Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2016, 14, 3322

Received 1st February 2016, Accepted 17th February 2016 DOI: 10.1039/c6ob00267f

www.rsc.org/obc

Introduction

Murraya koenigii (Rutaceae) is a most valuable Indian medicinal plant that is extensively used as a condiment. In the traditional system of medicine, the leaves of this plant were widely used as an analgesic, carminative and febrifuge, and for the treatment of diarrhoea and dysentery, whereas the root and stem were applied externally for skin eruptions.¹ In modern research, the leaf extracts of *M. koenigii* are widely used for antidiabetic,² antifungal,³ antineoplastic,⁴ nitric oxide scavenging,⁵ anti-amnesic,⁶ antioxidant,⁷ anti-inflamma-

albicans.

Four new carbazole alkaloids from Murraya

koenigii that display anti-inflammatory and

Yedukondalu Nalli,^{a,b} Vidushi Khajuria,^{a,c} Shilpa Gupta,^{a,c} Palak Arora,^{a,d}

In our present study, four new, designated as murrayakonine A–D (1–4), along with 18 known carbazole alkaloids were isolated from $CHCl_3$: MeOH (1:1) crude extracts of the stems and leaves of *Murraya koenigii* (Linn.) Spreng. The structures of the all isolated compounds were characterized by analysis of HR-ESI-MS and NMR (1D and 2D spectroscopy) results, and comparison of their data with the literature data. For the first time, all the isolates were evaluated for their anti-inflammatory activities, using both *in vitro* and *in vivo* experiments, against the key inflammatory mediators TNF- α and IL-6. The new compound murrayakonine A (1), *O*-methylmurrayamine A (13) and mukolidine (18) were proven to be the most active, efficiently inhibiting TNF- α and IL-6 release in a dose-dependent manner and showing decreased LPS induced TNF- α and IL-6 production in human PBMCs. Furthermore, all the isolates were screened for their antimicrobial potential, and the compounds girinimbine (12) (IC₅₀ 3.4 µM) and 1-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9*H*-carbazole-3-carbaldehyde (19)

(IC₅₀ 10.9 µM) displayed potent inhibitory effects against Bacillus cereus. Furthermore, compounds

murrayamine J (7) (IC₅₀ 11.7 μ M) and koenimbine (14) (IC₅₀ 17.0 μ M) were active against Staphylococcus

aureus. However, none of the compounds were found to be active against Escherichia coli or Candida

Syed Riyaz-Ul-Hassan,^{a,d} Zabeer Ahmed^{a,c} and Asif Ali*^{a,b}

anti-microbial activities*

Here, we report part of our ongoing research into the isolation of bioactive carbazole alkaloids from *M. Koenigii* to achieve new biological knowledge. We investigated compounds (1–22) for their activity against immunological factors that mediate inflammatory and autoimmune disorders. Among them, Tumour Necrosis Factor-alpha (TNF- α) and Interleukin-6 (IL-6) are the two most important pro-inflammatory cytokines which mediate autoimmune diseases, and they are associated with outcomes such as pain and joint destruction in rheumatoid arthritis (RA).¹⁸ Over-expression of TNF- α causes severe damage to the host and has been correlated with many pathological conditions like diabetes,¹⁹ ulcerative colitis,²⁰ Crohn's disease, multiple sclerosis,²¹ cirrhosis,²² atherosclerosis,²³ and

View Article Online

^aAcademy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India. E-mail: asifali@iiim.ac.in, asifchem73@gmail.com; Fax: +91-191-25693331; Tel: +91-191-2569222

^bNatural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India

^cInflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India

^dMicrobial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K 180001, India

 $[\]dagger$ Electronic supplementary information (ESI) available: 1D and 2D NMR spectra and HR-ESI-MS spectra for all the new compounds. See DOI: 10.1039/ c6ob00267f

Organic & Biomolecular Chemistry

strokes.²⁴ IL-6, another type of pro-inflammatory cytokine present in the serum and synovium of RA patients, is also present in the ascitic fluid (AF) of cirrhotic patients,^{22,25} inducing many different physiological and cellular responses during these chronic inflammation processes. On the other hand, IL-6 inhibitors have been proven to be potentially useful for the treatment of Alzheimer's disease, psychiatric disorders, cancer, diabetes, and depression.^{26,27} These days, a large effort

> 9" 9"a

> > 4'

4h

8a Ν

9

11

21

8

4"h 4"a

7a R

has been made regarding TNF- α inhibition, but no small molecules have been approved yet as reliable inhibitors of this cytokine.²⁸ So far, the TNF- α inhibitor drugs in clinics are proteins with undesirable side effects. Hence, finding natural products that can be used as IL-6 and TNF- α inhibitory agents is a major hope in the area of anti-inflammatory drug development. Herein, we have isolated four new, murrayakonines A-D (1-4), and 18 known (5-22) carbazole alkaloids (Fig. 1) from

 $CHCl_3: MeOH (1:1)$ crude extracts of the leaves and stem of *M. koenigii*. The structures of the new compounds (1–4) were determined using spectroscopic methods, including extensive 2D NMR and HR-ESI-MS experiments. All these compounds (1–22) were screened for the first time for their anti-inflammatory and antimicrobial activity.

