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We present an extension of the two-point optical microrheology technique introduced by
Crocker et al. [J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G.
Yodh and D. A.Weitz, Phys. Rev. Lett., 2000, 85, 888 (ref. 7)] to high frequencies. The
correlated fluctuations of two probe spheres held by a pair of optical tweezers within a
viscoelastic medium are determined using optical interferometry. A theoretical model is
developed to yield the frequency-dependent one- and two-particle response functions from
the correlated motion. We demonstrate the validity of this method by determining the one-
and two-particle correlations in a semi-dilute solution of polystyrene in decalin. We find
that the ratio of the one- and two-particle response functions is anomalous which we
interpret as evidence for a slip boundary condition caused by depletion of polymer from the
surface of the particle.

I. Introduction

The dynamics of colloidal particles dispersed in viscoelastic polymer solutions are important in
both fundamental and applied science. Suspensions of particles in polymers are encountered in a
vast range of chemical products including coatings, controlled-release drug formulations, personal
care products, and filled polymer composites as well as being significant in many biological pro-
cesses, such as intracellular transport inside the viscoelastic cytoplasm of a cell.1 From a funda-
mental viewpoint, the characteristic lengths of polymers and colloids which differ by several orders
of magnitude, suggest that these mixtures should be ideal candidates for coarse-grained descrip-
tions. However while such approaches have been applied to equilibrium properties with con-
siderable success there have been no comparable attempts, so far, to explain and quantify the rich
dynamical and rheological properties of these complex mixtures. Understanding the dynamics of
these complex systems remains an important goal of soft matter science. In recent years con-
siderable experimental progress in the characterization of these systems has been made though the
development of optical microrheology techniques. The underlying idea, pioneered by Mason and
Weitz,2 is that the Brownian fluctuations of a colloidal probe particle reflect the viscoelasticity of
the medium in which the probe is embedded. By analysing the thermal motion it is possible to
obtain quantitative information about the rheological properties of the polymer matrix over an
extended range of frequencies not accessible to conventional rheometers. Optical microrheology
experiments typically monitor the thermal fluctuations of a single probe particle using a combi-
nation of video microscopy, optical interferometry,3,4 or diffusing wave spectroscopy.2 While
microrheological techniques enjoy significant potential advantages over traditional rheological
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methods complications in interpretation have limited their application.5 The problem is that the
presence of a particle can perturb the surrounding medium (by, for instance, depleting polymer
segments from near the particle surface) so that the dynamics of a single particle fails to reflect the
macroscopic viscoelasticity of the medium.6,7 In effect, a particle diffuses in a ‘‘pocket ’’ of material
whose local rheological properties are not those of the bulk. To circumvent this limitation, Crocker
et al.7 conjectured that the correlated fluctuations of two separated probe particles should measure
the bulk rheological properties of inhomogeneous materials more accurately than traditional one-
particle experiments. Using video microscopy they tracked the thermal diffusion of pairs of probe
particles embedded in a viscoelastic solution of guar and confirmed that the extracted viscoelastic
moduli were in close agreement with conventional measurements. Significantly, the single particle
results differed substantially, both in magnitude and scaling, from the two-particle results. Recently
these observations have been confirmed theoretically by Levine and Lubensky.8 Using an analogy
to classical electrostatics they have shown that while one-point techniques measure essentially a
local rheology, two-point correlations determine the bulk rheology. Interestingly, these observa-
tions suggest that combined one- and two-point measurements could be a powerful tool to probe
the nature of the specific interactions between particle and medium.

In this paper, we present an extension of the two-point correlation technique to high frequencies
using optical interferometry to track particles with high spatial and temporal resolution. Our
approach allows access to a much faster range of timescales than previous measurements,7 as we
show later. In consequence we are able to measure the rheological properties in a frequency range
from typically �101 to 104 rad s�1. Accurate measurements of multi-point correlations are sub-
stantially more demanding than one-point measurements. To achieve adequate signal-to-noise
levels we have been forced to use a more intense laser beam than usually employed in particle
tracking experiments.1,3,4 We consider explicitly the effects of optical-gradient forces and assume
that each particle is held within a fixed harmonic potential. The two-particle correlations measured
therefore differ from those discussed by Crocker et al.7 where diffusion occurs in the absence of a
potential. We develop a generalised Langevin theory to account for the correlated time-dependent
fluctuations in terms of the viscoelasticity of the medium. Our paper is organised as follows: In
Section II, we present an analysis of our two-particle microrheology experiments, and discuss how
two-particle correlations are related to the viscoelasticity of the medium (Section IIB). Next, in
Section III we describe our experimental setup and numerical procedures. Finally in Section IV we
present measurements of one- and two-point fluctuations of two widely-spaced spheres immersed
in a semi-dilute polymer solution which demonstrate the validity of our approach before we
conclude in Section V.

