Appendix C

References

 

(1)            Tolansky, S.,
The history and use of diamond, Methuen, London (1962).

 

(2)            www.minerals.net,
www.minerals.net figures as of 16 September 2001  (2001).

 

(3)            American Museum of Natural History,
The Nature of Diamonds (www.amnh.org/exhibitions/diamonds/how.html)  (2001).

 

(4)        Tennant, S.,
Philosophical Transactions of the Royal Society, vol. 87, no. 97, p. 123 (1796).

 

(5)        Van Enckevort, W.J.P.,
Physical, chemical and microstructural characterisation and properties of diamond in Synthetic diamond: emerging CVD science and technology,
edited by Spear, K.P. and Dismukes, J.P., J. Wiley & Sons, Inc., New York (1994).

 

(6)        Kroto, H.W., Heath, J.R., O'Brian, S.C., Curl, R.F. and Smalley, R.E.,
C60 - Buckminsterfullerene,
Nature, vol. 318, no. 6042, pp. 162-163 (1985).

 

(7)        Johnson, R.D., Bethune, D.S. and Yannoni, C.S.,
Fullerene structure and dynamics - a magnetic-resonance potpourri,
Accounts of Chemical Research, vol. 25, no. 3, pp. 169-175 (1992).

 

(8)        Wagner, J., Ramsteiner, M., Wild, C. and Koidl, P.,
Resonant Raman-scattering of amorphous carbon and polycrystalline diamond films,
Physical Review B-Condensed Matter, vol. 40, no. 3, p. 3 (1989).

 

(9)        May, P.W.,
Molecule of the Month, July 1996,
http://www.bris.ac.uk/Depts/Chemistry/MOTM/diamond/diamond.htm (1996).

 

(10)      Bachmann, P.K., Leers, D., Lydtin, H. and Wiechert, D.U.,
Diamond and Related Materials, vol. 1, p. 1 (1991).

 

(11)      Angus, J.C. and Hayman, C.C.,
Low-pressure, metastable growth of diamond and “diamondlike” phases,
Science, vol. 241, no. 4868, pp. 913-921 (1988).

 

(12)      Stark, J.G. and Wallace, H.G.,
Chemistry Data Book, 2nd Edition in S.I. Edition, John Murray, London (1982).

 

(13)      Yoder, M.N.,
The vision of diamond as an engineered material in Synthetic diamond: emerging CVD science and technology,
edited by Spear, K.P. and Dismukes, J.P., J. Wiley & Sons, Inc., New York (1994).

 

(14)      May, P.W.,
CVD diamond - a new technology for the future?,
Endeavour Magazine, vol. 19, no. 3, pp. 101-106 (1995).

 

(15)      Martin, H.B. and Morrison Jr, P.W.,
In situ infrared measurement of a diamond electrochemical electrode during cyclic voltammetry,
Oral presentation to Diamond 2000, Porto, Portugal (not published in the conference proceedings) (2000).


(16)      Bergonzo, P., Brambilla, A., Tromson, D., Mer, C., Guizard, B., Foulon, F. and Amosov, V.,
CVD diamond for radiation detection devices,
Diamond and Related Materials, vol. 10, pp. 631-638 (2001).

 

(17)      Ashfold, M.N.R., May, P.W., Rego, C.A. and Everitt, N.M.,
Thin film diamond by chemical vapour deposition methods,
Chemical Society Reviews, vol. 23, no. 1, pp. 21-30 (1994).

 

(18)      May, P.W.,
Diamond thin films: a 21st-century material,
Philosophical Transactions of The Royal Society of London Series A - Mathematical Physical and Engineering Sciences, vol. 358, no. 1766, pp. 473-495 (2000).

 

(19)      Cappelli, M.A. and Owano, T.G.,
in Low Pressure Synthetic Diamond: Manufacturing and Applications, edited by Dischler, B. and Wild, C., Springer series in materials processing, Springer-Verlag, Berlin (1998).

 

(20)      Ertl, S., Gluche, P., Flöter, A., Rösch, R. and Kohn, E.,
High precision diamond surgical tools, Invited oral presentation at Diamond 2000, Porto, Portugal (not published in the conference proceedings) (2000).

 

(21)      Chhowalla, M.,
Thick, well-adhered, highly stressed tetrahedral amorphous carbon,
Diamond and Related Materials, vol. 10, pp. 1011-1016 (2001).

 

(22)      Seal, M.,
High technology applications of diamond in The properties of natural and synthetic diamond, edited by Field, J.E., Academic Press, London (1992).