Results and discussion

Murrayakonine A (1) was obtained as a pale yellow amorphous powder. The IR spectrum displayed an intense absorption band at 3436 cm⁻¹ indicating the presence of a NH group. The HR-ESI-MS spectrum showed a $[M + H]^+$ peak at m/z 541.2847 and, considering this in combination with the ¹H and ¹³C NMR data, the molecular formula of **1** was determined to be C₃₇H₃₆N₂O₂. The ¹³C NMR spectrum showed resonances for 35 carbons but using a combination of ¹³C, HSQC and HMBC correlations along with the mass (HRESIMS) data of 1 suggested overlapped resonances for two carbons (C-8a with C-8a and C-1 with C-9"a). The data further revealed the presence of 37 carbons comprising four methyl, one methoxy, three methylene, thirteen methine and sixteen quaternary carbons (see ESI Fig. S1-S12;† Table 1). This above data, in addition to a literature search, indicated that 1 is a binary carbazole alkaloid which is a positional isomer of chrestifoline-C.²⁹ This was further confirmed by the interpretation of 1D and 2D (COSY, HMBC and NOESY) NMR data. The ¹H NMR spectrum indicated the presence of one -CH2CH2CH=C(CH3)2 unit, as evidenced by the resonances for H-7' [δ 5.10 (t, J = 7.1 Hz, 1H)], H-5' [δ 1.75 (m, 2H)], H-6' [δ 2.15 (dd, J = 14.7, 6.8 Hz, 2H)] and two methyl singlets (H-9', H-10'), and one AB-type doublet

Table 1 1 H and 13 C NMR spectroscopic data for 1–4 in CDCl₃

	1		2		3		4	
No.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{ m C}$
1	_	104.22	_	106.21	_	104.70	_	105.03
2	—	149.84	—	156.18	—	149.99	—	149.01
3	—	118.27	6.82 d (8.5)	110.45	—	119.62	_	118.53
3a	2.30 s	16.02	_	—	2.32 s	16.04	2.25 s	16.31
4	7.61 s	121.26	7.83d (8.9)	119.65	7.57 s	120.76	7.67 s	121.29
4a	_	124.14	_	115.15	—	118.38	_	115.94
4b	_	116.64	_	124.47	—	115.38	_	123.99
5	8.00 d (7.8)	120.58	8.44 s	122.62	7.98 s	125.76	7.85 d (7)	119.32
6	7.21 d (7.8)	125.48	_	129.23	—	116.08	7.09 t (7.4)	119.21
6a	_	—	10.06 s,	192.00	9.89 s	195.18		—
7	_	138.09	7.88–7.84 m	125.83		160.14	7.22 d (8.0)	123.99
-OH	—	—	—	—	11.42 s	—		—
8	7.77 s	119.43	7.41 d (8.4)	110.37	6.83 s	96.93	7.31 d (8.0)	110.62
8a ^a	_	139.47	_	143.19	—	140.60	_	139.66
9	7.84 s (NH)		8.11 s (NH)	—	8.14 (NH)		8.21 (NH)	—
9a	_	135.25	_	140.23		135.25	_	138.38
2'	_	78.12	_	74.48		78.41	_	77.81
2′a	1.44 s	25.82	1.45 s	28.83	1.45 s	25.93	1.67 s	30.40
3'	5.64 d (9.7)	128.39	1.94 m	37.26	5.70 d (9.8)	129.47	1.91 d (4.2)	51.01
4'	6.64 d (9.8)	117.56	3.42 s	36.01	6.60 d (9.9)	116.94	5.22 d (4.2)	70.39
5'	1.75 m	40.77	2.67–2.52 m	48.45	1.76 m	40.84	1.48–1.42 m, 1.88–1.80 m	27.63
6'	2.15 dd (14.7, 6.8)	22.75	1.60 m	22.93	2.16 m	22.76	1.55 s	27.08
7'	5.10 t (7.1)	124.19	2.13 m, 1.65 m	39.60	5.11 t (7.0)	124.04	3.82 d (3.9)	82.16
8'		131.65	—	149.76	_	131.81	_	42.73
9′	1.65 s	25.67	4.80 d (39.6)	112.41	1.66 s	25.66	1.31 s	28.11
10'	1.57 s	17.57	1.52 s	21.65	1.58 s	17.58	1.25 s	23.05
1″	_	145.58						
1″a	3.93 s	55.50						
2″	6.77 s	107.58						
3″	_	134.05						
3″a	4.30 s	42.52						
4''	7.56 s	112.84						
4″a	_	133.19						
4″b	_	123.68						
5″	7.29 d (8.3)	110.29						
6″	7.17 m	119.19						
7″	7.37 t (7.6)	125.49						
8″	7.43 d (8.1)	110.90						
8″a ^a		139.47						
9″	8.19 s (NH)	—						
9″a ^a	_ `	128.39						

^{*a*} Overlapped resonances (C-8a with C-8"a and C-3' with C-9"a) in **1** (see ESI Fig. S1–S13); all assignments are based on HSQC and HMBC experiments and were measured in CDCl₃.

