1, 2, . . . , (1)

rather than the complete distribution f (R) .
The properties of a polydisperse system are obtained

most readily by generalizing the properties of an n-com-
ponent ® nite mixture[12]. Therefore we consider ® rst an
n-component mixture of Ni hard spheres of diameter Ri

enclosed in a volume V at the equilibrium temperature
T . The composition of this mixture may be described in
terms of the partial number densities, q i = Ni/ V , or else
in terms of the total number density q = i q i and the
partial mole fractions xi = Ni/ N where N = i Ni is
the total number of spheres.

For small densities, the pressure b P where P is the
pressure, b = 1/ kBT and kB is Boltzmann’s constant,
can be expanded in a virial series [13]

b P =
1

m=1
Bm q

m , (2)

where Bm is the mth virial coe� cient of the mixture (with
B1 = 1). For a multicomponent mixture Bm can be
decomposed further into partial virial coe� cients
bm(Ri, Rj, . . . ) de® ned by analogy with the expression
for the second virial coe� cient

B2 =
n

i=1

n

j=1
xixjb2(Ri, Rj). (3)

Here the partial coe� cient b2(Ri, Rj) depends only on
the interactions between components i and j. Although
the calculation of the polydisperse-averaged second
virial coe� cient B2 is well known [12], we brie¯ y
repeat the main steps here in order to illustrate the
basis for our treatment of the higher coe� cients. To
transform to the polydisperse case, we let n ! 1 and
recognize that in a polydisperse system where the dis-
tribution function f (R) is continuous, no two spheres
can have the same diameter, so xi = xj = 1/ n. The poly-
disperse generalization of the second virial coe� cient is,
from equation (3),

B2 = lim
n! 1

1
n2

n

i=1

n

j=1
b2(Ri, Rj), (4)

which may be written concisely as

B2 = hb2(Ri, Rj)i ij (5)
where h . . . i ij = dRi dRj f (Ri)f (Rj)( . . . ). In the poly-
disperse limit the variables Ri and Rj are statistically
independent so, for instance,

hRp
i Rq

j i ij = hRp
i i ihRq

j i j = mpmq . (6)
The second virial coe� cient of a binary mixture of
spheres is well known,

b2(Ri, Rj) =
p
12(Ri + Rj)3

=
p
12(R3

i + 3R2
i Rj + 3RiR

2
j + R3

j ), (7)

so that the polydisperse average is simply,

B2 =
p
6 (m3 + 3m1m2). (8)

The polydisperse form of the third virial coe� cient can
be obtained similarly from the exact expression for b3 in
a tertiary mixture [14], namely

b3(Ri, Rj, Rk) =
16p 2

27 [R3
i R3

j + R3
j R3

k + R3
i R3

k

+ 3RiRjRk Ri + Rj + Rk

RiRj + RjRk + RiRk ]. (9)
Averaging yields

B3 = hb3(Ri, Rj, Rk)i ijk

=
p
6

2
[m2

3 + 3m3
2 + 6m1m2m3]. (10)

Inspection of equations (8) and (10) reveals that the two
lowest virial coe� cients are functions only of a limited
number of the set of possible moments. We demonstrate
below that this simpli® cation holds also for all the
higher virial coe� cients.

Although expressions for the second and third virial
coe� cients are well known, no analytical results exist for
the general form of the fourth (or higher) coe� cients
[14]. Solutions exist, for instance, for b4 only in the
cases where either the particles are all of identical size
[15] or where there is a large size asymmetry [16]. To
express the mth virial coe� cient in terms of moments,
our starting point is the exact expression for bm [17]:

bm(R1 . . . Rm) =
1 ­ m

m!
V ­ 1

. . . V m dr1 . . . drm , (11)

where the quantity V m is the sum of all labelled stars[13]
with m points. Each star consists of a product of Mayer
f functions which for hard spheres have the simple form:

fij =
­ 1 if spheres i and j overlap,

0 otherwise.
(12)

The number of star integrals that contribute to the mth
virial coe� cient increases rapidly with m, so to illustrate
our arguments we shall look in detail only at the fourth
virial coe� cient. The integrals that contribute to b4 are
conveniently represented pictorially:
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Integration is over all possible positions of the di� erent
particles, represented by the nodes of the diagram, with
one particle ® xed. Each solid line, linking pairs of par-
ticles, denotes the combination of f functions which
appear in the integrand. From equation (12) the contri-
bution to the cluster diagram is nonzero only if the two
connected particles overlap.