II. Theory

The fundamental concept underlying optical microrheology experiments is that the Brownian
motion of a rigid spherical tracer particle is determined by the viscoelasticity of the surrounding
medium. Typically the mean-squared displacement (MSD) hDx2(t)i ¼ h[x(t)� x(0)]2i of the particle
trajectory is measured (here x(t) denotes the tracer particle position after a time t and the brackets
denote a time or ensemble average). The MSD is related to the rheological properties of the
medium though linear response theory. In general, the time-dependent frictional force F(t) on a
sphere moving with a velocity u(t) through a viscoelastic medium may be written as9

FðtÞ ¼
Z t

�1
xðt� t0Þuðt0Þdt0; ð1Þ

where x(t) is the instantaneous friction coefficient. The convolution on the right hand side of eqn.
(1) reflects the viscoelastic nature of the suspending fluid. Energy is stored as the Brownian particle
diffuses, generating a ‘‘memory ’’ of the particle’s past motion. In consequence, the frictional force
experienced at a time t depends on the particle velocity at all earlier times t0. This non-local time-
dependence changes profoundly the Brownian trajectory so that from a measurement of the MSD
the time-dependent friction coefficient x(t) can be determined. The utility of microrheological
measurements depend on extracting information about the rheological properties of the medium
from the time dependence of x(t). Below we show how the time- or more conveniently the
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frequency-dependent pair friction coefficients may be determined from the correlated fluctuations
of two widely-separated tracer particles held by a pair of optical traps. We then review the con-
nection between the two-particle friction coefficients and the rheology of the medium.

A. Correlated Brownian motion in a viscoelastic fluid

The optical gradient forces on a high refractive-index particle within a tightly-focused laser beam
are well approximated by a harmonic interaction. Consequently, we model our experiments by
analysing the dynamics of a pair of rigid Brownian particles of radius a, each held in a harmonic
potential well, and separated by a distance r within a linear viscoelastic medium. Fluctuations in
the positions of the two particles are correlated as a result of the hydrodynamic interactions which
are transmitted through the viscoelastic matrix. The standard Langevin description (see for
instance refs. 10 and 11) for the Brownian motion of a pair of neutrally-buoyant particles of mass
m is readily modified to include the effects of the viscoelasticity of the medium,

m
du1ðtÞ
dt

¼ �
Z t

�1
x11ðt� t0Þu1ðt0Þdt0

�
Z t

�1
x12ðt� t0Þu2ðt0Þdt0 � kx1ðtÞ þ f R1 ðtÞ

m
du2ðtÞ
dt

¼ �
Z t

�1
x22ðt� t0Þu2ðt0Þdt0

�
Z t

�1
x21ðt� t0Þu1ðt0Þdt0 � kx2ðtÞ þ f R2 ðtÞ: ð2Þ

Here the subscripted indices label the two Brownian spheres, k is the harmonic force constant of
the optical traps (assumed identical), and fRi (t) denotes the random Brownian forces acting on
particle i (i ¼ 1,2). The time-dependent frictional coefficients xij(t) in eqn. (2) result from the
generalisation of the viscoelastic ‘‘memory ’’ (eqn. (1)) to the case of two interacting particles. The
self term x11(t) details the force acting on one sphere when the same sphere is moving (and the
second sphere is stationary) while the cross friction coefficient x12(t) describes the force generated
on one sphere by the motion alone of the other sphere. Since the random thermal and frictional
forces both have the same microscopic origin they must satisfy in equilibrium at a temperature T,
the fluctuation–dissipation theorem hfRi (t) fRj (t0)i ¼ kBTxij(t� t0).12