 

(23)      Xu, J.S., Granger, M.C., Chen, Q.Y., Strojek, J.W., Lister, T.E. and Swain, G.M.,
Boron-doped diamond thin-film electrodes,
Analytical Chemistry, vol. 69, no. 19, pp. 591A-597A (1997).

 

(24)      Werner, M., Job, R., Zaitzev, A., Fahrner, W.R., Seifert, W., Johnston, C. and Chalker, P.R.,
The relationship between resistivity and boron doping concentration of single and polycrystalline diamond,
Physica Status Solidi A-Applied Research, vol. 154, no. 1, pp. 385-393 (1996).

 

(25)      Petherbridge, J.R., May, P.W., Fuge, G.M., Robertson, G.F., Rosser, K.N.
and Ashfold, M.N.R.,
Sulfur doping of diamond films: spectroscopic, electronic and gas-phase studies,
Journal of Applied Physics, under peer review, (2001).

 

(26)      Petherbridge, J.R., May, P.W., Fuge, G.M., Rosser, K.N. and Ashfold, M.N.R.,
In situ plasma diagnostics of the chemistry behind sulfur doping of CVD diamond films,
Diamond and Related Materials, under peer review, (2002).

 

(27)      Okushi, H.,
High quality homoepitaxial CVD diamond for electronic devices,
Diamond and Related Materials, vol. 10, pp. 281-288 (2001).

 

(28)      Chalker, P.R. and Johnston, C.,
Thin film diamond sensor technology,
Physica Status Solidi A-Applied Research, vol. 154, no. 1, pp. 455-466 (1996).

 

(29)      Swain, G.M.,
Diamond electrodes for electrochemical uses in Advanced materials 1997: Topics in diamond and c-BN research,, Proceedings of the 4th NIRIM International Symposium on Advanced Materials (ISAM ’97), Tsukuba, Japan (1997).


(30)      Wang, N.W., Fox, N.A., Steeds, J.W., Lin, S.R. and Butler, J.E.,
Negative electron affinity observed in boron-doped p-type diamond films by scanning field emission spectroscopy,
Journal of Applied Physics, vol. 80, no. 12, pp. 6809-6812 (1996).

 

(31)      Wang, N.W.,
Electron emission from various diamond films in Advanced materials 1997: topics in diamond and c-BN research,   (1997).

 

(32)      Pleskov, Y.V., Sakharova, A.Y., Krotova, M.D., Bouilov, L.L. and Spitsyn, B.V.,
Photoelectrochemical properties of semiconductor diamond,
Journal of Electroanalytical Chemistry, vol. 228, no. 1-2, pp. 19-27 (1987).

 

(33)      Martin, H.B., Argoitia, A., Landau, U., Anderson, A.B. and Angus, J.C.,
Hydrogen and oxygen evolution on boron-doped diamond electrodes,
Journal of The Electrochemical Society, vol. 143, no. 6, pp. L133-L136 (1996).

 

(34)      Tenne, R., Patel, K., Hasimoto, K. and Fujishima, A.,
Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes,
Journal of Electroanalytical Chemistry, vol. 347, no. 1-2, pp. 409-415 (1993).

 

(35)      Katsuki, N., Wakita, S., Nishiki, Y., Shimamune, T., Akiba, Y. and Iida, M.,
Electrolysis by using diamond thin film electrodes,
Japanese Journal of Applied Physics, vol. 36, no. 3A, pp. L260-L263 (1997).

 

(36)      Beck, F., Krohn, H., Kaiser, W., Fryda, M., Klages, C.P. and Schäfer, L.,
Boron doped diamond/titanium composite electrodes for electrochemical gas generation from aqueous electrolytes,
Electrochimica Acta, vol. 44, pp. 525-532 (1998).

 

(37)      Bouamrane, F., Tadjeddine, A., Tenne, R., Butler, J.E., Kalish, R. and Lévy-Clément, C.,
Underpotential deposition of Cu on boron-doped diamond thin films,
Journal of Physical Chemistry, vol. 102, no. 1, pp. 134-140 (1998).

 

(38)      Compton, R.G., Marken, F., Goeting, C.H., McKeown, R.A.J., Foord, J.S.,
Scarsbrook, G., Sussmann, R.S. and Whitehead, A.J.,
Sonoelectrochemical production of hydrogen peroxide at polished boron-doped diamond electrodes,
Chemical Communications,  pp. 1961-1962 (1998).

