
Please cite this article in press as: Mathuru et al., Chondroitin Fragments Are Odorants that Trigger Fear Behavior in Fish, Current
Biology (2012), doi:10.1016/j.cub.2012.01.061
Chondroitin Fragments Are O
Current Biology 22, 1–7, March 20, 2012 ª2012 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2012.01.061
Report
dorants

that Trigger Fear Behavior in Fish
Ajay S. Mathuru,1 Caroline Kibat,1 Wei Fun Cheong,2

GuanghouShui,2,4 MarkusR.Wenk,2,5 RainerW. Friedrich,6,7

and Suresh Jesuthasan1,3,8,*
1Neuroscience Research Partnership, Biomedical Sciences
Institutes, 61 Biopolis Drive, Singapore 138673, Singapore
2Department of Biochemistry
3Department of Physiology
National University of Singapore, 2 Medical Drive, Singapore
117597, Singapore
4Neurobiology Program, Life Science Institute, National
University of Singapore, 8 Medical Drive, Singapore
117456, Singapore
5Department of Biological Sciences, National University of
Singapore, 14 Science Drive 4, Singapore 117543, Singapore
6Friedrich Miescher Institute for Biomedical Research,
Maulbeerstrasse 66, 4058 Basel, Switzerland
7University of Basel, 4003 Basel, Switzerland
8Neuroscience and Behavioral Disorders Program,
Duke-NUS Graduate Medical School, 8 College Road,
Singapore 169857, Singapore

Summary

The ability to detect and avoid predators is essential to

survival. Various animals, from sea urchins to damselfly
larvae, use injury of conspecifics to infer the presence of

predators [1–7]. In many fish [1, 8, 9], skin damage causes

the release of chemicals that elicit escape and fear in
members of the shoal. The chemical nature of the alarm

substance (‘‘Schreckstoff’’ in German) [1], the neural circuits
mediating the complex response, and the evolutionary

origins of a signal with little obvious benefit to the sender,
are unresolved. To address these questions, we use

biochemical fractionation to molecularly characterize
Schreckstoff. Although hypoxanthine-3 N-oxide has been

proposed to be the alarm substance [10, 11], it has not
been reliably detected in the skin [12] and theremay be other

active components [13, 14]. We show that the alarm
substance is a mixture that includes the glycosaminoglycan

(GAG) chondroitin. Purified chondroitins trigger fear
responses. Like skin extract, chondroitins activate themedi-

odorsal posterior olfactory bulb, a region innervated by
crypt neurons [15] that has a unique projection to the habe-

nula [16]. These findings establish GAGs as a new class of
odorants in fish, which trigger alarm behavior possibly via

a specialized circuit.

Results and Discussion

We used video tracking to quantify alarm behavior of indi-
vidual, naive zebrafish by measuring swimming speed and
vertical position (Figures 1A–1C). Although isolation is not
natural for zebrafish, the behavior of individual fish is reminis-
cent of that in a school, if only more dramatic (see Movies S1
*Correspondence: suresh.jesuthasan@nrp.a-star.edu.sg
and S2 available online), reflecting either increased anxiety
and/or adoption of an alternate defense strategy (i.e.,
freezing versus shoaling). Skin extract has been reported to
affect behavior in a concentration-dependent manner [17].
We defined 1 unit as the amount of skin extract required to
trigger both darting and subsequent slowing down (Figures
1D–1G). The time spent in the lower third of the tank (bottom
dwelling) increased significantly from 11.7% to 74.4% (Fig-
ure 1H) with 1 unit of the extract. Hypoxanthine-3 N-oxide
(H3NO) caused a mild increase in the amount of darting (Fig-
ure 1F), but not of slow swim episodes (Figure 1G), even at
high concentrations (10 ug/ml). Moreover, fish did not move
to the bottom third of the tank (Figure 1H). Hence, in our
assay, skin extract but not H3NO elicited all features of the
alarm response.
To characterize the alarm cue, we fractionated skin extract