Our ® rst task is to establish how the value of each of
these diagrams depends upon the diameter of one of the
spheres, for instance the ith sphere. Consider ® rst the
® nal diagram in the third line of equation (13), in
which all pairs of the four particles overlap. The con-
tribution to this diagram from the integration over dri

depends upon the locations of the spheres j, k and l. It is
nonzero only when all four spheres overlap, so for the
con® guration illustrated in ® gure 1 particle i must
overlap the hashed region K. The volume V p subse-
quently mapped out by the centre of particle i (the
sum of the hashed and shaded regions in ® gure 1) may
be estimated using the tools of integral geometry [18]. It
is clear from ® gure 1 that V p is the volume of the parallel
body Kp , consisting of all points which lie within a dis-
tance Ri/2 of K. Since the intersection of two convex
sets is itself convex, the region K must be convex. For a
convex body, Steiner’s formula [18] gives the parallel
volume V p as

V p = V +
A

2
Ri +

M

4
R2

i +
p
6

R3
i (14)

where V is the volume of K. The quantities A and M in
equation (14) denote the surface area and the integral
mean curvature of the boundary ¶ K of the region K

A =
¶ K

df ,

M =
1
2 ¶ K

1
R1

+
1

R2
df . (15)

Here df is the area element on K and R1 and R2 are the
principal radii of curvature of the boundary ¶ K.

Clearly the shape of the region K depends upon the
positions of the three spheres ( j, k and l) so that the total
value of the diagram may be written as
1/ V V p drj drk drl. To evaluate this integral we
substitute in equation (14) and write the result in the
form

where the coe� cients are independent of Ri and are
® xed by the diameters of the species j, k and l. The
diagram must be symmetric in the diameters of the dif-
ferent spheres. Incorporating this symmetry equation
(16) may be generalized further to

where the coe� cients are now purely numerical. Dimen-
sional considerations restrict the possible combinations
of the exponents so that only terms with ni + nj+
nk + nl = 9 contribute to the sum. The polydisperse
average of equation (17) is (with m0 = 1)

which depends only on the moments, m1 through to m3,
of the diameter distribution. It is straightforward to
show that the sum of the diagrams in the ® rst two
lines of equation (13) also can be expressed in an equiva-
lent form (the complete analytical expression for this
combination of diagrams is given in[16]). Consequently
the polydisperse fourth virial coe� cient is a function
solely of the ® rst three diameter moments. We conjec-
ture that this conclusion holds for all the higher virial
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Figure 1. Speci® c con® guration of three di� erent size par-
ticles ( j, k and l). A fourth sphere of diameter Ri will over-
lap the spheres j, k and l when its centre is located inside
the subvolume t p (shown outlined in bold). The inner
hashed region K represents the region of overlap of the
three ® xed spheres j, k and l. The star integral is nonzero
only when the centre of sphere i lies inside the region t p.

= a0 + a1Ri + a2R2
i + a3R3

i , (16)

=
3

n1=0

3

n2=0
. . .

3

n4=0
cn1,n2,n3,n4R

n1
i Rn2

j Rn3
k Rn4

l , (17)

ijkl

=
3

n1=0

3

n2=0
. . .

3

n4=0
cn1,n2,n3,n4mn1mn2mn3mn4 (18)



coe� cients so that in general we may write the mth
polydisperse coe� cient in the form

Bm =
3

n1=0

3

n2=0
. . .