 

(39)      Goeting, C.H., Foord, J.S., Marken, F. and Compton, R.G.,
Sonoelectrochemistry at tungsten-supported boron-doped CVD diamond electrodes,
Diamond and Related Materials, vol. 8, no. 2-5, pp. 824-829 (1999).

 

(40)      Katsuki, N., Takahashi, E., Toyoda, M., Kurosu, T., Iida, M., Wakita, S., Nishiki, Y.
and Shimamune, T.,
Water electrolysis using diamond thin-film electrodes,
Journal of The Electrochemical Society, vol. 145, no. 7, pp. 2358-2362 (1998).

 

(41)      Yano, T., Tryk, D.A., Hasimoto, K. and Fujishima, A.,
Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in alkaline solution,
Journal of Electroanalytical Chemistry, vol. 145, no. 6, pp. 1870-1876 (1998).

 

(42)      Agra-Gutiérrez, C., Hardcastle, J.L., Ball, J.C. and Compton, R.G.,
Anodic stripping voltammetry of copper at insonated glassy carbon-based electrodes: application to the determination of copper in beer,
The Analyst, vol. 124, no. 7, pp. 1053-1057 (1999).


(43)      Fujishima, A., Rao, T.N., Popa, E., Sarada, B.V., Yagi, I. and Tryk, D.A.,
Electroanalysis of dopamine and NADH at conductive diamond electrodes,
Journal of Electroanalytical Chemistry, vol. 473, no. 1-2, pp. 179-185 (1999).

 

(44)      Granger, M.C., Xu, J., Strojek, J.W. and Swain, G.M.,
Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography,
Analytica Chemica Acta, vol. 397, pp. 145-161 (1999).

 

(45)      Manivannan, A., Tryk, D.A. and Fujishima, A.,
Detection of trace lead at boron-doped diamond electrodes by anodic stripping analysis,
Electrochemical and Solid-State Letters, vol. 2, no. 9, pp. 455-456 (1999).

 

(46)      Nakabayashi, S., Ohta, N. and Fujishima, A.,
Dye sensitization of synthetic p-type diamond electrode,
Physical Chemistry Chemical Physics, vol. 1, pp. 3993-3997 (1999).

 

(47)      Okino, F., Shibata, H., Kawasaki, S., Touhara, H., Momota, K., Nishitani-Gamo, M.,
Sakaguchi, I. and Ando, T.,
Electrochemical fluorination of 1,4-difluorobenzene using boron-doped diamond thin-film electrodes,
Electrochemical and Solid-State Letters, vol. 2, no. 8, pp. 382-384 (1999).

 

(48)      Popa, E., Notsu, H., Miwa, T., Tryk, D.A. and Fujishima, A.,
Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes,
Electrochemical and Solid-State Letters, vol. 2, no. 1, pp. 49-51 (1999).

 

(49)      Saterlay, A.J., Foord, J.S. and Compton, R.G.,
Sono-cathodic stripping voltammetry of manganese at a polished boron-doped diamond electrode: application to the determination of manganese in instant tea,
The Analyst, vol. 124, no. 12, pp. 1791-1796 (1999).

 

(50)      Vinokur, N., Miller, B., Avyigal, Y. and Kalish, R.,
Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes,
Journal of The Electrochemical Society, vol. 146, no. 1, pp. 125-130 (1999).

 

(51)      Yano, T., Popa, E., Tryk, D.A., Hasimoto, K. and Fujishima, A.,
Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in acid solution,
Journal of The Electrochemical Society, vol. 146, no. 3, pp. 1081-1087 (1999).

 

(52)      Yoshihara, S., Shinozaki, K., Shirakashi, T., Hashimoto, K., Tryk, D.A. and Fujishima, A.,
Photoelectrodeposition of copper on boron-doped diamond films: application to conductive pattern formation on diamond. The photographic diamond surface phenomenon,
Electrochimica Acta, vol. 44, no. 16, pp. 2711-2719 (1999).

 

(53)      Beck, F., Kaiser, W. and Krohn, H.,
Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry,
Electrochimica Acta, vol. 45, pp. 4691-4695 (2000).

 

(54)      Fujishima, A., Rao, T.N. and Tryk, D.A.,
TiO2 photocatalysts and diamond electrodes,
Electrochimica Acta, vol. 45, pp. 4683-4690 (2000).

 

(55)      Michaud, P.-A., Mahé, E., Haenni, W., Perret, A. and Comninellis, C.,
Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes,
Electrochemical and Solid-State Letters, vol. 3, no. 2, pp. 77-79 (2000).