and tested the activity of individual fractions in the behavioral
assay. Pilot studies using hydrophilic columns (Figure S1A)
revealed that the active components are highly polar. Using
anion-exchange chromatography followed by high-resolution
gel-filtration (Figures S1B and S1C) we found two fractions,
a high (HMW; w30 kD by protein standard) and a low molec-
ular weight fraction (LMW; w1 kD), that elicited clear behav-
ioral responses. HMW substances evoked mainly slow
swimming and descent to the bottom of the tank without
initial darting, whereas LMW substances increased darting
but caused little slow swimming (Figures 1D–1H). This find-
ing suggests that the alarm pheromone in zebrafish is
a mixture of compounds, echoing findings of Levedeva et al.
in minnows [13].
We carried out a series of tests on crude skin extract to

classify the alarm substance. Pronase or peptidase treatment
did not reduce activity of the extract, indicating that proteins
are unlikely to be critical components. Biological activity
partitioned to the aqueous and aqueous-methanol phase
with Folch’s extraction, suggesting that most lipids are also
unlikely to be active constituents. Substances with the ability
to induce slow swimming (similar to HMW) could be bound
and eluted from a column containing wheat germ agglutinin
(WGA), a lectin that binds to glycans, establishing that the
alarm pheromone contains glycans (Figures 2A–2E). When
the HMW fraction from the size separation column was itself
run through the WGA column, the eluate emerged as a series
of peaks (Figure 2F), indicating that a component of HMW is
bound by WGA column and is sensitive to mechanical
shearing. This suggests that HMW substances may be made
of long polymers, possibly polysaccharides. Mass spectro-
metric analysis of HMW and LMW fractions failed to yield
any obvious candidates, however, because too many peaks
were detected.
Serendipitously, we noted that zebrafish exposed to extract

obtained by vigorous shaking of fish without injury (sloughing,
which releases mucous [18]) also displayed mild alarm
behavior characterized by increased darting (Figure 3). Heat-
ing the slough at 95�C for 2 hr enhanced its activity (Figure 3).
This treatment can cause breakdown and release of glycos-
aminoglycans (GAGs) [19], which are a major component of
mucous, suggesting that GAGs are a likely component of
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Figure 1. The Response of Zebrafish to Crude and Fractionated Skin Extract

(A) During behavioral experiments, substances are delivered to individual fish via the tube at the top of the tank (side view).

(B) Swim speed of one fish before (blue) and after (orange) addition of crude skin extract. The extract elicited an increase in speed (arrow), followed by

reduction (arrowhead).

(C) Trajectory of the fish before (blue) and after (orange, green, red; each color represents 20 s) addition of crude skin extract. Note that the fishmoved to the

bottom of the tank (side view). See Movie S2.

(D–H) Behavioral response of all individuals (n = 10) exposed to a particular substance.

(D) Distribution of speed (mm/25 ms) during a 1 min period, before (blue) and after (orange) addition of test substance. Slowing down is reflected by an

increase in the number of occurrences of low speed swimming, whereas darting is reflected by an increase in the occurrences of higher speed swimming,

which can be more clearly seen in the insets.

(E) Difference between speed distribution before and after substance addition.

(F) Median number of darts before (black) or after addition of test substance. Boxes show 25th and 75th percentiles, and whiskers represent 1.5 IQR

(interquartile range).

(G) Median number of slow swim episodes before or after test substance.