The coupled generalized Langevin eqn. (2) is simplified by introducing collective and relative
normal coordinates and using standard techniques to solve the resulting decoupled equations of
motion. Here we focus on the solution for the two-particle mean-squared displacement, namely

dijðtÞ ¼
DxiðtÞDxjðtÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2i
� �

hDx2j i
q ; ð3Þ

where the displacements are normalised by the equipartition result, hDx2i i ¼ 2kBT/k. The mutual
two-particle mean-squared displacement dij(t) for i 6¼ j details the correlation between the thermal
fluctuations of the two separated particles. The self term dii(t), is the MSD of particle i in the
presence of a second particle. The exact solution for the two-particle displacement function is from
eqn. (2),

~ddijðsÞ ¼
k

2

1

s3mþ s2~xxþ þ sk
þ 2dij � 1

s3mþ s2~xx� þ sk

" #
; ð4Þ

where the tilde denotes a Laplace transform, f~(s) ¼
R1
0 f (t)e�stdt, s is the Laplace variable and

~xx� ¼ ~xx11� ~xx12 . The complete solution eqn. (4) is still too complicated to use to analyse experi-
mental data. In order to derive a simpler result we make two simplifying assumptions.
We start by considering the importance of particle inertia. The mass m of the particle determines

the decay time tB�m/6pZ1a of the particle velocity autocorrelation function. Here Z1 is the high
frequency viscosity of the medium. For frequencies small compared to oB ¼ 1/tB the momentum
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of the Brownian particle will have relaxed to zero and we may neglect particle inertia. In our
experiments, oB is of order 10 MHz so neglecting particle inertia is an excellent approximation at
frequencies of experimental interest (op 20 kHz).

Secondly, we consider only the situation where the two probe spheres are separated by a distance
r which is large in comparison to the sphere radius a. In this limit, Batchelor13 has argued from
general symmetry considerations that the hydrodynamic functions depend on the dimensionless
sphere separation r ¼ r/a as,

x11 ¼ a0 þ
a2
r2

þ a4
r4

þ Oðr�6Þ

x12 ¼ � b1
r
� b3
r3

� Oðr�5Þ ð5Þ

where the coefficients ai and bi are constants for a given medium. This asymptotic solution reveals
that provided the two spheres are far enough apart, the self friction xii is, to leading order, inde-
pendent of the separation r. The mutual friction coefficient x12 by contrast depends sensitively on
the pair separation varying as 1/r at large r so that the ratio x12/x11 is a small parameter which
shrinks with increasing separation as 1/r. Consequently the exact expression for the two-particle
displacements (eqn. (4)) may be simplified by expanding d~ij in powers of ~xx12/~xx11 . At large r, only
the constant terms and the part which decays with distance as 1/r contribute to the displacement
field. Retaining these leading terms yields the desired simplified expression for the correlated sphere
displacements. Ignoring particle inertia, the one- and two-particle displacements may then be
expressed as

~ddiiðsÞ ¼
k

sðs~xxii þ kÞ

~ddijðsÞ ¼ �
k~xxij

ðs~xxii þ kÞ2
; ð6Þ

where i 6¼ j. Rearranging these equations gives expressions for the friction coefficients in terms of
experimental quantities, namely

s

k
~xxiiðsÞ ¼

1

s~ddiiðsÞ
� 1

s

k
~xxijðsÞ ¼

�~ddijðsÞ
s~dd2

iiðsÞ
: ð7Þ

Measurements of the single-particle fluctuations yield the self friction ~xxii(s), whereas the mutual
friction coefficient is found from a knowledge of both single-particle and two-particle positional
fluctuations. Our analysis is valid for any viscoelastic media, we make no assumptions about the
homogeneity of the medium. We assume only that: (i) the particle pair separation r is large in
comparison to the sphere radius a, and (ii) particle inertia is unimportant.

B. Relation to rheology

The relationship between the friction coefficient ~xxij(s) and the viscoelasticity of the medium is a
challenging problem in fluid mechanics. Some of the complications are illustrated in Fig. 1 which
shows schematically the microstructure of a colloid-polymer mixture. If the polymer is non-
adsorbing then around each particle is a depletion zone of width z where the polymer concentration
is less than in the bulk. Physically, we expect the motion of an individual sphere to depend on the
local environment rather than the rheology of the bulk solution. So it seems reasonable to expect
the depletion zone around a particle to speed up diffusion, in comparison to the case where the
medium is homogeneous. While such specific interactions between probe and medium have not
been considered, Levine and Lubensky8 have analysed in detail the simpler case of a viscoelastic
continuum. Over a wide range of frequencies, they predict that the single particle friction coefficient
satisfies the generalised Stokes–Einstein relation,
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~xxiiðsÞ ¼
6pa~GGðsÞ

