Unusual Substitution in an Arsole Ring

By Gottfried Märkl and Hagen Hauptmann[*]

The less pronounced nucleophilic character of tertiary $arsanes^{\{1,2\}}$ compared to phosphanes is further reduced in the aromatic arsole system (I). The chemistry of the arsoles resembles that of pyrrole rather than the phospholes.

1,2,5-Triphenylarsole and 1-phenyl-2,5-dimethylarsole are unable to form quaternary salts and sulfides; arsole oxides are formed only in moderate yields alongside arsenic-free decomposition products on oxidation with $\rm H_2O_2$.

However, these arsoles react smoothly with elemental chlorine (as phenyl iodide dichloride) to give the stable 1,1-dichloro derivatives (2) (Table 1), and with *tert*-butyl hypochlorite to give the 1-chloro-1-*tert*-butoxy derivatives (3):

Table 1. 1,1-Dichloro derivatives (2) of 1,2,5-trisubstituted arsoles.

(2), R =	Yield (%)	M. p. (°C)	$\begin{array}{l} UV \; \lambda_{max} \\ (nm) \; (log \; \epsilon) \\ (in \; \; ethanol) \end{array}$	¹ H-NMR (τ) (in CDCl ₃)
C ₆ H ₅	96	168-169	395 (4.19) 239 (4.14) 220 (4.32)	-
CH ₂ C ₆ H ₅	88	85 (dec.)		
СН,	83	170	400 (4.18) 237 (4.25)	

The dichlorides are thermolabile [1,1-dichloro-1-benzylarsole (2), $R=C_6H_5CH_2$, decomposes at room temperature to 1-chloro-2,5-diphenylarsole (6), fine red needles, m. p. 136—137 °C; yield 85%; UV spectrum (in CH_2Cl_2): $\lambda_{max}(\log\epsilon)$: 402 (4.07), 246 nm (4.23)] but surprisingly stable toward water and alcohols (recrystallized from ethanol). Reaction with one equivalent of Na methoxide furnishes the unstable 1-chloro-1-methoxyarsoles (4) which spontaneously lose methyl chloride to give the arsole oxide (5) in good yield ($R=C_6H_5$, yield 80%; m. p. 226—227 °C. $R=CH_3$, yield 64%; m. p. 199 °C. $R=CH_2C_6H_5$, yield 35%; m. p. 115 °C (decomp.)).

The yellow-orange voluminous *tert*-butyl hypochlorite adducts (3) ($R = C_6H_5$, $CH_2C_6H_5$) resemble (4) in structure but do not decompose to the arsole oxides; however, they disproportionate in solution at room temperature to give (2). In the case of $R = CH_2C_6H_5$ the reaction proceeds further to give the 1-chloroarsole (6) directly in 41% yield.

Reaction of (3), $R = C_6H_5$, with NaOCH₃ proceeds directly to the arsole oxide (5), $R = C_6H_5$, via the 1-methoxy-1-tert-butoxy derivative (7).

These results suggested that the reaction of the *tert*-butyl hypochlorite adducts (3) with organolithium compounds should give pentacoordinate arsoles (8) or their reaction products. Surprisingly, the pale yellow crystalline reaction products are actually 3-substituted arsoles (9) (Table 2):

Table 2. 1,2,3,5-Tetrasubstituted arsoles (9).

(9), R =	Yield (%)	M. p. (°C)	UV λ_{max} (nm) (log ϵ) (in ethanol)	¹ H-NMR (τ) (in CDCl ₃)
CH ₃	36	122–124	353 (4.17) 234 (4.35)	-CH ₃ : 7.80 (s)
C ₆ H ₅	40	151-152.5	370 (4.11) 265 (4.25) 240 (4.41)	aryl-H: 2.26-3.30
C ₆ H ₄ N(CH ₃) ₂	16	154-155	385 (4.00) sh 330 (4.30) 265 (4.32) 230 (4.39) sh	N(CH ₃) ₂ : 7.08 (s) € aryl-H: 2.24–3.46

Formation of (9) can be rationalized mechanistically as S_N2' substitution and subsequent aromatization by elimination of tert-butanol.

The bulky tert-butyl group induces the S_N2' mechanism by blocking nucleophilic attack at the heteroatom.

Received: November 16, 1971 [Z 586 b IE] German version: Angew. Chem. 84, 439 (1972)

General Synthesis of Aryl-Substituted Arsabenzenes

By Gottfried Märkl, Hagen Hauptmann, and Jürgen Advena[*]

Both the "phenarsazine" described by $Wieland^{[1]}$ in 1921 and the "arsanthrene" of $Kalb^{[2]}$ have been shown by $Bickelhaupt\ et\ al.^{[3,4]}$ to be dimers and therefore not arsa-aromatic compounds containing $-As=C \subset (4p\pi-2p\pi)$ double bonds.

Evidence for the existence of this bond system was first provided by the preparation of arsamethinecyanines^[5].

^[*] Prof. Dr. G. Märkl and Dr. H. Hauptmann Fachbereich Chemie der Universität 84 Regensburg, Universitätsstrasse 31 (Germany)

^[1] W. C. Davis and W. P. G. Lewis, J. Chem. Soc. 1934, 1599; L. Maier, Progr. Inorg. Chem. 5, 126 (1963).

^[2] E. Bergmann and W. Schütz, Z. Phys. Chem. B 19, 401 (1932).

^[*] Prof. Dr. G. Märkl, Dr. H. Hauptmann, and Dipl.-Chem. J. Advena Fachbereich Chemie der Universität 84 Regensburg, Universitätsstrasse 31 (Germany)