3

nm=0
an1,n2 . . . nm

m

i=1
mni , (19)

with m0 = 1 and m
i=1 ni = 3m­ 1. In three dimensions the

virial equation of state is a function solely of the vari-
ables q and m1 through to m3.

The structure of the virial coe� cients leads to two
important conclusions. First, all of the excess thermo-
dynamic properties of a polydisperse mixture depend,
like the equation of state, solely on q and the moments
m1 to m3. To see this, consider, for instance, the excess
free energy per unit volume, f ex = Fex/ V , which may be
expressed in terms of the pressure using the result

b f ex = q
q

0

dq
0

q 0
b P( q 0 , fxig)

q 0 ­ 1 . (20)

Inserting equation (2) into equation (20) gives the fol-
lowing expansion for the ® nite-mixture case

b f ex =
1

m=1

q m+1

m
Bm+1( q ; fxig). (21)

where the coe� cients, when generalized to the polydis-
perse limit, become functions of ( q , m1, m2, m3). Second,
the (excess) chemical potential ¹ex of a species with dia-
meter R is a cubic polynomial of R. This is seen readily
from the expression for the excess chemical potential of
species i, ¹ex

i = ¶ f ex/ ¶ q i, which for a ® nite mixture is,
from equation (21),

b ¹ex
i =

1

m=1

m + 1
m

q mbm+1. (22)

The chemical potential in the polydisperse system is
therefore

b ¹ex(R) =
1

m=1

m + 1
m

q mhbm+1(R, R1 . . . Rm)i1. . . m , (23)

where the coe� cients are obtained by integrating the
partial coe� cients bm+1 over the variables R1 . . . Rm . It
follows from equation (17) that the chemical potential is
therefore a cubic function of the diameter R. For
instance, to ® rst order the excess chemical potential is,
from equation (7),

b ¹ex(R) = 2q hb2(R, Ri)i i

=
p q

6
R3 + 3m1R2 + 3m2R + m3 . (24)

The virial expansion is, of course, rigorously conver-
gent only for low densities. (The radius of convergence
of the virial series is not known for polydisperse hard
spheres but for uniform-sized spheres a truncated seven-

term virial series [2] for the pressure agrees within 10%
with the data from computer simulation over the whole
of the stable ¯ uid phase. This suggests that the virial
expansion may provide useful information over a wide
range of densities up to freezing.) For high densities,
approximate theories such as the scaled particle and
Percus± Yevick predictions agree more closely with
data from machine simulation [15]. These theories,
although approximate, display the same symmetry as
the more exact virial expansion described above. For
instance, within scaled particle theory the pressure of a
mixture of hard spheres may be shown readily to be an
explicit function of just three diameter moments [19].
The same simpli® cation is evident also in the approxi-
mate equation of state (EOS) obtained from the Percus±
Yevick closure [20] for a system of polydisperse hard
spheres. For instance, in the case of the ìmproved’
EOS obtained by Boublik [21] and Mansoori et al. [22]
from an interpolation between the Percus± Yevick virial
and compressibility equations, the pressure of a polydis-
perse ¯ uid of volume fraction u is given explicitly as

p
6

b PBM =
1

m3

u

1 ­ u
+

3m1m2

m2
3

u

1 ­ u

2

+
m2

m3

3
u

1 ­ u

3

[3 ­ u ] (25)

in terms of the three diameter moments m1 through to
m3. Using this expression it is then straightforward to
show that the excess chemical potential is a third-order
polynomial in R of form

b ¹ex
BM(R) = R3 p

6
b PBM +

m2

m3

3
u ( u ­ 2)

1 ­ u

­ 2
m2

m3

3

ln(1 ­ u )

+ R2 3
m1

m3

u

1 ­ u
+ 3

m2

m3

2
u

(1 ­ u )2

+ 3
m2

m3

2

ln(1 ­ u )