[at 5.64 (d, J = 9.7 Hz, H_1 -3') and δ 6.64 (d, J = 9.8 Hz, H_1 -4')] was indicative of the presence of one (2H)-pyran ring. The HMBC spectrum exhibited interactions of the H₂-5' with C-3', C-2', C-2'a, C-6' and C-7'; whereas the H₃-2'a showed HMBC cross-peaks with C-3', C-2' and C-5'. This HMBC data suggests attachment of the -CH₂CH₂CH=C(CH₃)₂ moiety to the C-2' of the (2H)-pyran ring. From the signals for one aryl methyl group H-3a (δ 2.30 (s, 3H), the ABX pattern of aromatic signals for H-5 [δ 8.00 (d, J = 7.8 Hz, 1H)], H-6 [δ 7.21 (d, J = 7.8 Hz, 1H)] and H-8 [δ 7.77 (s, 1H)], one singlet for H-4 [δ 7.61 (s, 1H)] and one broad singlet at δ 7.84 (s, -NH) the presence of a 3-methyl-2-oxygenated-1,7-alkyl carbazole unit was inferred. The location of the methyl group H-3a substituent at C-3 was inferred from the HMBC interactions of H-4 (δ 7.61) with C-3a. This was further confirmed from the NOESY spectrum (Fig. 3), which exhibited the association of H-4 with H-3a. From the HMBC correlation of H-4' with C-9a, C-1 and C-2, we inferred the presence of a 3-methyl-2-oxygenated-1,7-alkyl carbazole unit fused to the (2H)-pyran ring at C1-C2, forming a 7-alkylated mahanimbine. Furthermore, the ¹H NMR spectrum also indicated the presence of one 1-methoxy-3-alkyl-carbazole unit, as evidenced by the resonances at δ 6.77 (s, H₁-2"), 7.56 $(s, H_1-4''), 7.29 (d, J = 8.3 Hz, H_1-5''), 7.17 (m, H_1-6''), 7.37 (t, J =$ 7.6 Hz, H_1 -7") and 7.43 (d, J = 8.1 Hz, H_1 -8"), and the resonances for one methoxy group (δ 3.93, s, H₃-1"a) and a -NH (δ 8.19, s). This was confirmed from the key HMBC correlations of -NH/C-8"a, C-9"a and C-4"b, of H-2"/C-1", C-4" and C-9"a, of H-4"/C-2", C-9"a and C-4"b, of H-5"/C-7" and 4"a, of H-6"/C-8" and C-4"b, of H-7"/C-8"a, and of H-8"/C-6" and C-4"b (Fig. 2). The HMBC correlation between the OCH₃ (δ 3.93) and C-1" (δ 145.59) suggests attachment of the OCH₃ group at C-1". Finally, that the 7-alkylated mahanimbine and 1-methoxy-3alkyl-carbazole units are connected through a methylene

group H₂-3"a (δ 4.30) was indicated by the HMBC interactions of H₂-3"a/C-2", C-3", C-4", C-8 and C-6, and of H-6, H-8, H-2 and H-4"/C-3'a (Fig. 2). This was further confirmed from the NOESY correlations of H₂-3"a (δ 4.30) with H-6, H-8, H-2" and H-4" (Fig. 3). The absolute configuration at the C-2' position of compound **1** for the (2*H*)-pyran ring remains undefined.³⁰ Based on this spectroscopic evidence, a new molecular structure was assigned as shown in Fig. 1 and designated as murrayakonine A (**1**).

Murrayakonine B (2) was obtained as a colourless oil. The molecular formula was determined to be C23H23NO2 using the ¹³C NMR data and the (+)-HR-ESI-MS ion peak at m/z 346.1805 $[M + H]^+$ (calcd 346.1802). The IR spectrum displayed absorptions characteristic of amino (3369 cm^{-1}) and carbonyl (1674 cm⁻¹) groups. The ¹H NMR spectrum showed signals due to one formyl group, one -NH, five aromatic protons, two vinylidene protons that appeared as typical broadened singlets, two methine groups, and three methylene groups including one diastereotopic group and two methyl groups. ¹³C NMR and DEPT, along with HSQC, experiments for 2 revealed the presence of 23 carbons including one formyl (C-6a), eight sp² quaternary (C-1, C-2, C-4a, C-4b, C-6, C-8a, C-9a and C-8'), one sp³ quaternary (C-2'), five sp² methine (C-3, C-4, C-5, C-7 and C-8), one sp^2 methylene (C-9'), two sp^3 methine (C-4' and C-5'), three sp³ methylene (C-3', C-6'and C-7') and two methyl (C-10', C-2'a) carbons. The above-mentioned data, together with biogenetic considerations, suggests that 2 is a carbazole alkaloid that is similar to murrayamine G^{31} and murrayazolidine (5), which has also been reported for the same plant. The main difference between 2 and murrayamine G is the aldehyde (-CHO) group, which is replaced by a methyl group (-CH₃) for murrayamine G, at the C-6 position, which was further authenticated by the HMBC correlations of H-6a/C-5, C-7 and C-6

Fig. 2 Key COSY (—) and HMBC (—) correlations for compounds 1–4.

