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Time-resolved experiments with more than one period of incoherent time evolution are becoming
increasingly accessible. When applied to a two-level system, these experiments separate homoge-
neous and heterogeneous contributions to kinetic dispersion, i.e., to nonexponential relaxation. Here,
the theory of two-dimensional (2D) multiple population-period transient spectroscopy (MUPPETS)
is extended to multilevel, excitonic systems. A nonorthogonal basis set is introduced to simplify
pathway calculations in multilevel systems. Because the exciton and biexciton signals have different
signs, 2D MUPPETS cleanly separates the exciton and biexciton decays. In addition to separating
homogeneous and heterogeneous dispersion of the exciton, correlations between the exciton and
biexciton decays are measurable. Such correlations indicate shared features in the two relaxation
mechanisms. Examples are calculated as both 2D time decays and as 2D rate spectra. The effect of
solvent heating (i.e., thermal gratings) is also calculated in multidimensional experiments on multi-
level systems. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773982]

I. INTRODUCTION

Kinetic measurements are a major subset of physical
chemistry and take on many different forms appropriate to
different processes and timescales. Nonetheless, almost all
are one dimensional (1D): a single period of time exists be-
tween a single perturbation of the system and a later detection
of its evolved state. Our group has been exploring multidi-
mensional kinetics in which there is more than one pertur-
bation, and thus, more than one period of time evolution.1–10

We have called our approach, which uses weak optical per-
turbations, multiple population-period transient spectroscopy
(MUPPETS). So far, its focus has been on nonexponential
relaxation (rate dispersion) in two-level systems. In those
systems, MUPPETS can separate homogeneous and heteroge-
neous contributions to rate dispersion. This paper lays a the-
oretical foundation for MUPPETS in multilevel systems and
especially in excitonic systems—those with equally spaced
levels and optical transitions and relaxations that occur in
single steps. The most important new features are the abil-
ity to accurately separate exciton and biexciton dynamics and
to measure correlations in the rate dispersion of exciton and
biexciton relaxation. Related experimental results on exciton
and biexciton dynamics in CdSe nanoparticles will be pub-
lished in the near future.11, 12

The concept of MUPPETS is illustrated in Fig. 1. A
total of six pulses are used: three (1–3) simultaneous pairs
(a and b) separated by two times, τ 1 and τ 2. Each pair causes
an incoherent transition, i.e., a transition from one quantum
mechanical population to another. Any coherence is assumed
to be quenched by rapid dephasing. The novel aspect of
MUPPETS is that the correlated relaxation of the population

a)Author to whom correspondence should be addressed. Electronic mail:
berg@sc.edu.

during two time periods is measured. Neither ensemble av-
eraging nor relaxation of the molecule occurs between these
periods, so different processes are accessible than in experi-
ments with only one relaxation time. Understanding the re-
sulting multidimensional correlation functions when several
population states are accessible is a primary aim of this paper.

The pulses in each pair come from different directions,
so the populations consist of spatial gratings.13–15 Detection
is by diffraction of pulse 3a from the final population grating
and heterodyning the diffracted light with pulse 3b. (Practical
detection schemes also account for diffraction in the oppo-
site direction.4) As Fig. 1(a) suggests, it is possible to arrange
the phase-matching geometry such that diffraction only oc-
curs from planes created by the combined action of all four
excitation pulses. These more technical aspects of the experi-
ment will not be treated here. It is only important to know that
it is practical to isolate a signal that is confined to exactly one
electric-field interaction with each of the six pulses.

As with 1D kinetics, theoretical concepts transcend the
various experimental implementations needed for different
timescales and processes. In existing experiments, MUPPETS
has focused on electronic-state relaxation on subnanosecond
timescales. However, the theoretical ideas developed here are
equally applicable to any timescale. With modest modifica-
tion, they can also find application to other types of perturba-
tion and other relaxation processes.

MUPPETS has strong parallels to multidimensional co-
herence spectroscopy (MDCS). MUPPETS measures multi-
ple periods of incoherent evolution (kinetic rates), whereas
MDCS measures multiple periods of coherent evolution
(spectral frequencies). MDCS began with two-level systems,
in which they give “echo” phenomena.16, 17 These exper-
iments separate homogeneous and inhomogeneous contri-
butions to spectral linewidths, just as MUPPETS of two-
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FIG. 1. Schematic of the MUPPETS experiment. (a) The upper and lower panels represent rapidly and slowly relaxing subensembles within the sample. Two
simultaneous pulses (1a and 1b) from different directions intersect in the sample to create a spatial grating of excited-state molecules (red). After a time τ 1, a
second pair of pulses (2a and 2b) create a second grating of excited molecules (blue). The slow subensemble now contains vertical diffraction planes formed
by regions that have interacted twice (black), once (red and blue) and never (white). After an additional time τ 2, pulse 3a is diffracted from these planes and is
combined with pulse 3b for heterodyne detection. The diffraction isolates the signal unique to one interaction with the first excitation and one interaction with
the second excitation. (b) An accurate representation of the pulse directions used in the experiment: tan – lens, orange – sample.

level systems separates homogeneous and heterogeneous
rate dispersion. When MDCS was extended to multilevel
systems, it became various forms of spectral correlation
spectroscopy, which reveal coupling between different spec-
tral transitions.18–22 MDCS is well established in nuclear
magnetic resonance18, 19 and, more recently, has been ex-
tended to electronic20 and vibrational21, 22 transitions. In the
latter two forms, it has been especially valuable in excitonic
systems,23–29 where the transitions are strongly overlapped in
1D spectra. By analogy, one anticipates that MUPPETS in
multilevel systems will probe correlations in the relaxation of
different transitions and will be especially relevant in exci-
tonic systems, where spectral discrimination of different tran-
sitions can be difficult.

One goal of the paper is to clarify the meaning of the
intertransition correlations that we anticipate. Another is to
illustrate the interplay of the intertransition and intratransition
contributions to the total experimental signal. To tackle these
problems, we first develop simplified methods for calculating
multidimensional incoherent signals in excitonic systems and
then use them to calculate results for several simple, limiting
models.

In two-level systems, it is common to reduce the dimen-
sionality of the problem by changing the basis set. The total
population is invariant, and only the dynamics of the popula-
tion difference need to be calculated. The primary simplifica-
tions in the current calculations come from extending this idea
to multilevel systems. A nonorthogonal coordinate system is
required, but this feature is easily handled by the Hilbert-
space formalism that we introduced previously.5, 6 The pri-
mary new difficulty in multilevel systems is the possibility
of cross-relaxation between basis states. Fortunately, this ef-
fect is minimized when higher excitons relax faster than lower
excitons. This situation is common due to processes that are
called exciton–exciton annihilation in molecular systems or
Auger relaxation in semiconductors. Approximations for this
case are found. Section II develops the general formalism, and
then Sec. III looks in more detail at two-dimensional (2D)
MUPPETS for several different energy-level schemes.

These results lead to several useful results that are ex-
plored in Sec. IV. Separating exciton and biexciton kinet-

ics can be difficult when the spectral exciton shift is small.
MUPPETS is a sensitive and robust method for separating
exciton and biexciton dynamics that does not rely on spec-
tral separation. It is also insensitive to the formation of pho-
toproducts, which can complicate power-dependent measure-
ments. In general, the level of coupling between zero-order
chromophores needed to create an exciton for purposes of
MUPPETS (an incoherent exciton) is much lower than that
needed to create an exciton for purposes of coherent spec-
troscopy (a coherent exciton). Thus, MUPPETS can be useful
for studying weakly coupled systems.

Example calculations are presented on four model sys-
tems with identical 1D kinetics in Sec. IV C. These models
mix homogeneous and heterogeneous exciton relaxation with
biexcitons that are either correlated or uncorrelated with the
exciton relaxation. Despite having identical 1D kinetics and
despite the overlap of intra- and intertransition features, each
model produces very different 2D results and would be readily
distinguishable in a 2D MUPPETS experiment. Rate correla-
tion between different transitions is shown to be analogous to
homogeneous kinetics on a single transition. Correlation be-
tween exciton and biexciton relaxation is possible whether or
not the individual transitions are homogeneous or heteroge-
neous. Intertransition rate correlations indicate a shared fea-
ture in the two relaxation mechanisms such as dependence on
a common bath mode.

Real MUPPETS experiments detect not only the res-
onant signal due to the chromophore, but also see solvent
heating due to chromophore relaxation.7 These thermal ef-
fects are the multidimensional extension of thermal-grating
spectroscopy.13–15 They are both a complication to measur-
ing the resonant signal and a potential route to measuring
nonradiative relaxation between spectroscopically dark states.
The theory needed to calculate thermal effects in multilevel
MUPPETS experiments is developed in Sec. V.

II. THEORY FOR MULTISTATE SYSTEMS

The Hilbert-space pathway formalism for calculating
multidimensional incoherent experiments has been discussed
in detail previously.5, 6, 10 In this formalism, as the number
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of states in the system increases, the number of pathways
increases combinatorially. This section seeks to simplify such
calculations. Section II A summarizes previous Hilbert-space
results in a convenient notation. Section II B introduces a new
basis set to simplify these calculations in a general multistate
system. Section II C then specializes to excitonic systems,
which will be the focus of the remainder of the paper.