(H) The percentage of time spent by fish in the lower 1/3 of the tank after the addition of different substances (color code: red, 1 unit crude skin extract; green,

0.1 unit crude skin extract; blue, HMW; orange, LMW; purple, H3NO). In (B) and (D), the arrow indicates faster swimming, whereas the arrowhead indicates

slow swimming. *p < 0.05; **p < 0.01, ***p < 0.001 (Wilcoxon signed-rank test). See Figure S1.
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the alarm substance. To test this hypothesis, we first checked
for their presence in skin extract, using chemical assays
capable of detecting GAGs such as phenol-sulphuric acid,
alcian blue, and Elson-Morgan assays. All tests were positive,
indicating that these glycans are present in skin extract. The
concentration of GAGs in fractions from the ion exchange
column, which was measured using alcian blue absorbance
at 620 nm, correlated with behavioral activity (Figure 3F),
consistent with GAGs being active components of the alarm
substance.
The mucous of fish skin has been shown to contain
the GAGs chondroitin sulfate and hyaluronic acid [20].
Chondroitins are linear, heterogeneous polymers, made of
disaccharides that are variably sulfated, whereas hyaluronic
acid is a homogenous chain of nonsulfated disaccharides.
Mass spectroscopy confirmed the presence of either nonsul-
fated chondroitin or hyaluronic acid, as well as some forms
of sulfated chondroitin, in the active fractions (Figure S2A;
Table S1). Using fluorescence-assisted carbohydrate gel
electrophoresis (FACE) to monitor disaccharide composition,
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Figure 2. The Zebrafish Alarm Substance Contains a Glycan

(A) Distribution of speed over a 1min period, before (blue) and after (orange)

addition of WGA eluate.

(B) Difference between speed distribution before and after WGA eluate

addition. Insets magnify the tail that shows darting episodes.

(C) Median number of darting episodes before (black) or after WGA eluate

(red) addition.

(D) Median number of slow swim episodes before (black) or after (red) WGA

eluate addition.

(E) Percentage of time spent in the lower 1/3 of the tank after addition of

WGA eluate.

(F) Fast protein liquid chromatography profiles of eluate (blue) or flow-

through (red) from a WGA column loaded with HMW. The green line

shows HMW (arrow) and LMW (arrowhead) obtained in the second step

of skin extract fractionation on the gel-filtration column Superdex-75.

The WGA eluate and flow-through, which are derived from HMW, run at

a smaller size than HMW. *p < 0.05; **p < 0.01 (Wilcoxon signed-rank

test).
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three different disaccharides, nonsulfated chondroitin (C0S),
chondroitin-4-sulfate (C4S or CS-A), and chondroitin-6-sulfate
(C6S or CS-C) (in 1:1:1 ratio, Figure 3G), could be detected;
hyaluronic acid was below detection threshold in HMW
(Figure S2C). Consistent with this, the HMW fraction was
sensitive to chondroitinase ABC, which cleaves most forms
of chondroitin (Figure 3H), but not to hyaluronidase from
Streptomyces hyalurolyticus, which is specific to hyaluronic
acid (Figure S2D). When chondroitin was immunodepleted
from slough using the monoclonal antibody CS-56 [21], be-
havioral responses were reduced (Figures 3A–3E). Together,
these data indicate that the alarm substance includes
chondroitin.
We examined how enzymes that specifically cleave chon-

droitin altered the behavioral effect of slough, to test whether
release of chondroitin fragments triggers the alarm response.
Moreover, different glycosidases, which have different diges-
tion patterns and substrate preference, can shed light on the
nature of the alarm signal. Because slough elicits weaker
response than 1X unit skin extract (Figures 1 and 3A–3E),
this was used as the substrate. Twenty-minute treatment
with chondroitinase ABC, which is expected to yield chon-
droitin sulfate oligosaccharides of different sizes [22], in-
creased darting, slow swimming, and movement to the lower
third of the tank (Figure 4). In contrast, 24 hr digestion with
chondroitinase ABC or short digestion with chondroitinase
AC II, both of which yield disaccharides, did not elicit increase
in darting or slow swim episodes over responses to slough.
Treatment with chondroitinase B, which does not digest C4S
or C6S, also showed minimal increase. This suggests that
the active components include chondroitin oligosaccharides,
with a minimal size of a tetrasaccharide (w1,000 Daltons),
and argues against the active component being a molecule
associated with chondroitin.
Zebrafish skin contains three different chondroitin disac-