 

(56)      Rao, T.N. and Fujishima, A.,
Recent advances in electrochemistry of diamond,
Diamond and Related Materials, vol. 9, pp. 384-389 (2000).

 

(57)      Wang, J., Swain, G.M., Tachibana, T. and Kobashi, K.,
Incorporation of Pt particles in boron-doped diamond thin films: Applications in electrocatalysis,
Electrochemical and Solid-State Letters, vol. 3, no. 6, pp. 286-289 (2000).

 

(58)      Alehashem, S., Chambers, F., Strojek, J.W., Swain, G.M. and Ramesham, R.,
Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes,
Analytical Chemistry, vol. 67, no. 17, pp. 2812-2821 (1995).

 

(59)      Pleskov, Y.V., Mishuk, V.Y., Abaturov, M.A., Elkin, V.V., Krotova, M.D., Varnin, V.P.
and Teremetskaya, I.G.,
Synthetic semiconductor diamond electrodes: determination of acceptor concentration by liner and non-linear impedance measurements,
Journal of Electroanalytical Chemistry, vol. 396, no. 1-2, pp. 227-232 (1995).

 

(60)      van de Lagemaat, J., Vanmaekelbergh, D. and Kelly, J.J.,
Electrochemistry of homoepitaxial CVD diamond: energetics and electrode kinetics in aqueous electrolytes,
Journal of Electroanalytical Chemistry, vol. 475, no. 2, pp. 139-151 (1999).

 

(61)      Eversole, W.C.,
U.S. Patents 3030187 & 3030188 (1952).

 

(62)      Bundy, F.P., Hall, H.T., Strong, H.M. and Wentorf, R.H.,
Nature, vol. 176, p. 51 (1955).

 

(63)      Ashfold, M.N.R., May, P.W., Rego, C.A., Everitt, N.M. and Trevor, C.G.,
Diamond Deposition in a Hot Filament Reactor Using Different Hydrocarbon Precursor Gases,
Applied Surface Science, vol. 68, p. 299 (1993).

 

(64)      Tsang, R.,
Characterisation of the gas-phase environment in a hot filament diamond chemical vapour deposition chamber using molecular beam mass spectroscopy,
Ph.D. Dissertation, University of Bristol (1997).

 

(65)      Tsang, R.S., May, P.W., Cole, J. and Ashfold, M.N.R.,
Simulations of the Hot Filament Diamond CVD Gas Phase Environment: Direct Comparison with Experimental Measurements,
Diamond and Related Materials, vol. 8, pp. 1388-1392 (1999).

 

(66)      May, P.W., Rego, C.A., Thomas, R.M., Ashfold, M.N.R., Rosser, K.N. and Everitt, N.M.,
CVD diamond wires and tubes,
Diamond and Related Materials, vol. 3, no. 4-6, pp. 810-813 (1994).

 

(67)      Cooper, J.B., Pang, S., Albin, S., Zheng, J. and Johnson, R.M.,
Fabrication of boron-doped CVD diamond microelectrodes,
Analytical Chemistry, vol. 70, no. 3, pp. 464-467 (1998).

 

(68)      Smith, J.A., Rosser, K.N., Yagi, H., Wallace, M.I., May, P.W. and Ashfold, M.N.R.,
Diamond deposition in a DC-arc Jet CVD system: Investigations of the effects of nitrogen addition,
Diamond and Related Materials, vol. 10, no. 3-7, p. 3 (2001).

 

(69)      Zhang, R.J., Lee, C.T. and Lam, Y.W.,
Characterization of heavily boron-doped diamond films,
Diamond and Related Materials, vol. 5, no. 11, pp. 1288-1294 (1996).


(70)      Giesser, M., Stingeder, G., Grasserbauer, M., Baumann, H., Link, F., Wurzinger, P.,
Lux, H., Haubner, R. and Lux, B.,
Characterisation of tantalum impurities in hot-filament diamond layers,
Diamond and Related Materials, vol. 3, no. 4-6, pp. 638-644 (1994).

 

(71)      Menon, P.M., Edwards, A., Feigerle, C.S., Shaw, R.W., Coffey, D.W., Heatherly, L.,
Clausing, R.E., Robinson, L. and Glasgow, D.C.,
Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films,
Diamond and Related Materials, vol. 8, no. 1, pp. 101-109 (1999).