A. Review of incoherent Hilbert-space calculations

The signal from an N-dimensional heterodyned
experiment is the change in fluence of the (N+1)th (lo-
cal oscillator) beam δIN+1(�) relative to its total fluence IN+1,
as a function of the local-oscillator–probe phase difference
�. This change can be expressed as an absorbance A(N)(�;
τN, . . . , τ 1),

A(N)(�; τN, . . . , τ1) = (−1)N
δIN+1(�)

IN+1
, (1)

where τ n is the time interval between pulses n and n+1.
Fourier transforming the phase-dependence extracts a com-
plex absorbance A(N)(τN, . . . , τ 1), which obeys a generalized
Beer’s law,7, 10

A(N)(τN, . . . , τ1) = (−1)N ρL 〈σD〉◦ . (2)

This expression contains the detection cross-section operator
σD , the number density of solute molecules ρ, and the length
of the sample L.

The expectation value of σD is calculated as a matrix el-
ement in the incoherent Hilbert space,

〈σD〉◦ = [I |σD|f (τN, . . . , τ1)]◦, (3)

where [I| is the identity state [see Eq. (17)] and | f ] is the final
state of the system at the time of detection. The degree sign in-
dicates that the calculations are done without the phase factors
for the excitation fields.7 The phase convention for the com-
plex absorbance is the same as for the complex cross-section:
real parts correspond to absorption; imaginary parts corre-
spond to index-of-refraction. The final state | f ] is obtained
from the initial, equilibrium state |eq] by successive operators
Tn, representing optical transitions due to the nth excitation,
and G(tn, tn−1), representing evolution between times tn−1 and
tn,

|f (τN, . . . , τ1)]◦ = G(tN , tN−1)T◦
N . . . G(t1, t0)T◦

1|eq]. (4)

Throughout the paper, absolute times will be denoted tn, and
time intervals will be given by

τn = tn − tn−1. (5)

The equation of motion for an arbitrary state |P] contains
the rate operator R(t)

d

dt
|P ] = −R(t)|P ]. (6)

For nonexponential relaxations, the rates are time dependent.
The Green’s operator G(tn, tn−1) is then nonstationary

G(t2, t1) = exp+

(
−

∫ t2

t1

R(t)dt

)
, (7)

where the exponential is time ordered.30

The optical-transition operator T◦
n is given by

T◦
n =

∑
i,j∈{a,b}

In,ijσT Kn,ij ( �M · ��n,ij ). (8)

The nth excitation consists of two pulses labeled a and b (see
Fig. 1), and in Eq. (8), the sum runs over the four permuta-
tions of these pulses. The effective fluence of the pair In,ij is
the geometric mean of the fluences of the two pulses, In,i and
In,j: In,ij = (In,iIn, j)1/2. The transition cross-section operator σT

is constructed from the absorption cross-sections of the elec-
tronic transitions of the system. Unlike the detection cross-
section σD , which is complex, σT has only real elements.
The dipole-moment tensor �M and the polarization tensor ��n,ij

are required to calculate the effects of chromophore rota-
tion, but will be neglected in this paper. The phase-matching
conditions are generated by the grating-vector operator Kn,ij .
We assume that one combination of pulses is perfectly phase
matched, and all others are poorly phase matched.

With these assumptions, the equation for the signal re-
duces to

A(N)(τN, . . . , τ1) = (−1)N ρLI (N) [I |σDG(tN , tN−1) . . .

×σT G(t1, t0)σT |eq], (9)

with

I (N) = IN,ab · · · I1,ab (10)

representing the total excitation fluence from N pulse pairs. In
the case where every pulse has the same fluence I, I(N) = IN.
The next step is to introduce complete sets of states between
each pair of operators in Eq. (9). The results are more compact
if we adopt the notation

[n|O|m] = Om
n (11)

for the matrix element of an operator O between states [n|
and |m]. Assuming summation over repeated indices, Eq. (9)
reduces to

A(N)(τN, . . . , τ1)

ρLI (N)
= (−1)N

〈
(σD)nI Gm

n (tN , tN−1) . . .

×(σT )jk Gi
j (t1, t0) (σT )eqi

〉
. (12)

Each term in the implied sum represents one Hilbert-space
pathway. This sum is calculated for a single chromophore be-
fore averaging over the ensemble, as indicated by the angular
brackets.

If the optical cross-sections are independent of time, the
time dependence and relative weight of each pathway can be
separated

A(N)(τN, . . . , τ1)

ρLI (N)
= (−1)N B

n,...,j,eq

I,...,k,i C
m,...,i
n,...,j (τN, . . . , τ1).

(13)
Each pathway is defined by the set of intermediate states
{i, . . . , n}. The dynamics associated with a pathway are given
by the correlation-function matrix

C
m,...,i
n,...,j (τN, . . . , τ1) = 〈

Gm
n (tN , tN−1) . . . Gi

j (t1, t0)
〉
. (14)

Each element of this 2N-dimensional matrix is an N-time-
interval correlation function. Each correlation function is the
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ensemble average of N time-evolution operators. The relative
weight of each pathway is given by

B
n,l,...,eq

I,m,...,i = (σD)nI . . . (σT )jk (σT )eqi . (15)

Because two of its indices are fixed, this matrix also has 2N
dimensions. Each element gives the total cross-section of the
corresponding element of the correlation-function matrix. The
scalar product of these two matrices in Eq. (13) sums the cor-
relation functions from all the pathways with their appropriate
cross-sections.

B. Basis set to reduce the dimensionality
of the problem

Here, we consider the general problem of a good basis set
for pathway calculations in a system with N optical levels,
{|0], |1], . . . , |N−1]}. It is desirable to have the initial, equi-
librium state |eq] as one member of the basis set. If the state
spacing is large, only the lowest state is occupied in equilib-
rium: |0] = |eq]. It is also desirable to have the identity state
[I| as a member of the basis set. Thus, in the new, primed basis
set, {|0′], |1′], . . . , |N−1′]}, we require

|0′] = |eq] = |0] (16)

and

[0′| = [I | =
N−1∑
n=0

[n|. (17)

With these conditions, all pathways begin with |0′] and end
with [0′| [see Eqs. (9) and (12)].

An orthogonal basis set cannot satisfy both Eqs. (16) and
(17). However, in a nonorthogonal basis, bras and kets need
not be identical: they are described by different, dual basis
sets.31 In such a nonorthogonal system, the nonzero kets must
be orthogonal to [0′|

[0′|n′] = [I |n′] = δ0,n. (18)

Because the identity state measures the total population of a
state,5 Eq. (18) means that the nonzero primed kets do not
have any net population: they consist only of population dif-
ferences. As a result, the rate operator R(t) cannot connect
the zero and nonzero kets without changing the total popula-
tion of the system. These two sets of states, zero prime and
nonzero prime, are the irreducible sets resulting from the law
of population conservation. In addition, |0′] = |eq] cannot de-
cay; it is unaffected by R(t). Thus, it is possible to reduce the
dimensionality of the rate matrix Ri ′

j ′(t) by eliminating its 0′

row and column.
The exact form of the nonzero states has not been spec-

ified. We choose the first excited state [1′| so it is the only
nonzero transition out of |0′]

[n′|σT |0′] = δn′1′ (σT )0′
1′ . (19)

The transition cross-section operator acts on a general state
|P] in a perturbative fashion6

(1 + λσT ) |P ] = |P ] + λσT |P ]. (20)

By the conservation of population, σT acting on any state can
only create a new state with no population, that is, a superpo-
sition of nonzero primed states. Thus,

[0′|σT |n′] = 0. (21)

With Eqs. (19) and (21), the transition cross-section matrix
(σT )ij can also be reduced in dimension by eliminating its 0′

row and column.
This procedure drops one nonzero element (σT )0′

1′ , which
occurs on the first step in every pathway. The effect of this el-
ement will be included in a new detection vector [σ D|, which
is defined by

[σD| = (σT )0′
1′

Re (σD)0′
0′

[0′|σD. (22)

Because all pathways end on [0′|, the detection matrix and
final state can be replaced by this vector. Because there are no
transitions into |0′], the first element of the detection matrix
only occurs in static (N = 0) spectroscopy

A(0) = ρL (σD)0′
0′ . (23)

For all higher order measurements, the n = 0 element of
(σ D)n ′

can be dropped, and the detection vector can be re-
duced in dimension. The term Re (σD)0′

0′ is included in the def-
inition of [σ D| for convenience: Using Eq. (23), the Nth-order
absorbance will scale explicitly with the static absorbance
A′(0).

Equation (13) can now be re-expressed as

A(N)(τN, . . . , τ1)

A′(0)
= I (N)σ

n′,...,l′,j ′
m′,...,k′ C

m′,...,k′,1′
n′,...,l′,j ′ (τN, . . . , τ1),

(24)
for N �= 0. The total cross-section,

σ
n′,...,l′,j ′
m′,...,k′ = (−1)N (σD)n

′
(σT )l

′
m′ . . . (σT )j

′
k′ , (25)

gives the relative weight of each pathway, but is a lower
dimensional matrix than B

n,...,j,eq

I,...,k,i [Eq. (15)]. It contains N
cross-sections to match the N fluence factors in I(N). The cor-
relation function is also simplified relative to Eq. (14), be-
cause its first index is now fixed. Equation (24) generalizes a
familiar expression for the fractional population change in a
pump–probe experiment,

	A′(τ )

A′
0

= 	ρ(τ )

ρ0
= −IσC(τ ). (26)

The indices in Eq. (24) only run over nonzero values.
Thus, in the primed basis set, the entire calculation is re-
stricted to nonzero intermediate states, and the problem is re-
duced by one dimension. The reduction is possible because of
the restrictions implied by population conservation.