charides (Figure 3G). Because signaling properties of chon-
droitin are dependent on sulfation [23], in addition to length,
we tested the contribution of differently sulfated forms of
chondroitin. Chondroitin polymers from natural sources can
be enriched in one disaccharide but are usually not exclusive
for that disaccharide. Commercially available chondroitin
sulfate derived from shark cartilage (Sigma C4384), which
mainly contains C6S and C4S, elicited all features of alarm
behavior (slow swimming, darting, and bottom dwelling; Fig-
ure 4; see also Movie S3). Chondroitin from sturgeon noto-
chord (Seikagaku 400658), which predominantly contains
C4S, elicited weaker responses than shark CS in all three
parameters. Because C0S oligosaccharides were not avail-
able commercially, we prepared and tested a GAG extract
from C. elegans, which makes only nonsulfated chondroitin
[24]. This caused an increase in slow swimming episodes
and in bottom dwelling but not darting (Figure 4). These obser-
vations suggest that C6S, or a mix of C6S and C4S, and to
a lesser extent C0S or C4S, can trigger fear responses.
When compared to the natural skin extract of zebrafish
(Figures 1F–1H), however, the absolute value of each behav-
ioral parameter is lower.
The alarm substance is detected by the olfactory system in

fish [25–27]. Chondroitin also acts via the olfactory system,
because blocking the naris prevents a response (Figure S3).
To compare the pattern of olfactory bulb (OB) activation by
chondroitin with that of skin extract, we used a transgenic
zebrafish line with broad expression of the calcium indicator
GCaMP2 [28] (Ta1:GCaMP2) to detect odor-evoked activity
in vivo by wide-field fluorescence microscopy. Four-dimen-
sional imaging was carried out mainly on 3-week-old larvae,
whose transparency and small size enable the entire bulb to
be imaged at each time point in intact fish. Partially purified
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Figure 3. Glycosaminoglycans, a Component of Slough,

May Be a Constituent of Schreckstoff

(A) Distribution of speed over a 1min period, before (blue)

and after (orange) addition of slough (slgh), heated

slough (h-slgh), or immunodepleted slough (CS-56

depleted).

(B) Difference between speed distribution before and

after substance addition. Insets magnify the tail that

shows darting episodes.

(C) Median number of darting episodes before (black) or

after test substance (red) addition.

(D) Median number of slow swim episodes before (black)

or after (red) test substance addition.

(E) Percentage of time spent in the lower 1/3 of the tank

after substance addition. The response to crude skin

extract is shown for comparison.

(F) Quantitation of GAGs in fractions (concentrated

10-fold) from the ion-exchange column, determined by

alcian blue binding. Fraction number 0 is the most active

fraction. The blue lines show absorbance of different

concentrations of chondroitin-6-sulfate (C6S), serving

as a standard.

(G) FACE analysis of disaccharides in skin extract.

(H) Effect of chondroitinase ABC on skin extract, shown

here eluting on a size fraction column. The arrow

indicates the HMW peak that is lost. *p < 0.05; **p <

0.01; ***p < 0.001 (Wilcoxon signed-rank test). See also

Figure S2.
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skin extracts reproducibly activated the olfactory bulb in
three distinct loci (Figures 5A–5E), which appear to be in the
anterior plexus, the lateral chain, and the mediodorsal
posterior bulb [29]. Similar loci were detected in fish aged 4–
5 weeks (Figure S3), which have a clear behavioral response
[30], and also in adults (data not shown). LMW activated the
mediodorsal and the lateral regions in 19/21 fish. Both HMW
and WGA eluate consistently activated the mediodorsal locus
(Figures 5F–5K; 15/16 and 5/6, respectively). The lateral and
anterior loci were activated by HMW in 10/16
fish, whereas eluate from the WGA column
failed to trigger a consistent response (1/6).
This suggests that LMW, HMW, and WGA
eluate share a common factor that triggers
response in the mediodorsal glomerular
region.
Purified shark chondroitin sulfate, like WGA