Fig. 3 Key NOESY (

(Fig. 2). On the basis of this spectral evidence the new molecule was determined as being 5-methyl-2-(prop-1-en-2-yl)-1,2,3,4,5,13-hexahydro-1,5-methanoxocino-[3,2-*a*]carbazole-10carbaldehyde, which was designated as murrayakonine B (2).

Compound 3 was isolated as a light-greenish gum, and its molecular formula was established as C24H25NO3 from the HR-ESI-MS ion peak at m/z 376.1909 [M + H]⁺. The UV spectrum of 3 showed absorptions at λ_{max} values of 320, 268 and 246 nm, which are typical for an angular pyrano-carbazole moiety.32 The IR spectrum displayed an intense absorption band at 3436 cm⁻¹, indicating the presence of a -NH group. Close inspection of the ¹H and ¹³C NMR data (CDCl₃, 400 MHz) (Table 1) for 3 using DEPT and HSQC experiments indicated the presence of one carbonyl (C-6a), ten sp^2 quaternary (C-1, C-2, C-3, C-4a, C-4b, C-6, C-7, C-8a, C-9a and C-8'), six sp^2 methine (C-4, C-5, C-8, C-3', C-4' and C-7'), one sp^3 quaternary (C-2'), two sp³ methylene (C-5'and C-6'), and four methyl (C-3a, C-2'a, C-9' and C-10') carbons. This data indicated that 3 is a pyrano-carbazole alkaloid that is similar to mahanimbine $(8)^{30}$ except for the disappearance of two aromatic protons, instead compound 3 exhibited downfield proton signals at $\delta_{\rm H}$ 9.89 (-CHO) and 11.42 (-OH). These characteristics implied that compound 3 is a mahanimbine (8)

derivative with –CHO and –OH groups on the aromatic ring. This was further authenticated by 2D (COSY, HMBC and NOESY) NMR spectral data analysis. The ¹H–¹H COSY analysis of **3** led to three partial structural units; a 2-methyl pentenyl unit was apparent (H-5' \leftrightarrow H-6' \leftrightarrow H-7' \leftrightarrow (allylic) H-9' and H-10'), one AB-type doublet was observed which was indicative of the presence of a (2*H*)-pyran ring (H-3' \leftrightarrow H-4'), and a benzylic unit was apparent (H-4 \leftrightarrow H₃-3a), as shown by the bold-faced lines in (Fig. 2). The HMBC spectrum exhibited the key correlations of H-3' (δ 5.70)/C-2' (δ 78.41), of H₃-2'a (δ 1.45)/C-2' (δ 78.41), C-3' (δ 129.47) and C-5' (δ 40.84), and of H₂-5' (δ 1.76)/C-2' (δ 78.41) (Fig. 2). This HMBC data suggests attachment of the 2-methyl pentenyl unit at the C-2' of the (2*H*)-pyran ring.

The signals for one aryl methyl group at δ 2.32 (s, H₃-3a), one AX-type of aromatic protons [δ 7.98 (s, H-5) and 6.83 (s, H-8)], one aromatic proton singlet at δ 7.57 (s, H-4), a formyl proton at δ 9.89 (s, H-6a), a phenolic proton at δ 11.42, and one amine proton at δ 8.14 indicated the presence of a carbazole alkaloid skeleton, with formyl (-CHO) and -OH groups, in compound 3. The methyl group substitution at C-3 was inferred from the HMBC interactions of H-4 (δ 7.57) with C-3a, C-2, C-9a, and C-4a and of H₃-3a with C-2, C-3 and C-4. This was further confirmed from the NOESY correlations of H-4 and H₃-3a (Fig. 3). The HMBC correlations between -OH and C-6, C-7 and C-8 suggest the presence of a -OH group at C-7. The presence of a formyl group at position C-6 was confirmed from the HMBC correlations of H-6a with C-7, and C-8 and of H-5 with C-6a, C-7, C-8a, and C-6. This was further confirmed from the NOESY correlations of H-6a with H-5 and -OH (Fig. 3). From the above data it was inferred that compound 3 has a 7-hydroxy-3-methyl-9H-carbazole-6-carbaldehyde unit. Finally, the HMBC correlations of H-4' with C-2', C-1, C-2 and C-9a show that the (2H)-pyran ring is fused to the 7-hydroxy-3methyl-9H-carbazole-6-carbaldehyde unit at C1-C2. The CD curve of 3 displayed a positive Cotton effect in the 265-276 nm region (Fig. S33, ESI[†]), so the absolute configuration of 3 at C-2' was determined as S.^{33,34} On the basis of this spectroscopic evidence, the new compound 3 was assigned as 9-hydroxy-3,5-dimethyl-3-(4-methylpent-3-en-1-yl)-3,11-dihydropyrano-[3,2-a]carbazole-8-carbaldehyde, and it was designated as murrayakonine C (3).