For a two-level system, Eqs. (16) and (18) completely
determine the primed basis set,

|0′] = |0],

|1′] = 1√
2

(|1] − |0]) ,
(27)

and its dual basis set,

[0′| = [1| + [0|,
(28)

[1′| =
√

2[1|.
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It is also possible to include population conservation in a two-
level system by using an orthogonal basis set.6 Either ap-
proach is viable, but the current one generalizes to multilevel
systems.

C. Application to excitonic systems

For more than two states, Eqs. (16) and (18) do not com-
pletely define the higher basis states. Choices can be made to
further simplify the transition and rate matrices, but more de-
tailed knowledge of the structure of these matrices is needed.
We specialize to excitonic systems, which are defined as a set
of equally spaced states or groups of nearly degenerate states
that undergo optical transitions and relaxation in increments
of one “quantum” at a time. The transition and rate matrices
of an excitonic system are simplified if the nonzero primed
basis kets are chosen to be differences of neighboring states,

|n′] = 1√
2

(|n] − |n − 1]) , n ≥ 1, (29)

with the dual states

[n′| =
√

2
N∑

i=n

[i|, n ≥ 1. (30)

The remainder of the paper focuses on 1D and 2D exper-
iments. These experiments cannot access states higher than
|3], so four-level schemes will be sufficient. The standard ba-
sis set for such schemes is {|3], |2], |1], |0]} (triexciton, biex-
citon, exciton, and ground states, respectively). The same rate
matrix applies for all schemes,

Ri
j (t) =

⎛
⎜⎜⎝

kt (t) 0 0 0
−kt (t) kb(t) 0 0

0 −kb(t) ke(t) 0
0 0 −ke(t) 0

⎞
⎟⎟⎠ , (31)

where kt(t) is the triexciton-to-biexciton rate, kb(t) is the
biexciton-to-exciton rate, and ke(t) is the exciton-to-ground-
state rate. When transformed to the primed basis set, the rate
matrix becomes

Ri ′
j ′ (t) =

⎛
⎜⎜⎝

kt (t) 0 0 0
−kb(t) kb(t) 0 0

0 −ke(t) ke(t) 0
0 0 0 0

⎞
⎟⎟⎠ , (32)

which can be reduced in dimensionality to

Ri ′
j ′ (t) =

⎛
⎝ kt (t) 0 0

−kb(t) kb(t) 0
0 −ke(t) ke(t)

⎞
⎠ . (33)

In addition, the total signal given by Eq. (24) simplifies
because the first excited state defined by Eq. (19) is also the
lowest state in the relaxation scheme given by Eq. (33), that
is, j = 1′

A(N)(τN, . . . , τ1)

A′(0)
= I (N)σ

n′,...,l′,1′
m′,...,k′ C

m′,...,k′,1′
n′,...,l′,1′ (τN, . . . , τ1).

(34)
Thus, the signal is calculated as a product of two 2(N−1)-
dimensional matrices, one dimension lower than in Eq. (13).

FIG. 2. Three energy-level schemes for an excitonic system. Red arrows are
allowed optical transitions with each arrow indicating a factor of σ in cross-
section. Blue arrows indicate nonradiative transitions; dashed arrows are fast
relaxations.

Off-diagonal elements in the rate matrix add complexity
to the calculations. It is not generally possible to diagonalize
the rate matrix with any coordinate transformation. However,
in the primed basis set, the off-diagonal terms become small
if each higher exciton relaxes rapidly compared to lower ex-
citons. As discussed in Sec. IV B below, this limit can be re-
garded as one of strong incoherent coupling. In the current
example,

Ri ′
j ′ (t)

kt �kb�ke−−−−−−−→
⎛
⎝ kt (t) 0 0

0 kb(t) 0
0 0 ke(t)

⎞
⎠ . (35)

The transition and detection cross-section matrices de-
pend on the spectroscopic details of the system. Three ex-
amples are shown in Fig. 2. They have been chosen to
illustrate important limiting behaviors in the final signal.
Scheme A represents an exciton consisting of many coupled
chromophores (M → ∞, see Sec. IV B). The ground-to-
exciton transition has the same cross-section as the exciton-
to-biexciton and biexciton-to-triexciton transitions: σ 01 = σ 12

= σ 23 = σ . In addition, the downward transitions have the
same cross-section as the upward transitions: σ 01 = σ 10, σ 12

= σ 21 and σ 23 = σ 32.
Alternatively, the exciton levels may not be eigenstates.

They may have internal structure or dynamics within a band
of nearly degenerate eigenstates. Scheme B is an exam-
ple. Absorption to a bright state is followed by rapid relax-
ation to a state with zero emission cross-section: σ 10 = σ 21

= 0. The ground-to-exciton and exciton-to-biexciton transi-
tions still have the same strength: σ 01 = σ 12 = σ . No triexci-
ton state is included.

Scheme C is similar to Scheme B, in that it has no triexci-
ton and no emission (σ 10 = σ 21 = 0). However, it consists of
few coupled chromophores, so the exciton-to-biexciton transi-
tion has a lower cross-section than the ground-to-exciton tran-
sition. We choose σ 01 = 2σ 12 = 2σ (M = 2, see Sec. IV B).
CdSe nanoparticles with band-edge excitation are a real sys-
tem approximated by model C.11, 12, 32
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For Scheme A in the standard basis set, the transition ma-
trix is

(σT )ij = σ ′

⎛
⎜⎜⎝

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎞
⎟⎟⎠ , (36)

and the detection matrix is

(σD)ij = σ

2

⎛
⎜⎜⎝

−1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 1

⎞
⎟⎟⎠ , (37)

where the prime indicates the real part of the complex cross-
section. In the primed basis set, these matrices become

(σT )i
′

j ′ = σ ′

⎛
⎜⎜⎝

−2 1 0 0
1 −2 1 0
0 1 −2

√
2

0 0 0 0

⎞
⎟⎟⎠ (38)

and

(σD)i
′

j ′ = σ

2

⎛
⎜⎜⎝

−2 1 0 0
−3 0 1 0
−2 −1 0

√
2

−√
2 0 −√

2 2

⎞
⎟⎟⎠ . (39)

Reducing the dimensionality of the matrices yields

(σT )i
′

j ′ = σ ′

⎛
⎝−2 1 0

1 −2 1
0 1 −2

⎞
⎠ (40)

and

(σD)i
′ = σ

(−1 0 −1
)
. (41)

To evaluate the total signal for Scheme A, Eqs. (40)
and (41) are inserted into Eq. (25) and evaluated by stan-
dard matrix methods to yield the relative cross-section of each
pathway σ

n′,...,l′,1′
m′,...,k′ . The correlation function for each pathway

C
m′,...,k′,1′
n′,...,l′,1′ (τN, . . . , τ1) is evaluated by putting Eq. (33) into

Eqs. (7) and (14). These components are put into Eq. (34)
to give the experimental signal. Examples of this procedure
are given in Sec. III.

III. PATHWAY CALCULATIONS IN EXCITONIC
SYSTEMS

A. Cross-sections

In the standard basis set, Eq. (13) yields three pathways
with nonzero amplitude for 1D experiments and 16 pathways
for 2D experiments. In the primed basis set using Eq. (34),
the number of pathways is reduced to one for 1D experiments
and three for 2D experiments. These pathways are shown on
the right-hand side of Fig. 3. Each pathway is represented as
a series of transformation from the initial state on the right to
the final state on the left. Each transformation is represented
as an arrow and contributes a matrix element of the operator
governing the transformation, which is shown below the path-
ways. The final state of each pathway is detected by form-
ing the product with the detection vector [σ D|. The strong

FIG. 3. Pathways for the calculation of one-dimensional (1D) and two-
dimensional (2D) signals. The right-hand side shows the allowed pathways
between states |n′] in the primed basis set. The operators responsible for each
transition are given below the arrows: G, the time-evolution operator and σT ′
the optical transition operator. The indices corresponding to each level in the
pathway are indicated above the solid line. The final state in each pathway
is detected by taking the product with the detection vector [σD|. The total
cross-section for each pathway is given in the center of the figure for each of
the energy-level schemes shown in Fig. 2. The correlation function for each
pathway is given on the left. Pathways (i) and (iii) have only diagonal relax-
ation and dominate when the biexciton decay is faster than the exciton decay.
Pathway (ii) (gray) involves cross-relaxation and is a minor contribution.

selection rules in the primed basis set allow one to quickly
enumerate the pathways with nonzero amplitude on such
diagrams.

The correlation function corresponding to each pathway
is shown on the left-hand side of Fig. 3. It is formed from
the matrix elements of the time-evolution operator of the cor-
responding pathway through Eq. (14). The steps in the path-
ways are labeled above the solid line with the indices used in
our equations.

In the case where biexciton relaxation is faster than ex-
citon relaxation, pathway (ii), which is in gray, has only
a small contribution. That pathway will be discussed in
Sec. III C. For now, we only consider the two dominant 2D
pathways. Note that the triexciton state contributes to the de-
tection cross-section in Scheme A, but |3′] cannot occur as an
intermediate state in a 2D experiment.

The total cross-section for each pathway is calculated
from the matrix elements of the cross-section operators, σT

and σD , according to Eq. (25). The exact cross-section for
each pathway and, in particular, the relative contributions of
exciton and biexciton dynamics, depends on the details of
the state scheme. Results for the three schemes of Fig. 2 are
shown in the center of Fig. 3. Scheme A is a limiting case
(see Sec. IV B below) where excitons are detectable and biex-
citons are not. The only pathway involving biexciton dynam-
ics, pathway (i), has a cross-section of zero. Scheme B is in
the opposite limit: biexcitons are directly detectable and ex-
citons are not. Scheme B gives no signal in a 1D experiment,
and 2D pathway (iii) has a cross-section of zero. However, 2D
pathway (i) has a nonzero cross-section and can be measured
in Scheme B. Information on both exciton and biexciton dy-
namics are available from this pathway.