s
; ð8Þ

where G~(s) is the Laplace shear modulus of the homogeneous medium. This result reduces to the
well-known Stokes expression (x ¼ 6pZa) for the friction of a rigid sphere in a viscous fluid9 if the
Laplace modulus is replaced by its Newtonian limit, G~(s) ¼ sZ. Deviations from eqn. (8) are
expected if the local environment around each sphere is not the same as the bulk.
While probe–particle interactions have a significant effect on single particle motion, Crocker

et al.7 have suggested that they should have a much weaker influence on the correlated fluctuations
of pairs of particles. This conjecture has recently been confirmed theoretically.8 Physically this is
because the hydrodynamic forces operating between particles separated by a distance r reflect an
average on a scale r, which is large in comparison to the width of the inhomogeneous zone z around
each sphere. In a homogeneous viscoelastic medium, the two-particle friction coefficient has the
form,

~xxijðsÞ ¼ � 9pa~GGðsÞ
rs

: ð9Þ

This equation is valid provided the pair separation r is large in comparison to the sphere radius a.
In the Newtonian limit, we recover the asymptotic form of the mutual friction coefficient for a
viscous fluid (xij ¼ �9pZa/r).13

III. Materials and methods

A. Dual-beam optical tweezers

The details of the dual-beam optical tweezer equipment used in the present experiments have been
described in a preceding publication.11 Fig. 2 shows schematically the apparatus. In brief, two
spherical colloidal particles are held by optical gradient forces near the focus of a pair of ortho-
gonally-polarised laser beams (l ¼ 1064 nm). The mean separation r between the probe particles
was varied by altering the positions of the trapping lasers with an external computer-controlled
mirror. The thermal fluctuations in the position of each probe particle were monitored by recording
the interference between the forward scattered and transmitted infra-red beams with a pair of
quadrant photodetectors. Custom-built current-to-voltage converters allowed the in-plane posi-
tions of both spheres to be recorded with a spatial resolution of �1 nm at time intervals of 50 ms.
The optical gradient force on a sphere displaced from the focus of the laser beam is harmonic.

The force constant k of each trap was determined in a separate calibration experiment.11 Colloidal

Fig. 1 Schematic illustration of two-point microrheology. Two spheres of radius a are suspended a distance r
apart in a semi-dilute polymer solution. The non-adsorbing polymer is depleted from an interfacial region of
width z surrounding each particle (shown hatched). The dynamics of an individual particle is a sensitive
function of the width and properties of the interfacial zone. By contrast, the correlated pair fluctuations depend
upon the mechanical properties of the medium, averaged on the longer scale r. In the limit when r� a� z the
pair fluctuations measure the bulk rheology.
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spheres dispersed in decalin were trapped in each of the two beams in turn. The single particle mean
squared displacement hDx2(t)i was measured and fitted to hDx2(t)i ¼ hDx2i[1� exp(�t/t)] to yield
the trap stiffness k ¼ 6pZa/t from known values of the particle radius a and solvent viscosity Z. The
intensity of the two lasers was adjusted until the stiffness of the traps differed by less than �5%. For
a given geometry and laser intensity, the harmonic force constant k is a function only of the
refractive index mismatch between particle and medium, so these calibration constants are expected
to hold for the polymer data presented below. The root-mean-square fluctuation in the particle
position in each trap was ca. 50 nm.

B. Numerical methods

The normalised one- and two-particle mean-squared displacements dij(t) were calculated from the
measured particle trajectories {x1(t),x2(t)} using fast Fourier transform algorithms.11 The Laplace
transform of the one-particle MSD dii(t) was determined from a regularised fit to a linear super-
position of exponential terms,

diiðtÞ ¼ 1�
XN
k¼1

Lke
�t=tk ; ð10Þ

where N is the number of terms, tk is the decay time specified on a logarithmic grid and the
coefficients Lk were determined by requiring that the spectrum of relaxation times remain smooth
and penalizing sums proportional to their second derivative.14 The curvature penalty suppresses
unphysical wild oscillations in the solution. The constrained regularised solution to eqn. (10) was
found using the CONTIN algorithm.15 Once Lk have been determined the Laplace transform may
be calculated exactly as,