+ 3R
m2

m3

u

1 ­ u
­ ln(1 ­ u ). (26)

Motivated by these observations we shall assume in the
remainder of this paper that ® rst the excess properties of
all hard sphere systems depend only upon q and m1
through to m3, and that second ¹ex is a polynomial of
third order in R.
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3. Binary mapping

The small number of variables identi® ed in hard
sphere mixtures suggests a simple way to calculate the
unknown properties of a polydisperse system. We look
at an èquivalent’ system with equal values of q and m1
to m3 whose properties are known. From the discussion
above, the excess properties of this simpler system must
equal those of the unknown polydisperse mixture. Since
a binary mixture has four degrees of freedom (the dia-
meters and densities of each of the species) the simplest
èquivalent’ system is a binary mixture. To establish the
link between the two we shall ® nd it more convenient to
use the standardized central moments t i:

t i = dR f (R) e i, (27)

where e = (R ­ R)/ R is the fractional deviation of a
particle’s diameter from its mean value R = m1. With
this de® nition, t 2 is simply the square of the convention-
ally de® ned polydispersity (t 2 = s 2) while t 3 measures
the skewness of the diameter distribution. Values of t 3
for distributions which are of particular interest in
colloid science are collected together in table 1. The
relationship with the non-central moments mi used
above is

m1 = R,

m2 = R2(1 + t 2),

m3 = R3(1 + 3t 2 + t 3). (28)

A polydisperse system may be described either in terms
of the density q and the moments (m1,m2,m3) or else in
terms of q , the mean diameter R and the central
moments ( t 2, t 3) whichever is more convenient. Using
the central moment description it is easy to show that
the binary mixture, de® ned in table 2, is èquivalent’ to a
polydisperse system of density q , mean diameter R and
central moments ( t 2, t 3) if the two parameters d and ¢

are chosen so that

d =
2t 2

2 ­ t 3

(4t 3
2 + t 2

3)1/2 ,

¢ =
t 3

(4t 3
2 + t 2

3)1/2 . (29)

The two systems are then statistically equivalent, in the
sense that both have the same set of ® rst moments and
so, following the arguments of section 2, identical excess
thermodynamic properties. With this formalism the
pressure of a polydisperse mixture, Pp is equal to that
of an equivalent binary system Pb of diameter ratio a
and composition x1 (the fraction of large spheres):

b R3Pp( q R3, t 2, t 3)

= b R3Pb q R3, a =
(1 ­ d )(1 ­ ¢)
(1 + d )(1 + ¢) , x1 =

1 ­ ¢

2
.

(30)
This identity is, of course, exact by construction if the
equation of state is a function only of the ® rst three
diameter moments. This simpli® cation, as we have
seen, is exact for low densities, and furthermore is dis-
played by many of the successful ¯ uid equations of
states which describe hard spheres at high densities. In
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Table 1. Distribution function f (R), ith non-central moment mi , and skewness t 3 for log-normal, Schultz and triangular
distributions. Here R is the mean diameter and s is the standard deviation in units of R.

f (R) mi t 3

1 + s 2

R[2p ln(1+ s 2)]1/2 exp
­ ln2 [(1 + s 2)3/2(R/ R)]

2ln(1 + s 2) (1 + s 2) i(i­ 1)/2 3s 4 + s 6

1
R

( s ­ 2) s
­ 2

C ( s ­ 2)
R

R

s ­ 2­ 1

exp ­ s ­ 2 R

R

i­ 1

k=0
(1 + k s 2) 2s 4

1
6s 2R2 ( 6Ö s R ­ jR ­ Rj) 1

6s 2(i + 2)(i + 1) [(1 + 6Ö s )i+2 + (1 ­ 6Ö s )i+2 ­ 2] 0

Table 2. A binary mixture of hard spheres with
a ® xed value for the total number density of
particles of q and a mean diameter of R. The
properties of the mixture are a functionof the
variables d and ¢.