Scheme C is an intermediate case where pathways end-
ing with either excitons or biexcitons contribute to the signal.
The notable feature is that the two pathways (i) and (iii) have
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opposite signs. Generally, the biexciton relaxes faster than
the exciton, and the signal will initially rise as the negative
biexciton signal decays. This feature allows 2D MUPPETS to
cleanly separate exciton and biexciton dynamics, as will be
illustrated in Sec. IV A.

To summarize, the relative contributions of exciton and
biexciton dynamics to a 2D experiment vary with the tran-
sition cross-sections of the system of interest. These cross-
sections determine both the relative signs and magnitudes of
the correlation functions that are measured, and thus, the type
of dynamical information that is available.

B. Diagonal correlation functions

The reduction in the number of pathways in the primed
basis set not only simplifies the calculation of the amplitudes;
it also reduces the number of correlation functions to a mini-
mum. Figure 3 shows that a 1D experiment is described by a
single correlation function C1′

1′ (τ1). This correlation function
is diagonal in the sense that in one time period it only mea-
sures survival of one basis state. In this case, the notation can
be simplified: Ci

i (τ1) = Ci(τ1). This type of correlation func-
tion is normalized to one at the time origin.

Using Eqs. (7), (14) and (33), the exciton decay measured
in a 1D experiment is given by

C1′(τ1) = 〈
G1′

1′ (t1, t0)
〉

=
〈
exp

(
−

∫ t1

t0

ke(t)dt

)〉
. (42)

A similar correlation function,

C2′ (τ1) = 〈
G2′

2′(t1, t0)
〉

=
〈
exp

(
−

∫ t1

t0

kb(t)dt

)〉
, (43)

defines the biexciton decay, but it cannot be measured in a 1D
experiment.

The 2D signals are dominated by diagonal correlation
functions. The exciton–exciton correlation function,

C1′1′ (τ2, τ1) = 〈
G1′

1′ (t2, t1)G1′
1′ (t1, t0)

〉

=
〈
exp

(
−

∫ t2

t1

ke(t)dt −
∫ t1

t0

ke(t)dt

)〉
, (44)

occurs in pathway (iii) of Fig. 3. It is essentially similar to
the 2D correlation function previously studied in two-level
systems.3, 8, 10 If the decay is nonexponential due to homoge-
neous causes, the 2D correlation function is the product of 1D
correlation functions,

C1′1′(τ2, τ1) = C1′(τ2)C1′(τ1). (45)

If the decay is heterogeneous, the 2D correlation function is
equal to the 1D correlation function of the sum of the time
variables,

C1′1′ (τ2, τ1) = C1′(τ2 + τ1). (46)

Thus, with 2D MUPPETS in an excitonic system, it is pos-
sible to distinguish homogeneous and heterogeneous mecha-

nisms of rate dispersion of the exciton decay, just as it is in a
two-level system.

A new feature of MUPPETS in multilevel systems is the
possibility of cross-correlations between different relaxations.
For example, pathway (i) in Fig. 3 has an exciton–biexciton
correlation function,

C2′1′ (τ2, τ1) = 〈
G2′

2′(t2, t1)G1′
1′(t1, t0)

〉

=
〈
exp

(
−

∫ t2

t1

kb(t)dt −
∫ t1

t0

ke(t)dt

)〉
. (47)

Although two transitions are involved, the correlation is still
diagonal during each time interval. When τ 1 = 0, this function
gives access to the biexciton decay [Eq. (43)],

C2′1′ (τ2, 0) = C2′(τ2). (48)

More generally, C2′1′(τ 2, τ 1) is sensitive to correlations be-
tween exciton and biexciton dynamics. These correlations are
an important new feature in multilevel MUPPETS and are il-
lustrated with examples in Sec. IV C.

C. Off-diagonal correlation functions

In addition to the diagonal correlation functions just dis-
cussed, multilevel systems also have correlations involving re-
laxation between basis states during one of the time periods.
These correlation functions involve off-diagonal elements of
the rate matrix. For example, pathway (ii) in Fig. 3 has the
correlation function

C2′
1′1′ (τ2, τ1) = 〈

G2′
1′(t2, t1)G1′

1′(t1, t0)
〉
, (49)

which involves relaxation from |2′] to |1′] during τ 2. The Ap-
pendix [see Eq. (A5)] shows that the off-diagonal time evolu-
tion can be calculated exactly once a dynamic model for the
diagonal elements is specified

G2′
1′ (t2, t1) =

∫ t2

t1

G1′
1′ (t2, t

′)k1′(t ′)G2′
2′ (t ′, t1)dt ′. (50)

However, it is difficult to make general statements about the
full correlation function from this exact expression.

Fortunately, the primed basis set makes the cross-
relaxation small when biexciton relaxation is faster than ex-
citon relaxation. In this case, the relaxation of the standard
basis state |2] is biphasic: first |2] decays to |1], and then |1]
decays to |0]. In the primed basis, this decay is represented
by a sum of G2′

2′ (t2, t1) and G1′
1′ (t2, t1). However, this sum con-

tains a small error: the decay of |1] does not start immedi-
ately as it does in G1′

1′ (t2, t1); the start of its decay is delayed
by the time needed for the biexciton to decay. This correc-
tion is isolated as the off-diagonal time evolution G2′

1′ (t2, t1).
If the decay of the exciton during the biexciton lifetime is
small, the correction is small. The Appendix shows that in this
limit, the off-diagonal time evolution can be approximated
by [see Eq. (A11)]

G2′
1′ (t2, t1) = G2′

2′ (t2, t1)(1 − G1′
1′(t2, t1)). (51)

The cross-relaxation correlation function cannot be cal-
culated until the correlation between exciton and biexciton
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dynamics are specified. However, its properties can be illus-
trated with the case of uncorrelated dynamics. In that case,
the 1D and 2D correlation cross-relaxation correlation func-
tions can be expressed in terms of the diagonal correlation
functions,

C2′
1′ (τ1) = 〈

G2′
1′ (t2, t1)

〉

= C2′(τ1) (1 − C1′(τ1)) (52)

and

C2′
1′1′ (τ2, τ1) = C2′(τ2) (C1′(τ1) − C1′1′(τ1, τ2)) . (53)

Cross-relaxations are not normalizable: they are zero at
the time origin. Their contribution to the signal must be
judged not by their cross-section, as given in Fig. 3, but by
their maximum size. The 2D function C2′

1′1′ (τ2, τ1) is zero
whenever τ 2 = 0. Its maximum lies along τ 1 = 0, where it
is equal to the 1D cross-relaxation function,

C2′
1′1′ (τ2, 0) = C2′

1′ (τ2). (54)

It rises slowly in τ 2 with the exciton decay C1′ (τ 2), but is
cut off by the rapid biexciton decay C2′(τ 2) [see Eq. (52) and
Fig. 4(a)]. If the dynamics can be characterized by average
rate constants, the maximum value of C2′

1′ (τ2) is approxi-
mately ke/kb.

FIG. 4. The 1D kinetics used in the example calculations (Figs. 5–7), which
are identical for all the models. (a) Time decays: exciton decay C1′ (τ ) [upper,
red curve, Eq. (55)], biexciton decay C2′ (τ ) [middle, blue curve, Eq. (56)],
and cross-relaxation C2′

1′ (τ1) [lowest, green curve, Eq. (52)]. (b) Rate spec-
tra: Exciton spectrum Ĉ1′ (y) (rightmost, red curve) and biexciton spectrum
Ĉ2′ (y) (leftmost, blue curve) with y = ln(κτ 0).

IV. EXAMPLES OF NEW EFFECTS

A. Separating exciton and biexciton dynamics

This section will present calculations of 2D-MUPPETS
results for several simple models of the dynamics. All the
models are based on state Scheme C in Fig. 2, where all path-
ways are active. The 1D correlation functions for all the ex-
amples will be the same

C1′(τ1) = exp[− (τ1/τ0)1/2] (55)

for the exciton and

C2′ (τ1) = exp[− (10τ1/τ0)1/2] (56)

for the biexciton. These two decays are similar,

C2′(τ1) = C1′(cτ1), (57)

with the biexciton decaying ten times faster (c = 10) than the
exciton.

The decays are stretched exponentials in time and are
shown in Fig. 4(a). The cross-relaxation C2′

1′ (τ1) in the un-
correlated limit [Eq. (52)] is also shown in Fig. 4(a). As ex-
pected, the large difference between exciton and biexciton de-
cay times makes this term small.

In addition to the time-domain decays, it is useful to look
at rate spectra. The rate spectrum Ĉ(y) of a correlation func-
tion C(τ ) is defined implicitly by

C(τ ) =
∫ ∞

−∞
Ĉ(y) exp(−τey/τ0)dy. (58)

The rate spectrum is essentially the inverse Laplace trans-
form of the time decay expressed on a logarithmic scale,
y = ln(κτ 0), where κ is the Laplace rate. More detail on
the properties and calculation of rate spectra can be found in
Ref. 2. The rate spectrum Ĉ1′(y) of the stretched exponential
in Eq. (55) is shown in Fig. 4(b). Applying the transform in
Eq. (58) twice, a 2D time function C(τ 2, τ 1) can be expressed
as a rate-correlation spectrum Ĉ(y2, y1).