Compound 4 was isolated as a bluish gum, and its molecular formula was established as $C_{23}H_{25}NO_2$ from the HR-ESI-MS ion peak at 348.1956 [M + H]⁺, indicating a hydrogen deficiency index of 12. The UV spectrum of 4 showed absorptions at λ_{max} values of 304, 238 and 214 nm, which are typical for an angular pyrano-carbazole moiety. The IR spectrum displayed an intense absorption band at 3436 cm⁻¹ indicating the presence of a –NH group. The ¹³C NMR showed resonances for 22 carbons, but using a combination of ¹³C NMR, HSQC and HMBC correlations along with the mass (HR-ESI-MS) data of 4 suggested an overlapped resonance for one carbon at δ_c 123.9 [C-4b with C-7]. Data analysis further revealed the presence of 23 carbons comprising four methyl, two methylene, eight methine and nine quaternary carbons.

For the ¹H NMR spectrum, the signals for one aryl methyl group at δ 2.25 (s, H₃-3a), one aromatic proton singlet at δ 7.67 (s, H-4), one 1,2-disubstituted benzene ring at δ 7.85 (d, 7.7 Hz, H-5), 7.09 (t, J = 7.4 Hz, H-6), 7.22 (d, 8.0 Hz, H-7), and 7.31 (d, 8.0 Hz, H-8), and one amine proton at δ 8.21 indicated the presence of a 3-methyl-2-oxygenated-1-alkyl carbazole unit. COSY correlations between H-3' and H-4' and between H-6' and H-7' indicated the presence of two spin systems (Fig. 2). The HMBC correlations of H-3'/C-2', of H-4'/C-1, C-2, C-9a, and C-2', and of H-2'a/ C-2', C-3' clearly indicated that the first spin system is attached (at C4'-C1) to the 3-methyl-2-oxygenated-1alkyl carbazole unit, forming a pyran ring $(1 \leftrightarrow 2 \leftrightarrow 1' \leftrightarrow 2' \leftrightarrow 1')$ $3' \leftrightarrow 4'$). The HMBC correlations of H-9'/C-3', C-7', C-8' and C-10', of H-10'/C-3', C-7', C-8' and C-9', and of H-3'/C-7' indicated that the C-3' and C-7' are linked through quaternary carbon C-8' (δ 42.73). Furthermore, the HMBC correlations of H-5'/C-2', C-6' and C-7', and of H-2'a/C-2', C-3' and C-5' indicated that C-6' is linked to C-2' through methylene carbon C-5' $(\delta 40.84)$, forming a fused six-membered ring. Even though no HMBC correlations were found for H-4' to C-7' and H-7' to C-4', an ether linkage was proposed in order to satisfy the ring residues and mass of the compound 4. The relative configuration of 4 was determined as 2'S*, 3'S*, 4'R*, 7'R* using the NOESY cross peaks of H-2'a/H-3', H-7' and H-9', and of H-3'/H-4' (Fig. 3). From the above experimental data, the new compound 4 was deduced to be (2R,4aS,13R,13aS)-1,1,4a,6-tetramethyl-1,2,3,4,4a,12,13,13a-octahydro-2,13-epoxychromeno[3,2-a]-carbazole, and designated as murrayakonine D (4).

The known carbazole alkaloids murrayazolidine (5),³⁵ murrayazolinine (6),³⁵ murrayamine J (7),^{36,37} mahanimbine (8),³⁵ bicyclomahanimbine (9)³⁵ mahanimbinine (10),³⁸ currayangine (11),³⁵ girinimbine (12),³⁹⁻⁴² *O*-methylmurrayamine-A (13),^{33,40,43} koenimbine (14),⁴³⁻⁴⁵ koenigicine (15),^{45,46} mukonicine (16),^{45,47} 2-methoxy-3-methyl-9*H*-carbazole (17),^{48,49} murrayanine (18),⁵⁰ 1-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9*H*-carbazole-3-carbaldehyde (19),⁵¹ 8,8"-biskoenigine (20),^{52,53}

murrayamine C $(21)^{54}$ and clauraila A $(22)^{55,56}$ were characterized by comparing their NMR spectral data with the literature data.