Species 1 Species 2

Number density q i q
(1 ­ ¢)

2
q
(1 + ¢)

2

Diameter Ri R
(1 + d )
(1 ­ ¢) R

(1 ­ d )
(1 + ¢)



the following section we shall assume furthermore that
this identity is also valid for crystalline phases.

4. Polydisperse solid

The starting point for any calculation of phase equi-
libria is knowledge of the pressure and the chemical
potentials. If the excess free energy is solely a function
of the central moments t i then the thermodynamic con-
ditions of equilibrium between two phases A and B may
be expressed concisely in terms of the moment chemical
potentials [9, 10], ¹ex

i = ¶ f ex/ ¶ p t i, as

¹ex
i (A) = ¹ex

i (B) for i = 0, 1, 2, etc.

P(A) = P(B). (31)
The moment potentials are physically just the coe� -
cients of the polynomial describing the e dependence
of the conventional particle potential, as is seen readily
from the expansion

¹ex(R) =
d f ex

d pf (R) =
i

¶ f ex

¶ p t i

d t i

d f (R) =
i

¹ex
i e

i. (32)

To calculate the pressure and moment potentials of
the polydisperse crystal we look at the binary substitu-
tionally disordered crystal which is isostructural with the
polydisperse crystal. It is well known that a bi-disperse
hard sphere system of very di� erent sizes phase sepa-
rates in the solid state. Computer simulation [23] and
density functional calculations [24] have suggested that
only for a diameter ratio above a limiting ratio
a 0.82 is the substitutionally disordered crystal
stable. Consequently the mapping described in section
3 will remain valid only for su� ciently narrow distribu-
tions such that

(1 ­ d )(1 ­ ¢)
(1 + d )(1 + ¢) > a . (33)

For a Schultz distribution, for instance, this condition is
satis® ed by distributions with normalized widths
t 2

1/ 2 = 0.10 or less. Presumably crystalline phases with
broader diameter distributions will be mechanically
unstable. For a su� ciently narrow distribution
( t 2 < t 2) the pressure of the polydisperse crystal Pp

may then be equated to the pressure of the equivalent
binary substitutional crystal Pb , from equation (30). For
further analysis clearly it is desirable to represent the
polydisperse pressure by an analytical function of q , t 2
and t 3. In the limiting situations where either t 2 or
q ! 0 the dimensionless polydisperse pressure b R3Pp

must converge to the well known monodisperse limit
b R3Pmono (for which we use the hard sphere crystal
EOS described by Young and Alder [25]). Therefore
we have used the following general form for the poly-

disperse pressure:

b R3Pp( q R3, t 2, t 3) = b R3Pmono( q R3)
+

i,j,k
Ci,j,k q R3 i

104t 2
j

t 3/ t 2
2

k
,

(34)
where we take i, j 1 and k 0. This functional form
was ® tted to 2499 solid state pressures, calculated from
equation (30) and the simulation data of Kranendonk
and Frenkel for the bi-disperse crystal [26], on an
equally spaced grid of values

1.0 q R3 1.2,

0.0 ( t 2)1/ 2 0.09,

­ 3 t 3/ t 2
2 3, (35)

which span the region where a polydisperse crystal is
expected to be mechanically stable [4, 5]. The ® tted coef-
® cients Ci,j,k are given in table 3. Since the functions to
which we ® t are not orthogonal the coe� cients are
strongly correlated. Consequently we have quoted the
coe� cients with a large number of digits to minimize
the e� ects of round-o� errors. The maximum absolute
error in the ® t to b R3P is in the region of 0.005.