The experimental signal in a 1D experiment is directly
related to the 1D exciton correlation function,

A(1)(τ1) = 2σI (1)A′(0)C1′ (τ1). (59)

The other 1D correlation functions cannot be observed in a
1D experiment, but they can be accessed in a 2D experiment.
The full 2D signal is

A(2)(τ2, τ1) = 2σσ ′I (2)A′(0)(C1′1′(τ2, τ1) − 1
2C2′1′ (τ2, τ1)

− 1
2C2′

1′1′(τ2, τ1)
)
. (60)

Along the τ 2 = 0 axis, the 2D experiment simply duplicates
the information in the 1D experiment

A(2)(0, τ1) = σσ ′I (2)A′(0)C1′ (τ1) = 1
2σ ′I2A

(1)(τ1). (61)

Along the τ 1 = 0 axis, the 2D absorbance reduces to a sum of
the three 1D correlation functions,

A(2)(τ2, 0)=2σσ ′I (2)A′(0)
(
C1′(τ2)− 1

2C2′(τ2) − 1
2C1′

2′ (τ2)
)

.

(62)
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FIG. 5. Two zero-time cuts through the 2D MUPPETS signal. Red (upper)
curve: 2A(2)(0, τ 1), which is equivalent to the exciton decay measured in a 1D
experiment. Blue (lower) solid curve: A(2)(τ 2, 0), which has a negative biex-
citon signal superimposed on the positive exciton signal. The dashed blue
curve neglects the cross-relaxation [Eq. (53)]. The curves are normalized to
the same amplitude at long time, so the difference between these cuts mea-
sures the biexciton decay [Eq. (63)].

These two cuts through the 2D signal are shown in
Fig. 5 as solid curves. Because they are related to 1D cor-
relation functions, they contain no new information on rate
heterogeneity or correlation. Nonetheless, they contain new
information on the biexciton decay that is not available from
1D measurements.

In a two-level system, these two cuts are identical.2, 8, 10

Thus, the asymmetry in τ 1 and τ 2 is diagnostic of a biexci-
ton contribution to the signal. Because the two contributions
have opposite signs, the cut along τ 1 = 0 may not be mono-
tonic: it can rise as the negative biexciton contribution decays.
This feature is also unique to a multilevel system. The effect
is weak for the parameters chosen here, but it can be more
prominent under other conditions.11, 12 It is more clearly seen
in the dashed blue curve in Fig. 5, which leaves out the effects
of cross-relaxation.

This feature gives MUPPETS a unique potential to sep-
arate exciton and biexciton dynamics. Subtracting the two
zero-time cuts [Eqs. (61) and (62)] gives the biexciton decay

2A(2)(0, τ1) − A(2)(τ2, 0)

σσ ′I (2)A′(0)
= C2′(τ2) + C1′

2′ (τ2). (63)

The small cross-relaxation term can be approximated with
Eq. (52) and removed.

In many systems, the exciton shift is too small to spec-
trally separate exciton and biexciton dynamics. If there is
a significant difference in their decay rates, 1D experiments
give a power-dependent change in kinetics that can be iden-
tified as the contribution of biexcitons. Unfortunately, a long
lived photoproduct with a fast exciton decay has exactly the
same properties and can be mistaken for a biexciton.33 In a
2D MUPPETS experiment, a photoproduct with a fast exciton
lifetime contributes to C1′ (τ ) and is eliminated in Eq. (63).
This experiment distinguishes between species that existed
before the pulse sequence (photoproducts) and species created
during the pulse sequence (biexcitons). This idea is illustrated
in more detail by model III below (Sec. IV C 3). It will also
be demonstrated experimentally in future papers.11, 12

This mechanism fundamentally discriminates between
exciton and biexciton signals. If a photoproduct is present
and its biexciton decay differs from the biexciton decay of
the primary species, the measured C2′ (τ ) will contain a mix-
ture of both signals. An extrapolation to zero average power
is still needed to eliminate this possibility. The forthcom-
ing papers will also explore the power dependence of the
MUPPETS signal in more detail and demonstrate the neces-
sary extrapolation.11, 12

The sign change between exciton and biexciton signals is
dependent on having a net absorption from the exciton state
(excited-state absorption minus stimulated emission) that is
weaker than the absorption from the ground state. This condi-
tion is satisfied in most real excitonic systems.

B. Coherent versus incoherent excitons

Any discussion of excitonic systems faces a potential
paradox. Any set of zero-order, two-level chromophores can
be grouped to form a multilevel system. To avoid a para-
dox, all multiexciton effects must disappear in the absence of
a suitable interaction between the zero-order chromophores.
The number of zero-order chromophores to consider is non-
trivial in many systems: How many electron-hole pairs in a
semiconductor? How many molecules in a dye aggregate?
How many “segments” in a conjugated polymer?

First, one cannot define an excitonic system that is overly
large. If M zero-order chromophores with an absorption cross-
section σ are included, the ground-to-exciton cross-section is
Mσ , the exciton-to-biexciton cross-section is (M−1)σ , and
so on. In the limit as M becomes large, Scheme A (Fig. 2)
is reached as a limit. In this scheme, the pathways involving
multiple excitons have zero amplitude (Fig. 3). The reason is
that absorption saturation is lost as M becomes large. Without
nonlinear absorption, there can be no signal in a multidimen-
sional experiment.

Second, one must consider the nature of the interaction
between chromophores. In spectral correlation spectroscopy,
the interaction must perturb the zero-order spectroscopy of
the system, either splitting the transitions or transferring ab-
sorption strength between exciton and biexciton transitions.
This relatively strong coupling is sufficient, but not necessary,
to create multiexciton effects in MUPPETS.

We focus on the more difficult case where the zero-order
spectra and cross-sections are not perturbed and an exciton
would not be seen in spectral measurements

(σD/T )0′
1′(ω) = 2(σD/T )1′

2′(ω). (64)

This equation requires that both the integrated cross-sections
and the cross-section at each frequency are not perturbed, that
is, there is no coherent coupling. Even without spectral inter-
actions, there can be an interaction that perturbs the rates, for
example, one that causes exciton–exciton annihilation. This
interaction constitutes an incoherent coupling. This coupling
expresses itself primarily through the cross-relaxation func-
tion, which we previously calculated in the limit of strong
incoherent coupling, kb � 2ke, Eq. (51). In the limit of no
coupling, statistics cause the biexciton rate to be twice the
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exciton rate,

kb(t) = 2ke(t), (65)

or the biexciton decay to be the square of the exciton decay,

G2′
2′ (t1, t0) = (

G1′
1′ (t1, t0)

)2
. (66)

Putting this zero rate-coupling limit into Eq. (A8) gives

G2′
1′ (t2, t1) = G1′

1′(t2, t1) − G2′
2′ (t2, t1). (67)

The relevant 2D cross-relaxation function [Eq. (47)] is then

C2′
1′1′(τ2, τ1) = C1′1′ (τ2, τ1) − C2′2′ (τ2, τ1). (68)

In the absence of spectral perturbations, the relative
cross-sections for the three 2D pathways are those of Scheme
C (Fig. 3). With Eq. (68), the cross-relaxation pathway (ii)
partially cancels the exciton–exciton pathway (iii), but com-
pletely cancels the exciton–biexciton pathway (i). Thus, all
multiexciton effects disappear from MUPPETS unless there
is an incoherent coupling that violates Eq. (65). Conversely,
any deviation from Eq. (65) creates excitonic effects that are
detectable in MUPPETS. However, a coherent coupling that
violates Eq. (64) is not required. Thus, a system may need to
be treated as an incoherent exciton in MUPPETS, even when
it does not need to be treated as a coherent exciton in spectral
correlation spectroscopy.

The difference between incoherent and coherent excitons
is one of degree, not of kind. Consider the interaction energy
coupling the zero-order chromophores. The inverse of this en-
ergy gives an interaction time that describes the rate of energy
transfer between the chromophores. To have a coherent cou-
pling that is detectable in coherent spectroscopy, the interac-
tion time must be on the order of or shorter than the dephasing
time, i.e., there must be coherent energy transfer. If the inter-
action is weaker, it can still induce incoherent energy hopping
that leads to exciton–exciton annihilation. So long as the anni-
hilation time is on the order of or shorter than the population
decay time, an incoherent coupling will perturb the rates and
will be detected by MUPPETS. If the population decay time
is longer than the dephasing time, a system may constitute
an incoherent exciton, even when it is too weakly coupled to
form a coherent exciton.

C. Measuring exciton–biexciton correlations

The full 2D-MUPPETS signal, A(2)(τ 2, τ 1) with both τ 1

and τ 2 varying, depends on correlations in the kinetics. The
exciton–exciton correlation C1′1′ (τ 2, τ 1) reports on whether
the dispersion in C1′ (τ 1) is due to a homogeneous [Eq. (45)]
or a heterogeneous [Eq. (46)] mechanism. This idea has been
thoroughly discussed in two-level systems.2, 3, 8–10 The new
feature in excitonic systems is the exciton–biexciton func-
tion C2′1′(τ 2, τ 1), which reports on correlations between two
different transitions. To illustrate the behavior of this func-
tion, we will calculate the 2D-MUPPETS signal for four lim-
iting models: homogeneous or heterogeneous exciton kinet-
ics combined with either correlated or uncorrelated exciton–
biexciton kinetics.