~ddiiðsÞ ¼
1

s
�
XN
k¼1

Lk
1

sþ t�1
k

: ð11Þ

Fig. 2 Dual-beam optical tweezer setup: Optical traps are generated by focusing two orthogonally-polarized
IR laser beams (L1 and L2) using a high numerical aperture microscope objective. Intensity shifts caused by
interference between the direct beam and light scattered by the trapped sphere are imaged onto a pair of
quadrant detectors (QD1 and QD2). A polarizing beam splitter (PBS) is used to separate the two orthogonal
signals. The x and y positions are derived by combining the voltages from the four segments of the quadrant
photodiodes using low-noise analog electronics. The signals are then digitized and stored on a PC.
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The Laplace transform of the two-particle MSD dij(t) was evaluated by a two step numerical
procedure. First, dij(t) was fitted to a series of cubic polynomial splines. The contribution to the
transform from each time interval was then expressed in terms of a series of incomplete gamma
functions which were evaluated numerically. Tests showed that errors in the transform were of the
order of 5%, except near the frequency extremes where truncation errors became more significant.

IV. Results

To test our approach we have made measurements on a viscoelastic semi-dilute solution of
polystyrene (PS) with an average molecular weight of 107 (MW/MN ¼ 1.19) in a mixed cis- and
trans-decalin solvent (volume fraction cis-decalin 0.48). Linear polystyrene in decalin is a well
studied system.16 The Y-temperature of PS in an equal volume mixture of cis- and trans-decalin is
�16 �C so at the temperature of our measurements (�23 �C) decalin remains a near-Y solvent.
Using literature values16 we estimate the polymer radius of gyration at 23 �C as Rg� 102 nm,
slightly larger than the value under Y-conditions of 87 nm. The overlap concentration c* is 3.7 mg
cm�3. Sterically-stabilised poly(methyl methacrylate) spheres of radius a ¼ 0.643 mm were added as
probe particles at a volume fraction f� 10�6. The viscous suspensions were loaded into flat,
rectangular capillary tubes 170 mm thick which were hermetically sealed with a fast-setting epoxy
glue and mounted onto a microscope slide. The samples were left for at least forty minutes to allow
the particles to settle to the bottom surface before the beginning of an experiment. The trajectories
of two spheres were collected at ten roughly even-spaced pair separations between 3 mm and 17 mm.
223 data points were collected at each separation at a sampling frequency of 20 kHz. To avoid wall
effects, we analysed only spheres at least 15 mm away from the capillary walls. All measurements
were performed at room temperature.
The time-dependent trajectory of a sphere diffusing in a PS solution is illustrated in Fig. 3. In

contrast to cross-linked gels, the entanglements present in a semi-dilute polymer solution are only
temporary so on a sufficiently long time scale the solution is expected to be purely viscous. Con-
sequently the trajectory, when averaged over a long enough period, will depend only on the
external potential and not on the viscoelasticity of the solution. The optical forces are harmonic so
that at long times the particle probability distribution will be Gaussian and the mean squared
displacement will plateau at the equipartition limit, hDx2(t)i ¼ 2kBT/k. This behaviour is seen in
Fig. 3(d). At short times, the particle statistics are also Gaussian although diffusion is now hindered
by the temporary entanglements found in the surrounding semi-dilute polymer solution (Fig. 3(a)).
The non-Gaussian dynamics at intermediate times (Fig. 3(b) and (c)) are most intriguing. The
trajectory is highly anisotropic and does not resemble the isotropic diffusion seen on either shorter
or longer time intervals. The particle seems to make infrequent large ‘‘ jumps’’ over a distance
which is comparable to the polymer radius of gyration. This behaviour suggests that the instan-
taneous micro-environment around each sphere in a polymer solution is heterogeneous and evolves
in time.
To characterise the mechanical environment in detail we calculated the mean-squared x-dis-

placement, hDx2(t)i, from the trajectory of a single particle. The data were recorded from a pair of
widely-separated spheres trapped within a PS solution. Fig. 4 depicts one of the two MSDs,
normalised by the plateau displacement, at a number of different pair separations. Data for the
second sphere were essentially identical and are not shown. As expected, there is no systematic
dependence of the single particle MSD on the pair separation r, provided the two spheres remain
well separated (r� a). The measured hDx2(t)i is sensitive only to the local rheological environment
around each particle. Because of the high frequency elasticity of the polymer solution, hDx2(t)i
increases approximately as t0.8 at early times rather than linearly, as expected for diffusion in a
purely viscous medium. At long times hDx2(t)i reaches the equipartition plateau.
Using the same trajectory data, we have also calculated the two-point correlations. We expect