 

(72)      Shiomi, H., Nakahata, H., Imai, T., Nishibayashi, Y. and Fujimori, N.,
Electrical characteristics of metal contacts to boron-doped diamond epitaxial film,
Japanese Journal of Applied Physics, vol. 28, no. 5, pp. 758-762 (1989).

 

(73)      Sakaguchi, I., Nishitani-Gamo, M., Loh, K.P., Yamamoto, K., Haneda, H. and Ando, T.,
Effect of oxygen addition on boron incorporation on semiconductive diamond CVD,
Diamond and Related Materials, vol. 7, pp. 1144-1147 (1998).

 

(74)      Tachibana, T., Yokota, Y., Hayashi, H. and Kobashi, K.,
Growth of polycrystalline diamond films including diborane and oxygen in the source gas,
Journal of The Electrochemical Society, vol. 146, no. 5, pp. 1996-1999 (1999).

 

(75)      Wong, K.W., Huang, L.J., Hung, Y., Lee, S.T. and Kwok, R.W.M.,
Depletion of surface boron of heavily boron-doped diamond films by annealing,
Diamond and Related Materials, vol. 8, no. 6, pp. 1006-1010 (1999).

 

(76)      Fóti, G., Gandini, D., Comninellis, C., Perret, A. and Haenni, W.,
Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes,
Electrochemical and Solid-State Letters, vol. 2, no. 5, pp. 228-230 (1999).

 

(77)      Tsubota, T., Fukui, T., Saito, T., Kusakabe, K., Morooka, S. and Maeda, H.,
Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond (100) substrate,
Diamond and Related Materials, vol. 9, no. 7, pp. 1362-1368 (2000).

 

(78)      Chen, C.-F., Chen, S.-H., Hong, T.-M. and Wang, T.-C.,
Boron-doped diamond films using trimethylborate as a dopant source in methane-carbon dioxide gas-mixtures,
Diamond and Related Materials, vol. 3, no. 4-6, pp. 632-637 (1994).

 

(79)      Locher, R., Wagner, J., Fuchs, F., Maier, M., Gonon, P. and Koidl, P.,
Optical and electrical characterization of boron-doped diamond films,
Diamond and Related Materials, vol. 4, no. 5-6, pp. 678-683 (1995).

 

(80)      Erz, R., Dötter, W., Jung, K. and Ehrhardt, H.,
Investigation of boron and hydrogen concentrations in p-type diamond films by infrared spectroscopy,
Diamond and Related Materials, vol. 4, no. 4, pp. 469-472 (1995).

 

(81)      Chen, S.-H., Chen, S.-L., Tsai, M.-H., Shyu, J.J. and Chen, C.-F.,
Electrical characteristics and annealing study of boron-doped polycrystalline diamond films,
Journal of The Electrochemical Society, vol. 142, no. 12, pp. L223-L225 (1995).

 

(82)      Pleskov, Y.V., Evstefeeva, Y.E., Krotova, M.D., Elkin, V.V., Mazin, V.M., Mishuk, V.Y.,
Varnin, V.P. and Teremetskaya, I.G.,
Synthetic semiconductor diamond electrodes: the comparative study of the electrochemical behavior of polycrystalline and single crystal boron-doped films,
Journal of Electroanalytical Chemistry, vol. 455, pp. 139-146 (1998).

 

(83)      Morooka, S., Fukui, T., Semoto, K., Tsubota, T., Saito, T., Kusakabe, K., Maeda, H.,
Hayashi, Y. and Asano, T.,
Electrical properties of homoepitaxial boron-doped diamond thin films grown by chemical vapor deposition using trimethylboron as dopant,
Diamond and Related Materials, vol. 8, no. 1, pp. 42-47 (1999).

 

(84)      Pleskov, Y.V., Mazin, V.M., Evstefeeva, Y.E., Varnin, V.P., Teremetskaya, I.G.
and Laptev, V.A.,
Photoelectrochemical determination of the flatband potential of boron-doped diamond,
Electrochemical and Solid-State Letters, vol. 3, no. 3, pp. 141-143 (2000).

 

(85)      Opyrchal, H., Chin, K.K., Kohn, E. and Ebert, W.,
The optical characterization of boron-doped MPCVD diamond films,
Diamond and Related Materials, vol. 6, no. 8, pp. 940-943 (1997).

 

(86)      Fisher, V., Gandini, D., Laufer, S., Blank, E. and Comninellis, C.,
Preparation and characterization of Ti/diamond electrodes,
Electrochimica Acta, vol. 44, pp. 521-524 (1998).