The time-domain representation of the final signal for
each model is shown in Fig. 6. As discussed in Sec. IV A, the

FIG. 6. The total 2D-MUPPETS time decays A(2)(τ 2, τ 1) for models I (ho-
mogeneous exciton, uncorrelated biexciton), II (heterogeneous exciton, un-
correlated biexciton), III (heterogeneous exciton, correlated biexciton) and
IV (homogeneous exciton, correlated biexciton). (a) The signal versus τ 1 for
various values of τ 2 normalized at τ 1 = 0. In model I, all curves overlap.
(b) The signal versus τ 2 for various values of τ 1 normalized at τ 2 = 0. All
models have the same 1D decays (Fig. 4).

decays in τ 1 and in τ 2 are not symmetric, a characteristic of
a multilevel system. All the models have identical 1D decays
(Fig. 4), but the 2D decays in Fig. 6 are quite different. On an
empirical basis, 2D MUPPETS can distinguish different lev-
els of exciton heterogeneity and different levels of exciton–
biexciton correlation.

A more rational discussion of the different results is pos-
sible using the 2D rate spectra of the total signal and the com-
ponents contributing to it (Fig. 7). In two-level systems, the
diagonal of a 2D rate spectrum is always the square of the
1D rate spectrum and is the same for all models.2 The spec-
tra also have reflection symmetry about the diagonal. In mul-
tilevel systems, these features remain in the exciton–exciton
components [Fig. 7(I.a–III.a) but are lost in the total spectra
[Fig. 7(I.c–III.c)].

1. Model I: Homogeneous exciton
and uncorrelated biexciton

In model I, all the particles are identical, i.e., there is no
heterogeneity. The exciton decay of any single chromophore
is dispersed due to a complex relaxation mechanism, i.e.,
the dispersion is homogeneous. In this case, the exciton–
exciton correlation function in time is given by Eq. (45). The
corresponding rate spectrum,

Ĉ1′1′ (y2, y1) = Ĉ1′(y2)Ĉ1′(y1), (69)
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FIG. 7. 2D-MUPPETS rate spectra for models I (homogeneous exciton,
uncorrelated biexciton), II (heterogeneous exciton, uncorrelated biexciton)
and III (heterogeneous exciton, correlated biexciton). (a) The exciton–
exciton component, Ĉ1′1′ (y2, y1), with y = log10(κτ 0). (b) The negative
of the exciton–biexciton component, −Ĉ2′1′ (y2, y1). (c) The total signal,
Â(y2, y1) ∝ Ĉ1′1′ (y2, y1) − 1

2 Ĉ2′1′ (y2, y1) − 1
2 Ĉ2′

1′1′ (y2, y1). Delta functions
have been broadened by a Gaussian with a width of 0.3 decades. Contours
are linear with red/orange positive, yellow zero, green/blue negative.

is shown in Fig. 7(I.a). The amplitude along the diagonal is the
square of the 1D exciton spectrum in Fig. 4(b).2 In this model,
the off-diagonal amplitude takes on its maximum value every-
where. If the decays were modeled with discrete rates instead
of continuous distributions, the off-diagonal amplitude would
appear as cross peaks linking rates lying on the diagonal.2 The
off-diagonal amplitude shows that the corresponding diagonal
rates are components of a single, complex relaxation process:
the diagonal rates “co-exist” on the same chromophore.

Model I additionally assumes that the exciton and biex-
citon relax by independent and unrelated mechanisms. Thus,
the exciton and biexciton kinetics are uncorrelated

C2′1′(τ2, τ1) = C2′(τ2)C1′(τ1). (70)

The negative of the corresponding rate spectrum,

Ĉ2′1′ (y2, y1) = Ĉ2′(y2)Ĉ1′(y1), (71)

is shown in Fig. 7(I.b). The spectrum is no longer centered on
the diagonal, but rather on a shifted, parallel line. The spec-
trum shows strong amplitude off this line, just as the exciton–
exciton spectrum shows strong off-diagonal amplitude. Thus,
rate homogeneity of a single transition [Eqs. (45) and (69)] is
analogous to a lack of correlation in the rates of two transi-
tions [Eqs. (70) and (71)]. In either case, knowing that a rate
is observed on a given chromophore in one measurement does
not give any additional information on whether a different
rate will be observed on the same chromophore in a second
measurement.

The identifying characteristic of fully homoge-
neous/uncorrelated kinetics is that the 2D signal is separable
in the two time variables or in the two rate variables. This
separability extends to the cross-relaxation [Eqs. (45) and
(53)] and thus, to the total signal. In the time decays of
Figs. 6(I.a) and 6(I.b), separability causes all the curves in
either plot to overlap after normalization. In the rate spectra,
it is this separability that leads to a maximal spread along the
anti-diagonal direction.

Figure 7(I.c) shows the rate spectrum of the total sig-
nal, including the cross-relaxation. There is strong overlap of
the exciton–exciton and exciton–biexciton components, but
enough information remains to identify the important features
of each component. A horizontal node is formed by cancella-
tion between the exciton–exciton and exciton–biexciton com-
ponents. The horizontal node reflects the separability of the
total signal and, thus, is an identifying feature of a homoge-
neous and uncorrelated system.

2. Model II: Heterogeneous exciton
and uncorrelated biexciton

In model II, each chromophore has a simple, exponen-
tial exciton decay, i.e., there is no homogeneous dispersion.
The dispersion of the ensemble decay [Eq. (55)] is only due
to differences in the decay rates of different chromophores,
i.e., the dispersion is due to heterogeneity. In this case, the
exciton–exciton correlation function is given by Eq. (46). The
corresponding rate-correlation spectrum,

Ĉ1′1′(y2, y1) = Ĉ1′ (y1)δ(y1 − y2), (72)

is shown in Fig. 7(II.a). The diagonal amplitude is identical
with that of model I [Fig. 7(I.a)]. However in model II, there
is no off-diagonal amplitude. The lack of off-diagonal am-
plitude indicates that different rates do not “co-exist” on a
single chromophore: each rate is associated with a different
chromophore.

As with model I, model II assumes that the exciton and
biexciton decay by independent mechanisms. In particular,
the exciton heterogeneity has no effect on the biexciton decay.
As a result, Eqs. (70) and (71) still hold for the biexciton–
exciton correlation function, and Eq. (53) holds for the cross-
relaxation. The biexciton–exciton spectrum [Fig. 7(II.b)] is
unchanged from model I [Fig. 7(I.b)]. However, the total
spectrum [Fig. 7(II.c)] is quite distinct from that of model I
[Fig. 7(I.c)].

The corresponding results in the time domain can be in-
terpreted by regarding one time period as a rate-based fil-
ter to select a subensemble whose decay is measured in the
other time period. Figure 6(II.b) shows the decay in τ 2, which
measures the sum of exciton and biexciton decays. As τ 1

increases, the first time period progressively removes chro-
mophores with a fast exciton decay. The exciton component
during τ 2 slows as τ 1 increases. However, the biexciton com-
ponent is unaffected by filtering based on the exciton decay
time. As these two components become separated in time,
the signal rise due to biexciton decay becomes visibly distinct
from the slower exciton decay.

Downloaded 21 Jan 2013 to 128.240.229.3. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



034201-12 H. Wu and M. A. Berg J. Chem. Phys. 138, 034201 (2013)

Figure 6(II.a) shows the decay in τ 1, which measures
only the exciton decay. When τ 2 = 0, all chromophores are
measured. As τ 2 increases, the second time period progres-
sively selects for chromophores with well-separated exciton
and biexciton lifetimes, as these have less signal cancellation.
With no correlation between exciton and biexciton lifetimes,
these are the chromophores with a long exciton lifetime. Thus,
the exciton decay in τ 1 slows as τ 2 increases.

3. Model III: Heterogeneous exciton
and correlated biexciton

We now introduce exciton–biexciton correlation.
Whereas lack of correlation always produces the same result
regardless of the mechanistic details, models with correlation
require a more detailed specification of how the correlation is
produced. Model III assumes that the exciton and biexciton
decays of an individual chromophore are both exponential,
that is,

G1′
1′(t1, t0; θ ) = e−ke(θ)(t1−t0) (73)

and

G2′
2′ (t1, t0; θ ) = e−kb(θ)(t1−t0). (74)

Dispersion in the ensemble decay is only due to heterogene-
ity. In Eqs. (73) and (74), the rate is constant in time, but
varies with θ , a static or slow bath variable that varies from
chromophore to chromophore. This variable has a probability
distribution D(θ ), giving the 1D correlation functions

C1′(τ ) =
∫

D(θ )e−ke(θ)τ dθ (75)

and

C2′(τ ) =
∫

D(θ )e−kb(θ)τ dθ. (76)

As in model II, Eqs. (46) and (72) give the heterogeneous
exciton–exciton time decay and rate spectrum [Fig. 7(III.a)].

In model I, the exciton and biexciton rates depended on
different, independent bath coordinates, ke(θ e) and kb(θb), and
so their dynamics are uncorrelated. In model III, correlation
occurs because the exciton and biexciton rates depend on the
same bath variable [Eqs. (73) and (74)]. The exact nature of
the common dependence must also be specified. For purposes
of illustration, we choose

kb(θ ) = cke(θ ), (77)

which is consistent with the similarity of the exciton
and biexciton decay shapes that we have already assumed
[Eq. (57)]. The biexciton–exciton correlation function
[Eq. (47)],

C2′1′ (τ2, τ1) =
∫

D(θ )G2′
2′(t2, t1; θ )G1′

1′(t1, t0; θ ) dθ, (78)

reduces to

C2′1′(τ2, τ1) = C1′(cτ2 + τ1) = C2′ (τ2 + τ1/c). (79)

When c = 1, this equation reduces to the exciton–exciton
result for pure heterogeneity [Eq. (46)]. Thus, pure hetero-
geneity on a single transition is analogous to perfect correla-

tion between two transitions. In a purely heterogeneous sam-
ple, one measurement of the exciton rate on a chromophore
gives perfect knowledge of the biexciton rate that will be
found in a subsequent measurement.