that for widely-spaced particles the strength of the correlated positional fluctuations will decay
inversely with the particle spacing. To confirm this, we plot in Fig. 5 the mutual mean-squared
displacement dij(t) multiplied by the dimensionless spacing r. The data measured for a range of
different pair spacings is seen to collapse onto a common curve over a wide range of times,
although deviations are evident at very long times. The variations seen at long times do not depend
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systematically on the pair spacing r and are probably a reflection of poor statistics or mechanical
vibrations. The peak seen in dij(t) is a consequence of the applied optical potential since for very
long times the correlations between the two particles must decay ultimately back to zero.

The one- and two-particle mean-squared displacements contain features which originate from
the viscoelasticity of the polymer solution and from the applied optical forces. To separate the two
contributions we use the analysis of Section II. Inverting dii(t) and dij(t) yields friction coefficients
which, apart from a simple scaling, do not depend on the applied potential. The computed friction
coefficients are shown in the inset in Fig. 6. The frequency dependence seen is in sharp contrast to
that expected for a purely viscous fluid where ~xxij remains independent of frequency. The steady
decrease in the particle friction with increasing frequency reflects the viscoelasticity of the polymer
solution and in particular its ability to store energy elastically at high frequencies. To discuss
further the connection between the particle friction and the medium rheology we focus on the
frequency scaled functions s~xxii and �sr~xxij . In the continuum model of Levine and Lubensky8,17

both functions are predicted to be simple multiples of the Laplace-transformed shear modulus G~(s)
so that the ratio �sr~xxij/s~xxii should be frequency-independent and from, eqns. (8) and (9), equal to
3/2. The experimentally-derived values for s~xxii and �sr~xxij are shown in Fig. 6. In partial accord
with these predictions, we find that the two scaled friction coefficients do exhibit a very similar
functional form (except possibly at the highest frequencies). However the ratio �sr~xxij/s~xxii is not
3/2 but of order unity.

Fig. 3 The measured two-dimensional trajectory of one of two widely separated spheres in a semi-dilute PS
solution (c ¼ 1.7 c*) over a duration of (a) 0.0128 s, (b) 0.0512 s, (c) 0.2048 s, and (d) 0.8192 s. The sampling
frequency is 20 kHz.
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While we do not have a complete understanding of this discrepancy one possible explanation is
that the nature of the shear coupling between the particle and the medium differs in the one- and
two-particle situations. In the immediate vicinity of a probe particle a depletion zone exists with a
reduced polymer segment concentration. While hydrodynamic forces will still couple the motion of
the probe particle to the polymer matrix, the depletion zone could modify the nature of the
boundary conditions at the particle surface. For a rigid spherical particle, the choice of boundary
conditions changes the friction coefficient by a factor of 3/2 from 6pZa for stick to 4pZa for slip.9

Cardinaux et al.18 have recently suggested that a slip, as opposed to a stick, boundary condition
might apply to single particle motion in giant-micellar solutions. Assuming the depletion of
polymer has a similar effect, then we should identify ~xxii(s) with 4paG~(s)/s rather than eqn. (8). In the

Fig. 5 The time dependence of the scaled mutual two-particle mean squared displacement rdij(t) measured at
four different pair separations r (c ¼ 1.7 c*). For intermediate times all of the data collapse onto a common
curve showing that the strength of the two particle correlations varies inversely with the pair spacing r. The
solid line is the average for all of the data collected.

Fig. 4 Single particle mean squared displacements measured for a pair of widely-separated particles (c ¼ 1.7
c*). The different curves depict data collected at three different pair separations ranging from r ¼ 4.53 to 16.96.
No systematic variation with r is evident.
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case of slip, the two-particle friction coefficient xij is given by19 �r~xxij(s) ¼ 4paG~(s)/s. In this case
the ratio �r~xxij/~xxii is 1.0 which is in close agreement with the value found experimentally. Further
experimental and theoretical work is necessary to confirm this picture. A detailed comparison
between the one- and two-particle friction coefficients as a function of polymer concentration and
molecular weight is currently underway and will be the subject of future publications.