 

(87)      Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Lida, M. and Hirose, Y.,
Synthesis of diamond thin-films having semiconductive properties,
Japanese Journal of Applied Physics, vol. 27, no. 2, pp. L173-L175 (1988).

 

(88)      Sarada, B.V., Rao, T.N., Tryk, D.A. and Fujishima, A.,
Electrochemical characterization of highly boron-doped diamond microelectrodes in aqueous electroyte,
Journal of The Electrochemical Society, vol. 146, no. 4, pp. 1469-1471 (1999).

 

(89)      Yanagisawa, M., Jiang, L., Tryk, D.A., Hashimoto, K. and Fujishima, A.,
Surface morphology and electrochemical properties of highly boron-doped homoepitaxial diamond films,
Diamond and Related Materials, vol. 8, no. 11, pp. 2059-2063 (1999).

 

(90)      Granger, M.C. and Swain, G.M.,
The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron-doped diamond thin-film electrodes,
Journal of The Electrochemical Society, vol. 146, no. 12, pp. 4551-4558 (1999).

 

(91)      Notsu, H., Yagi, I., Tatsuma, T., Tryk, D.A. and Fujishima, A.,
Surface carbonyl groups on oxidized diamond electrodes,
Journal of Electroanalytical Chemistry, vol. 492, no. 1, pp. 31-37 (2000).

 

(92)      Zhang, X.K., Guo, J.G. and Yao, Y.F.,
Boron doping of diamond films by B2O3 vaporization,
Physica Status Solidi A - Applied Research, vol. 133, pp. 377-383 (1992).

 

(93)      Sumant, A.V., Kshirsagar, R.B., Dharmadhikari, C.V. and Godbole, V.P.,
Use of high energy boron ion irradiation to facilitate STM investigations of CVD diamond,
Vacuum, vol. 48, no. 12, pp. 1005-1010 (1997).

 

(94)      Eccles, A.J., Steele, T.A., Afzal, A., Rego, C.A., Ahmed, W., May, P.W. and Leeds, S.M.,
Influence of B- and N-doping Levels on the Quality and Morphology of CVD Diamond,
Thin Solid Films, vol. 343-344, pp. 627-631 (1999).

 

(95)      Davies, G., Lawson, S.C., Collins, A.T., Mainwood, A. and Sharp, S.J.,
Vacancy-related centers in diamond,
Physical Review B-Condensed Matter, vol. 46, no. 20, pp. 157-170 (1992).

 

(96)      Evans, T.,
Aggregation of nitrogen in diamond in The properties of natural and synthetic diamond,
edited by Field, J.E., Academic Press, London (1992).

 

(97)      Davies, G. and Collins, A.T.,
Vacancy complexes in diamond,
Diamond and Related Materials, vol. 2, no. 2-4, pp. 80-86 (1993).

 

(98)      Tsang, R.S., Rego, C.A., May, P.W., Ashfold, M.N.R. and Rosser, K.N.,
Examination of the effects of nitrogen on the CVD diamond growth mechanism using in-situ molecular beam mass spectrometry,
Diamond and Related Materials, vol. 6, pp. 247-254 (1997).

 

(99)      Jin, S. and Moustakas, T.D.,
Effect of nitrogen on the growth of diamond films,
Journal of Applied Physics, vol. 65, no. 4, pp. 403-405 (1994).

 

(100)    Lyons, L.,
A practical guide to data analysis for physical science students,
Cambridge University Press, Cambridge (1991).

 

(101)    Maier, F., Riedel, M., Ristein, J. and Ley, L.,
Spectroscopic investigations of diamond/hydrogen/metal and diamond/metal interfaces,
Diamond and Related Materials, vol. 10, no. 3-7, pp. 506-510 (2001).

 

(102)    Mori, Y., Kawarada, H. and Hiraki, A.,
Properties of metal diamond interfaces and effects of oxygen adsorbed onto diamond surface,
Applied Physics Letters, vol. 58, no. 9, pp. 940-941 (1991).

 

(103)    Tsugawa, K., Kitatani, K., Noda, H., Hokazono, A., Hirose, K., Tajima, M.
and Kawarada, H.,
High-performance diamond surface-channel field-effect transistors and their operation mechanism,
Diamond and Related Materials, vol. 8, no. 2-5, pp. 927-933 (1999).