The negative of the corresponding exciton–biexciton rate
spectrum,

Ĉ2′1′ (y2, y1) = Ĉ1′(y1)δ(y1 − y2 + ln c), (80)

is shown in Fig. 7(III.b). The spectrum traces out a curve
in the y2−y1 plane. With the simple correlation defined by
Eq. (77), the curve is a straight line. Others forms would gen-
erate more complex curves. In general, an experimental result
in the form of a one-dimensional curve is diagnostic for corre-
lated heterogeneity, and the form of the curve allows the form
of the correlation to be inferred.

The total rate spectrum and time decay are shown in
Fig. 7(III.c) and Fig. 6(III.a and III.b), respectively. These in-
clude the cross-relaxation,

C2′
1′1′ (τ2, τ1) = C1′ (cτ2 + τ1) − C1′((c + 1)τ2 + τ1), (81)

which is calculated from Eqs. (49) and (51), and its rate
spectrum,

Ĉ2′
1′1′ (y2, y1) = Ĉ1′(y1)[δ(y1 − y2 + ln c)

− δ(y1 − y2 + ln (c + 1))]. (82)

In this figure, the node of the rate spectrum lies parallel to
the diagonal, reflecting the simple linear form of Eq. (77).
More generally, the node will reflect the shape of the exciton–
biexciton correlation function and, thus, the form of the cor-
relation.

The interpretation of the time decays is similar to that for
model II. In Fig. 6(III.b), as τ 1 increases, chromophores with
fast relaxing excitons are eliminated from the measurement.
In this model, the remaining chromophores have both a slower
exciton and a slower biexciton decay. Both the rise and fall of
the signal are delayed as τ 1 increases. Figure 6(III.a) shows
the converse effect. As τ 2 increases, only chromophores with
slow decays (either exciton or biexciton) reach the detection
phase of the experiment. The exciton decay of the selected
chromophores is measured during τ 1 and slows as the selec-
tion criterion becomes stricter.

4. Model IV: Homogeneous exciton
and correlated biexciton

Model I considered the case of purely homogeneous dis-
persion in the exciton and biexciton decays. More precisely,
each chromophore had a time dependent rate ke(t) and kb(t) for
the exciton and biexciton, respectively. Underlying this time-
dependence is a bath variable ϕ(t) that is relaxing to a new
value in the excited state. In model I, the exciton and biexci-
ton rates depend on different, independent bath coordinates,
ke(ϕe(t)) and kb(ϕb(t)), and so their dynamics were uncorre-
lated. Model IV makes the same basic assumptions,

C1′ (τ1) = G1′
1′(t1, t0; ϕ) = exp

(
−

∫ t1

t0

ke(ϕ(t))dt

)
(83)
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and

C2′ (τ1) = G2′
2′ (t1, t0; ϕ) = exp

(
−

∫ t1

t0

kb(ϕ(t))dt

)
, (84)

but assumes that the exciton and biexciton decays depend on
the same bath property, and so are perfectly correlated.

In the absence of heterogeneity, the exciton–exciton cor-
relation function is the same as in model I [Eqs. (45) and (69)].
The biexciton–exciton correlation function is calculated with-
out ensemble averaging, i.e., from

C2′1′ (τ2, τ1) = G2′
2′ (t2, t1)G1′

1′(t1, t0), (85)

but more information on the dynamics of ϕ(t) is needed. We
make the simple assumption that the dynamics of ϕ(t) are the
same in the exciton and biexciton state. In this case,

C2′1′ (τ2, τ1) = G2′
2′ (t2, t0)G1′

1′ (t1, t0)

G2′
2′ (t1, t0)

= C2′(τ2 + τ1)C1′(τ1)

C2′(τ1)
. (86)

This result can be interpreted by writing it as

C2′1′(τ2, τ1) = (1 + Z(τ2, τ1)) C2′ (τ2)C1′(τ1) (87)

with

Z(τ2, τ1) = C2′(τ2 + τ1)

C2′(τ2)C2′(τ1)
− 1. (88)

The function Z(τ 2, τ 1) measures the rate dispersion of
C2′ (τ ). When C2′ (τ ) is an exponential, Z(τ 2, τ 1) = 0 every-
where. When C2′(τ ) is not exponential, Z(τ 2, τ 1) is still zero
along the τ 1 = 0 and τ 2 = 0 edges of its domain, but it is
nonzero in the middle: positive if the rate slows with time, and
negative if the rate increases with time. Thus, Eq. (87) has the
maximum deviation from the uncorrelated result [Eq. (45)]
allowed by the dispersion of C2′ (τ ). For our model functions,
this deviation is a positive one for large values of τ 1 and τ 2.
Under certain conditions, this deviation can give a signal that
rises with delay in some regions, for example, in Fig. 6(IV.b).
Rate spectra for this model are difficult to calculate and are
not easy to interpret and so are not presented.

V. THERMAL SIGNALS IN MULTILEVEL SYSTEMS

A. General formalism

Heterodyned experiments are not only sensitive to res-
onant absorption from the solute; they are also sensitive to
index-of-refraction changes in the solvent due to the heat re-
leased by nonradiative decay. In 1D, these effects are called
thermal gratings.13–15 (The total thermal response can be sep-
arated into a pure thermal and an acoustic component, but that
distinction will not be needed here.) In Ref. 7, we showed
how to incorporate thermal effects into pathway calculations
of multidimensional experiments. Here that treatment is ex-
tended to multilevel systems.

The system states must be expanded to include not only
the electronic state of the solute P, but also the energy density
of the solvent ε, that is, the state must have the form |P ε]. The
energy density is measured at the same (suppressed) k-vector

FIG. 8. Pathways for the calculation of thermal signals in one-dimensional
(1D) and two-dimensional (2D) experiments [see Fig. 3]. The final two states
of the pathways are expanded to |P nε] to show both P, the electronic state,
and nε , the number of quanta of thermal energy deposited in the solvent.

as the electronic state. The response to the solvent energy is
linear, so |P ε1] + |P ε2] = |P ε1 + ε2]. It will be convenient to
shift from ε, the heat per volume of solvent, to nε, the number
of photons of energy converted to heat per solute molecule,

nε = ε

¯ωρ
. (89)

An important result of Ref. 7 is that in a multidimensional ex-
periment, only the thermal signal formed by the last excitation
is detectable. Thus, the expanded states are only needed at the
end of the pathways (see Fig. 8).

The generalized absorption due to thermal effects
A(N)

ε (τN, . . . , τ1) adds to the resonant absorption A(N)(τN, . . . ,
τ 1) [Eq. (9)] and can be expressed in an analogous form,

A(N)
ε (τN, . . . , τ1) = (−1)N ρLI (N) [I |σDε

×
∫ tN

tN−1

Cε(tN − t ′)
d

dt ′
Gε(t ′, tN−1) dt ′

× . . . σT G(t1, t0)σT |eq]. (90)

The thermal detection cross-section operator σDε can be ex-
pressed in terms of nε, the operator that measures the value
of nε,

σDε = iσ ′′
ε nε. (91)

Because the thermal response is a change in the index-of-
refraction, this operator is imaginary. Its magnitude is

σ ′′
ε = ω

c

(
1 + 1

n2
s

) (−dns

dρs

) (
dρs

dεs

)
¯ω, (92)

where ns is the solvent index-of-refraction and ρs is the sol-
vent density. This quantity has the units of a cross-section and
is normally real and positive. The time-evolution operator for
the electronic state G(t ′, t) is expanded to Gε(t ′, t), the time-
evolution operator of the combined electronic-thermal state,
for the last time period.

The detection is not of the energy itself, but of the re-
sulting change in index-of-refraction. In Eq. (90), the en-
ergy deposition is convolved with Cε(τ ), the time-evolution
of thermal energy into an index-of-refraction change. Sophis-
ticated expressions for Cε(τ ) valid over a wide time range
are available.14, 34–37 For purposes of illustration over short
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times,

Cε(τ ) = 1 − cos(2τ/�) (93)

is an adequate expression.7 This thermal correlation function
is zero when τ = 0 and reaches a maximum of two at half the
acoustic period � due to interference between the slowly de-
caying pure thermal response and the more rapidly oscillating
acoustic response.

The convolution in Eq. (90) can be removed, if the de-
cay of the electronic state is much faster than the acoustic pe-
riod. If the decay is not complete within the acoustic period,
but only times ��/2 are treated, this approximation can be
pushed farther. The fraction that decays before �/4 (halfway
to the maximum) is treated as decaying instantaneously, and
the fraction that decays after �/4 is treated as never decaying.
This approximation is rough when the solute relaxation has a
single timescale, but becomes more reasonable when the de-
cay is highly dispersed in time. In this approximation,

A(N)
ε (τN, . . . , τ1) = (−1)N ρLI (N) [I |σDεCε(τN )

× Gε(�/4 + tN−1, tN−1) . . .