Anti-inflammatory activity

The release of pro-inflammatory cytokines is an important mechanism by which immune cells regulate the inflammatory response and contribute to various inflammatory and autoimmune disorders. All the isolated compounds were assayed for their ability to decrease lipopolysaccharide (LPS) induced TNF- α and IL-6 production in human peripheral blood mononuclear cells (PBMCs).⁵⁷⁻⁵⁹ LPS, a component of the Gramnegative bacterial cell wall, is one of the major causative agents of Gram-negative sepsis. LPS is a potent inducer of monocytes and macrophages, which are key mediators of the innate immune response. Stimulation of cells with LPS leads to a cascade of intracellular signalling events that ultimately result in the production and secretion of cytokines and other inflammatory mediators that constitute the pro-inflammatory response. The potential anti-inflammatory properties of the compounds were evaluated using PBMCs because this selected macrophage model produces high concentrations of IL-6 and TNF- α in culture upon activation with LPS, and reduces the need for the additional animals required to obtain and use primary cultures. In the in vitro experiments, incubation of the compounds with lipopolysaccharide (LPS) for 5 h showed a considerable inhibition of TNF-a and IL-6 production over three concentrations (10, 5 and 1 µM), when compared to LPSinduced control cells and a rolipram standard (Table 2). The compounds 1, 5, 12, 13, 15, 20, 19 and 18 (Table 2) showed significant inhibitory effects, having a % inhibition of >40 at 10 μM concentration, against both TNF-α and IL-6. The compounds 2, 7, 8, 11, 14 and 17 exhibited very poor % inhibition, whereas for 3, 4, 6, 9, 10 and 16 inhibition activity was not detected (nd) against both TNF- α and IL-6. In the *in vitro* experiments, compounds 1 (IC₅₀ 10 μ M), 13 (IC₅₀ 9.4 μ M) and

Table 2 In vitro cytokine (TNF- α and IL-6) inhibition assay results for the isolated compounds

	In vitro cytokine assay							
	TNF-α (%age inhibition)			IL-6 (%age inhibition)				
Compound code	10 µM	5 μΜ	1 µM	10 µM	5 μΜ	1 μΜ		
1	50.7 ± 2.2	25.8 ± 5.4	4.9 ± 1.4	48.6 ± 2.0	27.8 ± 3.0	12.3 ± 1.4		
2	37.8 ± 1.6	15.8 ± 2.5	7.6 ± 1.8	34.9 ± 3.0	21.1 ± 7.0	11.6 ± 3.0		
5	44.3 ± 2.4	19.4 ± 9.5	4.2 ± 0.9	40.9 ± 1.1	26.0 ± 3.1	13.5 ± 3.1		
7	33.1 ± 0.4	10.1 ± 0.7	nd	23.4 ± 2.7	8.6 ± 0.9	4.3 ± 1.8		
8	30.1 ± 0.6	8.8 ± 2.9	nd	21.7 ± 1.6	11.5 ± 5.2	4.4 ± 1.1		
11	21.2 ± 0.4	11.9 ± 1.1	nd	14.9 ± 2.0	7.6 ± 1.2	5.2 ± 1.2		
12	41.5 ± 0.6	16.5 ± 4.0	nd	48.7 ± 1.4	17.5 ± 2.2	10.7 ± 2.9		
13	53.9 ± 6.4	30.4 ± 5.4	8.0 ± 1.9	59.5 ± 0.6	18.9 ± 3.3	5.0 ± 2.2		
14	28.3 ± 2.1	10.2 ± 1.7	4.4 ± 3.1	25.2 ± 1.9	6.7 ± 1.9	4.5 ± 1.6		
15	40.9 ± 1.7	18.2 ± 4.2	3.8 ± 2.0	28.6 ± 0.6	18.2 ± 1.6	4.8 ± 3.6		
17	31.1 ± 0.6	12.1 ± 1.1	1.8 ± 1.4	30.2 ± 0.6	8.4 ± 1.8	5.1 ± 0.5		
18	66.0 ± 3.9	20.7 ± 1.7	6.2 ± 4.2	59.4 ± 4.0	26.7 ± 2.6	15.1 ± 5.2		
19	43.2 ± 5.4	28.2 ± 3.0	nd	36.1 ± 1.3	24.6 ± 3.0	11.6 ± 0.6		
20	48.9 ± 1.0	22.2 ± 2.4	9.3 ± 2.7	32.6 ± 2.0	15.4 ± 5.6	2.1 ± 1.3		
Rolipram (0.3 µM)	77			70				