eluate, caused a calcium increase only in the
mediodorsal locus (Figure 5M; 18/22 fish). Co-
localization analysis indicates that there is
substantial overlap in the activity triggered by
chondroitin and skin extract (Figure S3; Table
S2). H3NO did not trigger any significant
activity at the mediodorsal locus but caused
a response in the lateral and anterior loci in
4/11 fish (Figures 5N and 5R). Bile acids
showed a strong signal more anteriorly, as
has been reported previously [31], and a small
signal in the mediodorsal locus (Figures 5O
and 5S), whereas another class of odorant,
amino acids, activated the ventrolateral bulb
only [31] (data not shown). Hence, chondroitin
and skin extract activate a common locus of
the bulb, which is the mediodorsal posterior
region.
In crucian carp, electrophysiological recordings of medio-
dorsal posterior region of the olfactory bulb show responses
to skin extract [27], indicating that this region may mediate
innate fear in other fish also. The mediodorsal posterior
bulb in zebrafish is innervated by crypt cells [15], a subset
of olfactory sensory neurons with no previous known
function. Mitral cells from this region of the bulb have
a projection to the right habenula [16], in addition to targets
in the ventral telencephalon [15], suggesting that the GAG
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Figure 4. Chondroitin Oligosaccharides Are an Active

Component of the Alarm Substance

(A) Median number of darts before (black) or after test

substance addition (red).

(B) Median number of slow swim episodes, before (black)

or after test substance (red).

(C) Percentage of time spent in the lower 1/3 of the tank

after substance addition. Test substances are chon-

droitin purified from other sources, at a concentration

of 1 mg/ml, or zebrafish slough digested as indicated.

For comparison, the response to crude skin extract

is shown on the right. *p < 0.05; **p < 0.01; ***p < 0.001

(Wilcoxon signed-rank test).
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component of the alarm substance may engage a unique
circuit.

The data presented here support the interpretation that
a mixture elicits alarm behavior and that chondroitin is an
active ingredient of the alarm cue in zebrafish. Purified
chondroitin, at a concentration equivalent to that found in
behaviorally active fractions, elicits components of alarm
behavior in a laboratory setting—darting, slow swimming,
and bottom dwelling. However, chondroitins could not trigger
fear responses to the same extent as crude skin extract. Also,
chondroitins, like WGA eluate, did not elicit calcium increase
in the lateral and anterior glomeruli that were activated by
behaviorally relevant skin extract fractions. This suggests the
presence of additional active components in skin extract.
This additional substance(s) may include compounds with
a nitrogen oxide group such as that present in H3NO, a motif
suggested to be important in other species [11]. This could
account for the activity in the lateral and ante-
rior glomerular loci in imaging experiments
and mild darting observed in behavioral
assays with H3NO both here and in other
studies [32]. We were unable to determine
the identity of these additional components,
however, despite careful analysis of mass
spec data from different fractions.
Epidermal club cells, which have been

associated with Schreckstoff on the basis of
comparative histology [9], contain GAGs [33]
and may therefore be a source of chondroitin
that acts as an alarm substance. It is also
possible that these cells, upon rupturing,
release enzymes that cleave chondroitin
from proteoglycans or mucous, thus necessi-
tating physical injury for Schreckstoff release.
The heterogeneity of sulfation, even within
a single chondroitin chain, provides one
possible basis for the varying cross-species
recognition of the alarm cue among fishes
[8, 9]. The evolution of Schreckstoff has
caused debate [34], because there appeared
to be no direct benefit to the sender. Our
results support the idea that the alarm cue
precursors are maintained in the sender for
functions unrelated to their ability to trigger
fear [35]; in this case, one function may be
as a component of mucous. Reliable release
and degradation of chondroitin, specifically
during predation, may have driven the evolution of their
detection as alarm cues in the receivers consequentially.

Supplemental Information

Supplemental Information includes three figures, two tables, Supplemental

Experimental Procedures, and three movies and can be found with this

article online at doi:10.1016/j.cub.2012.01.061.
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