×σT G(t1, t0)σT |eq]. (94)

The primed basis set for electronic states can be intro-
duced for the thermal pathways, as they were for resonant
pathways in Sec. II B. The thermal absorption is then writ-
ten [compare to Eq. (24)]

A(N)
ε (τN, . . . , τ1)

A′(0)
= I (N) (σε)0′p,...,l′,j ′

m′0,...,k′

× (Cε)m
′0,...,k′,1′

0′p,...,l′,j ′ (τN, . . . , τ1). (95)

The final two indices are expanded to include the thermal vari-
ables. The total thermal cross-section is given by [compare to
Eq. (25)]

(σε)n
′p,...,l′,j ′

m′0,...,k′ = (−1)N (σDε)n
′p (σT )l

′
m′0 . . . (σT )j

′
k′ . (96)

The full operator σDε has been reduced by one dimension and
converted to a vector as in Eq. (22),

[σDε| = (σT )0′
1′

Re (σD)0′
0′

[0′p|σDε, (97)

with the result that

(σDε)n
′p = i

√
2δn′0′σ ′′

ε p. (98)

Because σDε is diagonal in the electronic state, only the n′

= 0 elements are nonzero. The multidimensional correla-
tion function in Eq. (95), which corresponds to the one in
Eq. (14), is

(Cε)m
′0,...,i ′

0′p,...,j ′ (τN, . . . , τ1) = Cε(τN )

× 〈
(Gε)m

′0
0′p (�/4 + tN−1, tN−1) . . . Gi ′

j ′ (t1, t0)
〉
. (99)

The time evolution in the last time period is now governed by
the thermal response, rather than by solute dynamics.

B. Results for excitonic systems

In an excitonic system, the number of pathways is
severely limited. As with the electronic signal, the primed
basis set yields the minimum number of pathways. Figure 8
shows the allowed pathways for N = 1 and N = 2. Only two
elements of Gε(t′, t) are needed. In calculating them, we al-
low nonradiative decay that leads to long lived, high energy
states (“trap” states) without the immediate release of heat.
The fractional yield of heat for the biexciton-to-exciton and
exciton-to-ground transitions are Q2 and Q1, respectively. The
required matrix elements are then

(Gε)1′0
0′1(t ′, t) = Q1√

2

(
1 − G1′

1′ (t ′, t)
)
,

(100)

(Gε)2′0
0′1(t ′, t) = Q2√

2

(
1 − G2′

2′ (t ′, t)
) + Q1√

2
G2′

1′ (t ′, t).

In the primed basis set when the cross-relaxation is small,
each thermal pathway is dominated by the relaxation of a sin-
gle electronic transition.

Combining Eqs. (95)–(100) with the pathways in Fig. 8
yields expressions for the thermal signals,

A(1)
ε (τ1) = A′(0)I (1)(−iσ ′′

ε )Cε(τ1)Q1 (1 − C1′ (�/4)) (101)

and

A(2)
ε (τ2, τ1) = A′(0)I (2)(−iσ ′′

ε )(2σ ′)Cε(τ2)

×{ (
Q1 − 1

2Q2
)
C1′(τ1) − Q1C1′1′ (�/4, τ1)

+ 1
2

[
Q2C2′1′(�/4, τ1) − Q1C

2′
1′1′ (�/4, τ1)

]}
.

(102)

The results for the different models in Fig. 2 differ in only
minor ways; model C has been used for specificity. The 1D
result is consistent with previous work.13–15 The 2D result is
new. It allows the thermal effects to be calculated from the
correlation functions already discussed in Sec. IV. The ther-
mal cross-section in the 2D expression can be obtained from
1D experiments. The only new information in the 2D ther-
mal signal is the quantum yield of heat for the biexciton de-
cay. Thus, 2D experiments have the potential to measure this
quantity.

VI. CONCLUSIONS

This paper has laid the theoretical foundation for MUP-
PETS in multilevel systems, especially excitonic systems. The
calculations were simplified by introducing a nonorthogonal
basis set. By using population conservation, the number of
states to be considered was reduced by one. In an excitonic
system, the number of pathways and correlation functions
are reduced further. An unavoidable complication of multi-
level systems is cross-relaxation between basis states. How-
ever, suitable approximations were found in the limits of ei-
ther strong or weak exciton–exciton interaction. Methods for
calculating thermal effects in multilevel systems were also
presented.

Using these methods, the new information available from
MUPPETS was demonstrated. MUPPETS was shown to
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be very sensitive to chromophore interactions. First, it was
shown that much weaker interactions are needed to observe
kinetic effects, that is, to form an incoherent exciton, than are
needed to observe spectral effects, that is, to form a coherent
exciton. In an incoherent exciton, chromophores interact by
incoherent energy hopping followed by exciton–exciton an-
nihilation. Second, it was shown that MUPPETS is a sensi-
tive method for detecting incoherent exciton formation. Any
asymmetry in the decays along the two time axes is a sign of
an incoherent exciton. The difference between these decays
is a direct route to the biexciton decay rate and, thus, to the
strength of exciton–exciton interactions. Exciton–exciton an-
nihilation can also be measured by power-dependent 1D ex-
periments, but these measurements can be confounded by the
build-up of long-lived photoproducts with short exciton life-
times. MUPPETS is immune to this problem.

Away from the time axes, MUPPETS offers additional
information for systems with rate dispersion. Both exciton
rate heterogeneity and correlations between exciton and biex-
citon dynamics are available. Example calculations suggest
that there is sufficient information to allow a unique separa-
tion of these two effects in most cases. Rate heterogeneity is a
concept that has been explored in previous MUPPETS studies
of two-level system; the concept of correlated rates between
two transitions is a new one. When the rates of two transitions
are correlated, the MUPPETS results are similar to those for
heterogeneous rates on a single transition. Correlation indi-
cates that the relaxation mechanisms of the two transitions
are linked. Correlation is possible whether the individual re-
laxations are heterogeneous or homogeneous. In the hetero-
geneous case, individual particles relax either faster or slower
than average for both transitions. In the homogeneous case,
the relaxations of both transitions depend on the relaxation of
a common bath mode.

The practicality of these ideas will be demonstrated in
future papers.11, 12 The results in this paper provide a basis
for both a qualitative and quantitative interpretation of those
results.
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APPENDIX: OFF-DIAGONAL TIME EVOLUTION

The calculation of the off-diagonal elements of the
Green’s function starts by dividing the time evolution between
two times, t1 and t2, by M intermediate times t′a

G(t2, t1) = G(t2, t
′
M ) . . . G(t ′a+1, t

′
a) . . . G(t ′1, t1). (A1)

Taking matrix elements gives

G2′
1′ (t2, t1) = Gn′

1′ (t2, t
′
M ) . . . Gk′

l′ (t ′a+1, t
′
a) . . . G2′

i ′ (t
′
1, t0),

(A2)
where the indices i, . . . , n run over all nonzero states. Because
relaxation is only downward, all but one of these matrix ele-

ments must be diagonal. The only remaining terms are

G2′
1′ (t2, t1) =

N−1∑
a=1

G1′
1′(t2, t

′
a+1)G2′

1′(t ′a+1, t
′
a)G2′

2′(t ′a, t1), (A3)

where sequences of diagonal elements have been recombined.
The limit M → ∞ and dt′ = t′a+1− t′a → 0 can now be ap-
plied. Equation (7) provides the infinitesimal Green’s operator

G(t + dt ′, t) = 1 − R(t)dt ′, (A4)

resulting in

G2′
1′ (t2, t1) = −

∫ t2

t1

G1′
1′ (t2, t

′)R2′
1′ (t ′)G2′

2′(t ′, t1)dt ′. (A5)

Using Eq. (32) for the rate matrix element gives Eq. (50) of
the main text.

We now use the specific structure of an excitonic rate ma-
trix [Eq. (32)] to replace the off-diagonal rate with a diagonal
element

G2′
1′ (t2, t1) =

∫ t2

t1

G1′
1′ (t2, t

′)R1′
1′ (t ′)G2′

2′(t ′, t1)dt ′. (A6)

Because relaxation is only downward, Eq. (7) also applies to
diagonal matrix elements and yields

G2′
1′ (t2, t1) =

∫ t2

t1

(
d

dt ′
G1′

1′(t2, t
′)
)

G2′
2′(t ′, t1)dt ′. (A7)

Integration by parts gives

G2′
1′(t2, t1) = G2′

2′ (t2, t1) − G1′
1′(t2, t1)

−
∫ t2

t1

G1′
1′ (t2, t

′)
(

d

dt ′
G2′

2′ (t ′, t1)

)
dt ′. (A8)

This form can be used directly to derive Eq. (67) in the limit
of zero incoherent coupling [Eq. (66)].

To look at the opposite limit of strong coupling, we define
a change in occupation of |1′],

δG1′
1′ (t, t1) = 1 − G1′

1′ (t, t1), (A9)

which is assumed to be small over the biexciton lifetime. The
term in Eq. (A8) can be written

G1′
1′(t2, t) = G1′

1′ (t2, t1)

1 − δG1′
1′ (t, t1)

. (A10)

Putting a power series expansion of Eq. (A10) into Eq. (A8)
and integrating the first term leads to

G2′
1′ (t2, t1) = G2′

2′ (t2, t1) − G1′
1′(t2, t1)

[
G2′

2′ (t2, t1)

+
∫ t2

t1

δG1′
1′ (t ′, t1)k2(t ′)dt ′

+1

2

∫ t2

t1

(
δG1′

1′ (t ′, t1)
)2

k2(t ′)dt ′ + . . .

]
. (A11)

Keeping only the leading term gives Eq. (51) of the main text.
The same results hold if the states 2′ and 1′ are replaced by
any two neighboring states.
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We note that a simple, empirical formula interpolates be-
tween the limits of strong [Eq. (51)] and zero [Eq. (67)] inco-
herent coupling

G2′
1′ (t2, t1) = G2′

2′(t2, t1)

G1′
1′(t2, t1)

(
1 − G1′

1′ (t2, t1)
)
. (A12)

The accuracy of this approximation has not been tested.
One can consider couplings outside this range. In this

case, the biexciton decay rate is less than twice the exciton
decay rate. The presence of a second excitation slows the de-
cay of the first. Although this situation is not forbidden, it is
uncommon.
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