	In vivo cytokine assay							
	TNF-α (% age in	hibition)		IL-6 (% age inhibition)				
Compound code	10 mg kg^{-1}	5 mg kg^{-1}	1 mg kg^{-1}	10 mg kg^{-1}	5 mg kg^{-1}	1 mg kg ⁻¹		
1	51.8 ± 2.4	10.8 ± 1.3	1.9 ± 0.2	31.3 ± 9.9	11.0 ± 4.8	3.9 ± 2.5		
2	46.7 ± 1.2	25.7 ± 7.9	8.7 ± 1.1	39.8 ± 2.1	26.3 ± 7.1	8.1 ± 1.3		
5	49.7 ± 1.5	8.6 ± 5.1	2.0 ± 1.4	48.7 ± 3.8	21.5 ± 4.9	6.0 ± 3.0		
7	34.3 ± 2.5	13.7 ± 2.9	7.0 ± 2.2	28.0 ± 5.0	11.6 ± 1.8	5.6 ± 1.9		
8	40.4 ± 8.4	8.6 ± 1.7	3.7 ± 0.5	35.9 ± 2.9	11.1 ± 5.4	4.5 ± 1.6		
11	20.5 ± 1.1	11.8 ± 2.2	4.7 ± 0.9	11.9 ± 3.8	5.7 ± 2.6	nd		
12	38.7 ± 4.4	20.1 ± 6.4	5.4 ± 0.3	35.6 ± 2.1	10.9 ± 1.9	3.5 ± 2.0		
13	58.9 ± 3.8	11.4 ± 1.1	2.6 ± 0.4	61.7 ± 9.9	15.4 ± 2.8	9.0 ± 2.3		
14	30.1 ± 2.8	6.8 ± 2.4	3.9 ± 1.6	19.0 ± 5.5	8.4 ± 1.6	2.9 ± 1.8		
15	32.7 ± 1.5	8.6 ± 5.1	2.0 ± 1.4	30.6 ± 0.8	23.4 ± 5.5	7.0 ± 3.3		
17	34.7 ± 3.9	20.1 ± 5.4	10.4 ± 4.4	27.7 ± 1.7	13.3 ± 2.9	4.6 ± 0.2		
18	65.3 ± 2.6	6.0 ± 5.0	3.0 ± 1.2	69.5 ± 1.8	22.4 ± 10.9	2.2 ± 1.1		
19	40.6 ± 1.6	17.6 ± 8.4	7.9 ± 3.9	39.5 ± 6.4	25.5 ± 14.6	6.3 ± 4.1		
20	52.8 ± 2.2	17.3 ± 4.7	2.9 ± 1.3	46.8 ± 9.8	27.6 ± 4.4	6.1 ± 1.6		
Rolipram (1 mg kg $^{-1}$)	70			68				

Table 3 In vivo cytokine (TNF- α and IL-6) inhibition assay with the compounds

18 (IC₅₀ 7 μ M) against TNF- α , and compounds 13 (IC₅₀ 8.4 μ M) and 18 (IC₅₀ 8.4 μ M) against IL-6 were proven the most potent among all the isolated compounds (Table 2).

For all the active compounds from the above in vitro analysis, an in vivo evaluation was performed with mice to determine their ability to replicate the inhibition results in animal models (Table 3). Compounds 1 (51.8%), 13 (58.9%), 18 (65.5%) and 20 (52.8%) against TNF- α , and compounds 13 (61.7%) and 18 (69.5%) against IL-6 were proven the most potent among all the isolated compounds. In summary, the compounds 13 and 18 were inhibiting both TNF- α and IL-6; whereas, the new compound 1 is a specific inhibitor for TNF- α . The cytokines IL-6 and TNF- α were evaluated because these pro-inflammatory cytokines play a key role in the inflammatory response and can be easily quantified in supernatant and serum samples. The levels of IL-6 and TNF-α were not detectable for untreated cells and for animals that served as a control in vitro and in vivo respectively. Cell culture data does not always allow accurate prediction of the results using an animal model. Thus, the compounds under observation were studied in vivo. This was supported by the finding that there is considerable variation between the in vitro and in vivo results. Discrepancies between the cell culture data and animal data are not entirely surprising considering only one cell type exists in the culture studies, whereas multiple cell types capable of producing pro-inflammatory cytokines are present in a whole animal system. Additionally, other inflammatory mediators may influence the cytokine response.

Antimicrobial activity

Furthermore, all the isolated compounds were evaluated for their antimicrobial activities against a panel of important bacterial pathogens (Ciprofloxacin was used as a standard) and the fungal pathogen *Candida albicans* (Nystatin was used as a standard) (Table 4).

Table 4	Anti-microbial activity of the isolated compounds

	IC ₅₀ in μM				
Comp. code	S.A	B.C	E.C	C.A	
1	_	49.9	_	_	
2	_	_		_	
3	_	_		_	
4	_	_		_	
5	—	—	—	—	
6	30.5	—	—	—	
7	11.7	23.2		—	
8	22.4	_		—	
9	—	27.5		—	
10	—	_		—	
11	—	_		—	
12	—	3.4		—	
13	—	_		—	
14	17.0	22.5		—	
15	20.9	41.4		—	
16	95.56	91.9		—	
17	—	24.1		—	
18	—	_		—	
19	95	10.9		—	
20	_	_		_	
21	_	_		_	
22	—	—	—	—	
Ciprofloxacin/Nystatin	0.27	0.12	1.6	1.6	