 

(104)    Spicka, H., Griesser, M., Hutter, H., Grasserbauer, M., Bohr, S., Haubner, R. and Lux, B.,
Investigations of the incorporation of B, P and N into CVD-diamond films by secondary ion mass spectroscopy,
Diamond and Related Materials, vol. 5, no. 3-5, pp. 383-387 (1996).

 

(105)    Vinokur, N., Miller, B., Avyigal, Y. and Kalish, R.,
Nonlinear resistance of polycrystalline boron-doped diamond films,
Electrochemical and Solid-State Letters, vol. 1, no. 6, pp. 265-267 (1998).

 

(106)    Tossell, D.A., Costello, M.C., Webb, A.P. and Vanner, K.C.,
Plasma processing techniques used at Caswell,
Pure and Applied Chemistry, vol. 66, no. 6, pp. 1335-1342 (1994).

 

(107)    Brierley, C. (GEC Marconi),
personal communication,  (1997).

 

(108)    Wang, N.W., Fox, N.A., May, P.W., Knapper, M.P., Meaden, G., Partridge, P.G.,
Ashfold, M.N.R., Steeds, J.W., Hayward, I.P. and Pitt, G.D.,
Laser Raman studies of polycrystalline and amorphic diamond films,
Physica Status Solidi A-Applied Research, vol. 154, no. 1, pp. 255-268 (1996).

 

(109)    Bergman, L. and Nemanich, R.J.,
Raman spectroscopy for characterization of wide-bandgap semiconductors: diamond, GaN, GaAlN, AlN, BN,
Annual Review of Materials Science, vol. 26, pp. 551-579 (1996).


(110)    Nemanich, R.J., McClure, M.T., Glass, J.T., Lucovsky, G. and Shroder, R.E.,
Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,
Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films, vol. 6, no. 3 Pt 2, pp. 1783-1787 (1988).

 

(111)    Bergman, L., McClure, M.T., Glass, J.T. and Nemanich, R.J.,
The origin of the broadband luminescence and the effect of nitrogen doping on the optical properties of diamond films,
Journal of Applied Physics, vol. 76, no. 5, pp. 3020-3027 (1994).

 

(112)    Bergman, L. and Nemanich, R.J.,
Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,
Journal of Applied Physics, vol. 78, no. 11, pp. 6709-6719 (1995).

 

(113)    Sze, S.M.,
Semiconductor devices, physics and technology, John Wiley, New York (1985).

 

(114)    Tachibana, T., Williams, B.E. and Glass, J.T.,
Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-carbide interface .2. titanium contacts - a carbide-forming metal,
Physical Review B-Condensed Matter, vol. 45, no. 20, pp. 11975-11981 (1992).

 

(115)    Kiyota, H., Matsushima, E., Sata, K., Okushi, H., Ando, T., Kamo, M., Sato, Y. and Lida, M.,
Electrical-properties of Schottky-barrier formed on as-grown and oxidized surface of homoepitaxially grown diamond(001) film,
Applied Physics Letters, vol. 67, no. 24, pp. 3596-3598 (1995).

 

(116)    Looi, H.J., Pang, L.Y.S., Whitfield, M.D., Foord, J.S. and Jackman, R.B.,
Engineering low resistance contacts on p-type hydrogenated diamond surfaces,
Diamond and Related Materials, vol. 9, no. 3-6, pp. 975-981 (2000).

 

(117)    Werner, M., Job, R., Denisenko, A., Zaitsev, A., Fahrner, W.R., Johnson, C., Chalker, P.R. and BuckleyGolder, I.M.,
How to fabricate low-resistance metal-diamond contacts,
Diamond and Related Materials, vol. 5, no. 6-8, pp. 723-727 (1996).

 

(118)    Katz, A., Lee, C.H. and Tai, K.L.,
Advanced Metallization schemes for bonding InP-based lasers to CVD-diamond heatsinks,
Materials Chemistry and Physics, vol. 37, no. 4, pp. 303-328 (1994).

 

(119)      Morrison, S. R.,
Electrochemistry at Semiconductor and Oxidized Metal Electrodes,
Plenum Press, New York (1980).
(a)               § 1.2.4.2, pp. 33-37
(b)              § 2.3, pp. 72-75
(c)               § 5.2.2.3, pp. 176-177

 

(120)      Fisher, A.C.,
Electrode Dynamics, Oxford Chemistry Primers, Oxford University Press, Oxford (1996).
§ 1.5, pp. 10-11

 

(121)      Atkins, P.W.,
Physical Chemistry, 4th Edition, Oxford University Press, Oxford (1990).