To evaluate the moment chemical potentials we note
that, fromthe Widominsertion principle[27], the chemi-
cal potential in a binary crystal ¹ex

b may be regarded,
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Table 3. Coe� cients Ci,j,k for the polynomial ® t
de® ned in equation (34) for the pressure of
the polydisperse crystal.

i j k Ci,j,k

1 1 0 2.38757473054E+ 00
2 1 0 - 3.24559470155E+ 00
3 1 0 - 8.37814762476E­ 01
4 1 0 1.73995432108E+ 00
1 2 0 1.69484073832E­ 04
2 2 0 - 1.40882761492E­ 03
4 2 0 1.32927061091E­ 03
2 3 0 - 6.50683229654E­ 08
4 3 0 4.42576743097E­ 07
1 2 1 - 6.14652096927E­ 04
2 2 1 7.43464239815E­ 04
4 2 1 - 1.27697654731E­ 04
2 3 1 1.92087503881E­ 07
4 3 1 - 8.28828372138E­ 08
4 1 2 - 1.04120407215E­ 06
1 2 2 - 1.19746245184E­ 05
2 2 2 1.87824729388E- 05
4 2 2 - 6.91806011877E­ 06
1 3 2 6.22068020296E­ 08
2 3 2 - 6.53634610412E­ 08



formally at least, as a continuous function of R. Conse-
quently the size-dependent chemical potential must have
the functional form

b ¹ex
b (R) = b0 + b1R + b2R2 + b3R3, (36)

where the chemical potential is de® ned in terms of the
probability W (R) for inserting an arbitrary size test
sphere into the crystal from the expression b ¹ex

b (R) =
­ ln W (R). From the discussion above, it follows that
the probability W (R) should be equal at any value of R
for the polydisperse and the equivalent binary crystal.
With this identi® cation equation (36) may be simpli® ed
further by using the known [28] exact small and large R
limits for ¹ex(R). These constraints ® x two of the four
unknown coe� cients in equation (36),

b0 = ­ ln(1 ­ u ),

b3 =
p
6

b P. (37)

The remaining unknown coe� cients (b1 and b2) in the
polynomial for ¹ex(R) (equation (36)) may be deter-
mined by looking at particles with sizes equal to those
of the two species in the binary crystal, for which the
chemical potentials are known from the data of Kranen-
donk and Frenkel [26]. Values for b1 and b2 together
with equation (37) ® x the size dependence of the poly-
disperse potential as a function of the density q R3 and
the two central moments t 2 and t 3. We have determined
the central moment chemical potentials ¹ex

i (de® ned in
equation (32)) using the simulation data of Kranendonk
and Frenkel [26] as input and ® tted the results to the
following expressions:

b ¹ex
0 ( q R3, t 2, t 3) = b ¹ex

mono( q R3)

+
i,j,k

Di,j,k q R3 i
104t 2

j
t 3/ t 2

2
k
,

b ¹ex
1 ( q R3, t 2, t 3) =

i,j,k
Gi,j,k q R3 i

104t 2
j

t 3/ t 2
2

k
,

b ¹ex
2 ( q R3, t 2, t 3) =

i,j,k
H i,j,k q R3 i

104t 2
j

t 3/ t 2
2

k
, (38)

where ¹ex
mono is the excess chemical potential of the

monodisperse hard sphere crystal (obtained from [25]).
The ® tted coe� cients are given in tables 4± 6. The third
moment potential ¹ex

3 is given in terms of the expression
for b3 (equation (37)) as

b ¹ex
3 =

p
6

b R3Pp . (39)

where Pp is the polydisperse pressure.
In ® gure 2 we show the e� ect of s on the pressure

calculated for a polydisperse system. Two features are
striking. First, the e� ect of increasing polydispersity is
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Table 4. Coe� cients Di,j,k for the polynomial
® t de® ned in equation (38) for the zero
order central moment b ¹ex

0 of the polydis-
perse crystal.

