Scattering . 1                                             Basics

1.1 Recommended  Books:

1] B.Chu Laser Light Scattering  2nd Ed. Academic Press 1991

2] R. J. Hunter Foundations of Colloid Science 2nd Ed Oxford 2001

3] H. R.Cruyt  Colloid Science Vol. I  Elsevier 1952

4] M. Kerker  The scattering of light and other electromagnetic radiation Academic Press  1969.

5] R. Richards Scattering Methods in Polymer Science  Ellis Horwood  1995

Classical papers

6] Rayleigh L. Nature  3  234 [1871] 7] Debye P., Ann. Physik. 30, 57 [1909]

8] Mie G.,  Ann. Physik. [Leipzig]  25, 377 [1908]

9] A, Guinier X-ray diffraction In Crystals (1963)  etc. Dover [1994]

1.2 Definitons:

Light is absorbed, transmitted

or scattered:      d    diffraction

  << d  refraction (d particle diameter)

 I  scattered intensity at an angle q ;

 Io incident; IT  transmitted t = IT / I0  [1.1}

 Beer Lambert Law:  [1.2]

 c/concentration , e/extinction coefficient.

 

 

 

 

 

 

 

 

 

 

 

 

1.3

Elastic scattering

 Only changes in momentum transfer vector     : energy[l] is  fixed: n=1

   

Also  c = n l  v = f l  [1.4} Inelastic      quasielastic  

1.4 Radiation types:

Sound        v =  330 m s -1              f  = 1Hz – 30 kHz                  l =  0.1m -  330m

Light           c =  3.0 x 10 8 m s -1   n  = 7 x1014 - 4 x 1014 Hz         l =  434 - 768 nm

Neutrons    v =  4000 - 400 m s-1    mN = 1.675E-27 kg :               l =  0.1 - 1 nm

X-rays        c =  3.0 x 108  m s –1    n  = 3 x1018 - 3 x 1017 Hz            l =  0.1 - 1 nm

1.5 Bragg’s Law

  [1.5] : Interference when phase difference is an integer number of wavelengths as in figure below.

 

1.6 Rayleigh Scattering

The conditions for Raleigh scattering (1871) from individual particles diameter d is that   d < l/20 and refractive index,  n » 1

 

(a) Polarisation of light.

Io  =  IHorizontal + IVertical.   [1.6]

Unpolarised light travels along x  (see figure). After scattering the light is polarised as shown in the figure along the y and z axis as there is no longitudinal component of an electromagnetic wave (i.e. in the x propagation direction). The transmitted beam along x is unpolarised. Scattering depends on the polarisability a : m = aE  [1.7]  m dipole moment, E Electric field strength. a is large if the HOMO-LUMO energy gap is small.

 

 

 

 

 

Polarisation from an unpolarised light source and viewed at different angles

 

 

(b) Dimensional analysis:

Scattering of light is due to electrons so I ~ f(a). It also must depend on the wavelength of the light, l and the distance of the observer  from the scattering body and the relative refractive indices n of the particle (p) and the medium (o)

 

 

When light falls on  a particle it induces a dipole moment which is proportional to the polarisability, a. The scattering field,  , is then  proportional to a. .Classically  a  is described by the Lorentz-Lorentz equation when there is no permanent dipole:

 

 

a is the radius, ­n=np/no and eo is the vacuum permittivity.

So  is proportional to volume  a3, so the  Intensity which is proportional to

E2  µ a2  µ  a6  . The Inverse square law shows us that I  µ  r- -2

 

So combining these gives 

 

 is dimensionless as  are the values of n  so this implies that  

Hence .

 

 

 

So the intensity of the Rayleigh scatterer depends on frequency n4  and this explains many astronomical observations- why the sky is blue , the green flash etc.

 

 

(c) Angular dependence.

The polarisation as we have seen in angle dependent and at 900 to Io the light is completely plan polarised. The intensity must also be positive and a function which gives this is (1 + cos2(q)) where ‘1’ is the vertical component and cos2(q) is the horizontal component. So combining this with [1.12] and [1.9] gives the full Rayleigh expression:

 

 

where Vp is the particle volume and Np is the number of particles per unit volume

 

NB       Distance                     ~ 1/r2

            Frequency                  ~ 1/l4  ~ n 4

            Size                            ~  Vp2  ~  a6

            Concentration            ~  Np

                Refractive index        ~ D(n2)2

            difference