 

(122)      Bard, A.J. and Faulkner, L.R.,
Electrochemical Methods: Fundamentals and Applications, 2nd Edition,
John Wiley & Sons, New York (2001).
(a)               §§ 18.2.2-18.2.4, pp. 746-757
(b)              Major Symbols, pp. ix-xxi

 

(123)      Vanmaekelbergh, D.,
Direct and surface state mediated electron transfer at semiconductor/electrolyte junctions - I.
A comparison of steady-state results,
Electrochimica Acta, vol. 42, no. 7, pp. 1121-1134 (1997).

 

(124)      Vanmaekelbergh, D.,
Direct and surface state mediated electron transfer at semiconductor/electrolyte junctions - II.
A comparison of the interfacial admittance,
Electrochimica Acta, vol. 42, no. 7, pp. 1135-1141 (1997).

 

(125)      Sze, S.M.,
Physics of Semiconductor Devices, 2nd Edition,
John Wiley & Sons, New York (1981).

 

(126)      Bott, A.W.,
Practical Problems in Voltammetry 3: Reference Electrodes for Voltammetry,
Current Separations, vol. 14, no. 2, pp. 64-68 (1995).

 

(127)      Harned, H.S. and Ehlers, R.W.,
Journal of the American Chemical Society, vol. 54, p. 1350 (1932).

 

(128)      Conway, B.E.,
Electrochemical Data, Elsevier Publishing Company, Amsterdam (1952).

 

(129)      Gomes, W.P. and Cardon, F.,
Progress in Surface Science, vol. 12, p. 155 (1982).

 

(130)      Shirafuji, J. and Sugino, T.,
Electrical properties of diamond surfaces,
Diamond and Related Materials, vol. 5, no. 6-8, pp. 706-713 (1996).

 

(131)      van de Lagemaat, J., Vanmaekelbergh, D. and Kelly, J.J.,
Electrochemistry of homoepitaxial CVD diamond: energetics and electrode kinetics in aqueous electrolytes,
Journal of Electroanalytical Chemistry, vol. 475, no. 2, pp. 139-151 (1999).

 

(132)      Otsuka, Y., Suzuki, S., Shikama, S., Maki, T. and Kobayashi, T.,
Fermi-level pinning in metal-insulator-diamond structures,
Japanese Journal of Applied Physics Part 2-Letters, vol. 34, no. 5A, pp. L551-L554 (1995).

 

(133)      Baker, S.M., Rossman, G.R. and Baldeschwieler, J.D.,
Observation of surface-charge screening and Fermi-level pinning on a synthetic, boron-doped diamond,
Journal Of Applied Physics, vol. 74, no. 6, pp. 4015-4019 (1993).

 

(134)      Cotton, F.A. and Wilkinson, G.,
Advanced Inorganic Chemistry, 5th Edition, § 18-C-7, pp. 693-695,
John Wiley & Sons, New York (1988).

 

(135)      Peter, L.M.,
Dynamic aspects of semiconductor photoelectrochemistry,
Chemical Reviews, vol. 90, no. 5, pp. 753-769 (1990).

 


(136)      Vanmaekelbergh, D., Marin, F.I. and van de Lagemaat, J.,
Transport of photogenerated charge carriers through crystalline GaP networks investigated by intensity modulated photocurrent spectroscopy,
Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,
vol. 100, no. 5, pp. 616-626 (1996).

 

(137)      Vanmaekelbergh, D., Dewit, A.R. and Cardon, F.,
Recombination in semiconductor electrodes - investigation by the electrical and optoelectrical impedance method
Journal Of Applied Physics, vol. 73, no. 10, pp. 5049-5057 (1993).

 

(138)      Randles, J.E.B.,
Kinetics of Rapid Electrode Reactions,
Discussions of the Faraday Society, vol. 1, pp. 11-19 (1947).

 

(139)      Mathcad 8 Reference Manual,
MathSoft, Inc., Cambridge, MA, USA (1998).

 

(140)      Polak, E.,
Optimization - Algorithms and Consistent Approximations,
Springer-Verlag, New York (1997).

 

(141)      Press, W.H., Flannery, W.T., Teukolsky, S.A. and Vetterling, B.P.,
Numerical Recipes in C, Cambridge University Press, New York (1992).

 

(142)      Winston, W.,
Operations Research: Applications and Algorithms, Belmont, Wadsworth (1994).

 

(143)      Bott, A.W.,
Electrochemistry of Semiconductors,
Current Separations, vol. 17, no. 3, pp. 87-90 (1998).