i j k Di,j,k

1 1 0 4.972795952E+ 00
2 1 0 - 1.115877719E+ 01
3 1 0 7.254490173E+ 00
4 1 0 - 1.020223113E+ 00
2 2 0 - 2.915092900E­ 03
3 2 0 3.550802611E­ 03
4 2 0 - 5.512759696E­ 04
2 3 0 - 1.310283588E­ 07
3 3 0 4.750313909E­ 07
2 1 1 - 2.613788868E­ 06
1 2 1 - 1.029201075E­ 03
2 2 1 1.801003695E­ 03
3 2 1 - 8.635348552E­ 04
4 2 1 9.387749902E­ 05
2 3 1 3.747694880E­ 07
3 3 1 - 2.749597974E­ 07
1 2 2 - 1.392407811E­ 05
2 2 2 3.011842029E­ 05
3 2 2 - 1.633843239E­ 05
1 3 2 5.966026102E­ 08
2 3 2 - 6.148884367E­ 08

Table 5. Coe� cients Gi,j,k for the polynomial ® t
de® ned in equation (38) for the ® rst central
moment b ¹ex

1 of the polydisperse crystal.

i j k Gi,j,k

0 0 0 - 1.7971033849E+ 03
1 0 0 5.3208033955E+ 03
2 0 0 - 5.2321668770E+ 03
3 0 0 1.7391323532E+ 03
0 1 0 1.9798207676E+ 00
1 1 0 2.1649165105E+ 00
2 1 0 - 1.0773316766E+ 01
3 1 0 6.7197319818E+ 00
1 2 0 - 1.2140587800E­ 03
2 2 0 - 1.4502203598E­ 03
3 2 0 3.1160859538E­ 03
1 3 0 7.9878461029E­ 07
0 1 1 - 1.0751390580E+ 00
1 1 1 3.3430269778E+ 00
2 1 1 - 3.4933300357E+ 00
3 1 1 1.2294792317E+ 00
1 2 1 - 1.3006936998E­ 03
2 2 1 1.2784605489E­ 03
1 3 1 3.0358099947E­ 07
0 2 2 7.1325809825E­ 04
1 2 2 - 1.8970212632E­ 03
2 2 2 1.6552203114E­ 03
3 2 2 - 4.7173585242E­ 04
1 3 2 - 4.0349136042E­ 08



very di� erent for a crystalline as compared with a ¯ uid
system. For a crystal, increasing s raises the pressure,
while in a ¯ uid the converse is true. Second, the pressure
of a polydisperse crystal is very sensitive to even a rela-
tively moderate level of polydispersity, whereas by con-
trast the pressure of a ¯ uid phase is fairly insensitive to
s . Figure 3 shows that similar trends are also seen in the
dependence of the moment chemical potentials on s .

5. Conclusions

We have investigated the virial expansion of a contin-
uous polydisperse system of hard spheres. Our analysis
shows that the polydisperse virial coe� cients are a func-
tion of the total hard sphere number density and the ® rst
three moments, m1 through to m3, of the normalized
diameter distribution. This observation has two import-
ant consequences. First of all, it demonstrates that, at
least for low densities, the excess free energy (above that
of the polydisperse ideal gas) is purely a function of a
® nite set of moments. Second, the excess portion of the
particle chemical potential is a third-order polynomial
of the particle diameter.

In order to reduce the strictly in® nite number of equa-
tions for polydisperse coexistence to a ® nite set, previous

authors [9, 10] have assumed that Fex can be approxi-
mated by a function of a ® nite number of moments. The
current analysis demonstrates that the ®̀ nite moment’
assumption is exact for 3D hard spheres, at least in the
region where the virial expansion is convergent (see text
following equation (24)). Indeed, since the same simpli-
® cation is apparent also in both the scaled particle and
Percus± Yevick predictions, the ® nite moment approxi-
mation is probably a reasonable approximation at all
densities.
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Table 6. Coe� cients H i,j,k for the polynomial
® t de® ned in equation (38) for the second
central moment b ¹ex

2 of the polydisperse
crystal.