The frequency-dependent complex shear modulus G*(o) ¼ G0(o)+ iG00(o) may be determined
from either the one- (after allowing for the slip boundary conditions) or two-point friction coef-
ficients. Fig. 7 shows the storage and loss moduli computed from tweezer measurements for a 2.9 c*
solution of polystyrene. The data exhibit the features expected for an entangled flexible polymer
solution.10 At high frequencies, above the maximum relaxation time of the solution, the shear and
loss moduli are expected to show a power law dependence on o. Under Y-conditions, G0 and G00

Fig. 6 Comparison of the frequency dependence of the scaled two-particle �(s/k)r~xxij(s) (solid) and single-
particle friction coefficients (s/k)~xxii(s) (dashed) determined from the correlated fluctuations of two widely-
spaced particles in a semi-dilute (c ¼ 1.7 c*) polymer solution. The inset diagram shows �(r/k)~xxij(s) (solid) and
~xxii(s)/k (dashed) as a function of frequency.

Fig. 7 Scaled storage 6paG0(o)/k (open circles) and loss moduli 6paG00(o)/k (filled circles) as function of
frequency for 2.9 c* solution of polystyrene in decalin. The dashed lines show predictions from Zimm theory.
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are predicted by the Zimm model to vary as o2/3. Fig. 7 shows that at high frequencies the complex
modulus G*(o) follows closely the predictions of Zimm theory. At low frequencies the elasticity of
the entanglement network contributes and the measured G0(o) is increased above the Zimm pre-
dictions as expected for a semi-dilute solution.

V. Summary

In this paper we have demonstrated that combined measurements of one- and two-particle thermal
fluctuations can be used to provide new insights into the the nature of the interface around a probe
sphere embedded in a viscoelastic medium. We have measured the correlated Brownian motion of
two widely-separated spheres held by a pair of tightly-focused laser beams within a polymer
solution. Photodetection of scattered light was used to record the trajectories of the trapped
particles with high spatial and temporal resolution. This new technique differs from previous two-
point microrheological studies7 in its spatial resolution and access to high frequencies; frequencies
up to 104 rad s�1 are readily detectable. In comparison, the frequency range of previous two-point
measurements7 have been limited by the speed of video microscopy to o� 102 rad s�1. Faster A/D
data acquisition should enable the optical tweezer technique to be extended to still higher fre-
quencies approaching 107 rad s�1.
In order to achieve good statistics on two-particle correlations we have used a significantly

higher-powered laser beam than previous (single-particle) optical tracking studies.1,3,4 As a result
we are no longer able to ignore the effects of optical forces applied by the laser beam on the
measured particle fluctuations, as previous studies have assumed implicitly.1,3,4 We account for the
optical-gradient forces by analysing the dynamics of two harmonically-bound particles embedded
in a general viscoelastic medium. By making two simplifying assumptions, which we show are valid
in our experiments, we develop simple expressions for the frequency-dependent single- and two-
particle friction coefficients, in terms of measurable quantities. We expect the single-particle friction
coefficient to be sensitive to the rheological properties of the interfacial zone immediately sur-
rounding a probe sphere while two-point measurements should allow the bulk rheological prop-
erties to be determined.
We have demonstrated the validity of our approach by analysing the one- and two-point cor-

relations measured for 1.28 mm diameter poly(methyl methacrylate) spheres suspended in a semi-
dilute solution of polystrene. One- and two-particle friction coefficients are computed. We confirm
that over a wide range of particle separations, the two-point correlations vary inversely with the
particle spacing r while the one-point correlations are independent of r. The two friction coefficients
show a very similar dependence on frequency with the single-particle friction coefficient ~xxii(s)
approximately equal to the corresponding two-particle friction coefficient �r~xxij(s). While viscoe-
lastic theory confirms that the two functions should have a similar frequency dependence, the ratio
measured is in quantitative disagreement with recent theoretical calculations for a viscoelastic
continuum,8 which predict a ratio of 3/2. We suggest that this discrepancy reflects the existence of a
depletion zone around each particle in a non-adsorbing polymer solution. As a consequence, the
shear coupling between particle and medium may be approximated by a slip rather than a stick
boundary condition on the particle surface. With this assumption, either the one- or two-particle
friction coefficients can be used to obtain the bulk rheology.
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