i j k Hi,j,k

0 0 0 - 1.592587102E+ 03
1 0 0 4.708423777E+ 03
2 0 0 - 4.632828411E+ 03
3 0 0 1.538993488E+ 03
0 1 0 - 9.746903189E­ 01
1 1 0 9.090570281E+ 00
2 1 0 - 1.568524068E+ 01
3 1 0 7.635577376E+ 00
1 2 0 5.858690060E­ 04
2 2 0 - 3.894632807E­ 03
3 2 0 3.724822978E­ 03
1 3 0 6.385702771E­ 07
0 1 1 - 1.060209846E+ 00
1 1 1 3.306204721E+ 00
2 1 1 - 3.462990053E+ 00
3 1 1 1.221108119E+ 00
1 2 1 - 8.742177575E­ 04
2 2 1 5.538426804E­ 04
3 2 1 2.942647615E­ 04
1 3 1 2.783232803E­ 07
0 2 2 7.099636534E­ 04
1 2 2 - 1.887268984E­ 03
2 2 2 1.641798433E­ 03
3 2 2 - 4.649114167E­ 04
1 3 2 - 3.703404903E­ 08
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Figure 2. Variation in pressure P = Pp ­ Pmono with den-
sity for a polydisperse crystal for di� erent levels of poly-
dispersity s . The reduced pressure b R3 P is calculated
from equation (34). The degree of skewness is ® xed at
t 3 = 2s 4. The dashed line shows, for comparison, the
pressure of the polydisperse ¯ uid ( s = 0.08) calculated
from the BMCSL equation of state [21, 22].
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Figure 3. E� ect of density q R3 on the zero order moment
potential b (¹ex

0 ­ ¹ex
mono) for di� erent levels of polydisper-

sity s . The solid lines depict results for the crystalline
phase while the dashed line shows, for comparison, the
results for the ¯ uid phase. The curves are calculated from
equations (38) and (A1).



One of the most interesting features of the prediction
that Fex depends on a small number of variables is that it
allows the properties of a polydisperse system to be
`mapped’ onto those of a much simpler binary mixture.
Using this approach we have developed a physically
reasonable model of a slightly polydisperse crystal. In
the current paper we have extended our previous work
[11] to include a description of the e� ect of both the
width and the skewness of the diameter distribution.
Furthermore, we present approximate analytical expres-
sions for the pressure and moment potentials.

Finally, we stress that although we believe the micro-
scopic foundation for the current model is reasonable it
is undoubtedly somewhat arbitrary. For instance, it is
di� cult to believe that all of the distortion introduced
into a crystalline lattice by a continuous range of dif-
ferent sized spheres can be reproduced by considering
just two di� erent sizes. However, we hope that the cur-
rent results will stimulate further investigations into the
structure of polydisperse crystals.

Appendix. Central moment potentials for the

polydisperse ¯ uid

The central moment chemical potentials ¹ex
i for the

BMCSL polydisperse ¯ uid [21, 22] are given by the
expressions:

b ¹ex
0 =

p
6

b PBMR3 ­ (2m2 + 1)(m2 ­ 1)2 ln(1 ­ u )

+ 3(m1 + m2)
u

1 ­ u
+ 3m2

2
u

(1 ­ u )2

+ m3
2
u ( u ­ 2)

1 ­ u
,

b ¹ex
1 =

p
2

b PBMR3 ­ 6(m3
2 ­ m2)2 ln(1 ­ u )

+ 3(2m1 + m2)
u

1 ­ u
+ 6m2

2
u

(1 ­ u )2

+ 3m3
2
u ( u ­ 2)

1 ­ u
,

b ¹ex
2 =

p
2

b PBMR3 ­ (6m3
2 ­ 3m2

2) ln(1 ­ u )

+ 3m1
u

1 ­ u
+ 3m2

2
u

(1 ­ u )2 + 3m3
2
u ( u ­ 2)

1 ­ u
,

b ¹ex
3 =

p
6

b PBMR3 ­ 2m3
2 ln(1 ­ u )

+ m3
2
u ( u ­ 2)

1 ­ u
, (A1)

where mi is the moment ratio

mi =
mi

m3
R3­ i. (A2)
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