S.A = Staphylococcus aureus ATCC 29213; B.C = Bacillus cereus IIIM 25; E.C = Escherichia coli ATCC 25922; C.A = Candida albicans MTCC 4748; $-- = IC_{50} > 100 \mu M.$

Among these results, compounds 2, 3, 4, 5, 6, 10, 11, 13, 18, 20, 21 and 22 did not show any significant antimicrobial activity up to a concentration of 100 μ M, whereas, the rest of the compounds showed significant activity against *B. cereus* and *S. aureus*. Compounds 7, 9, 12, 14, 17 and 19 showed IC₅₀ values of 23.2, 27.5, 3.4, 22.5, 24.1 and 10.9 μ M respectively against *B. cereus*. Furthermore, compounds 7, 8, 14 and 15 were active against *S. aureus* showing IC₅₀ values of 11.7, 22.4, 17.0 and 20.9 μ M, respectively. However, none of the

compounds were active against the Gram negative bacterium, *E. coli*, or the fungal pathogen *C. albicans*. This study revealed that girinimbine (**12**) is the most potent compound among all the isolated compounds, and that it specifically inhibited *B. cereus* with an IC_{50} value of 3.4 μ M.

Conclusions

In summary, herein we have reported four new, murrayakonines A–B from the stem and C–D from the leaves (1–4), along with 18 known carbazole alkaloids (5–22), which were isolated from *Murraya koenigii*. All these compounds were evaluated for their anti-inflammatory and antimicrobial activities. Compounds 1, 13 and 18 efficiently inhibited the release of proinflammatory cytokines TNF- α and IL-6, and decreased the LPS induced TNF- α and IL-6 production in human PBMCs, in both *in vitro* and *in vivo* experiments. Additionally, compounds 12 and 19 exhibited prominent antimicrobial activities, with an IC₅₀ value of 3.4 and 10.9 µM respectively, against *Bacillus cereus*. Furthermore, compounds 7, 14 and 15 were active against *Staphylococcus aureus* showing IC₅₀ values of 11.7, 17.0 and 20.9 µM respectively.

Experimental

General experimental procedures

High resolution mass spectra were obtained using an Agilent 6540 (Q-TOF) high resolution mass spectrometer, in the electrospray (ESI-MS) mode. The ¹H NMR spectra were recorded (Bruker Avance) at 400 and 500 MHz, and the ¹³C NMR spectra were recorded at 100 and 125 MHz in CDCl₃. Chemical shifts values are reported in δ (ppm) units and the coupling constant values are reported in Hertz. Tetramethylsilane (TMS) was used as an internal standard. Infra-red spectra were recorded with a Perkin Elmer 65 FT-IR spectrometer and the wavelengths (λ) are given in cm⁻¹. CD spectra were recorded using a JASCO J-810 CD spectrometer at a concentration of 1.0×10^{-4} M in MeOH at 25 °C. CD spectra were measured between 200 and 600 nm using 10 mm path-length quartz cuvettes. Column chromatography was performed using silica gel (100-200, 230-400 mesh; Merck). Semi-preparative HPLC was performed using an Agilent HPLC with an Eclipse XDB-C-18; 5 μ m, 250 \times 9.4 mm column, a photodiode array detector and an autoinjector function (Agilent 1260 series). All the solvents were purchased from Merck. Rolipram was purchased from Sigma Chemical Co. (St. Louis, MO) and the lipopolysaccharide (LPS) (E. coli) from (Callbiochem, USA). Ficoll-Hypaque and Phosphate Buffer Saline (PBS) were bought from Sigma-Aldrich. Anticoagulant tubes were purchased from BD Biosciences. A Human TNF-α ELISA kit and Human IL-6 ELISA kits were purchased from Invitrogen, USA. A Mouse TNF-α ELISA kit was bought from Invitrogen, USA and the Mouse IL-6 ELISA kit was from Invitrogen, USA. All the other reagents used were of analytical grade.

Plant material

The stem of *Murraya koenigii* was collected from the Botanical garden of the Indian Institute of Integrative Medicine, Jammu (India), in April 2013. The plant was identified by a taxonomist Dr Bikarma Singh, and a voucher specimen (RRLH 22909) was deposited at the Herbarium of the IIIM, Jammu (India).

Extraction and isolation

From the stem. Air-dried M. koenigii stems (2.0 kg) were extracted with DCM: MeOH (1:1) over a period of 4 days at room temperature and the solvent evaporated under reduced pressure to provide the crude extract (62.5 g). This extract was subjected to column chromatography using silica gel (100-200 mesh) and eluted by increasing the polarity of the elution solvent system of hexanes and EtOAc (100% hexanes to 100% EtOAc) to afford five fractions (MK-I-V) based on their analytical TLC data. Fraction I (16.3 g) was further subjected to column chromatography over silica gel and was eluted with 5% EtOAc-hexanes to give pure compounds 14 (10 gm), 8 (0.4 gm), 12 (0.5 gm) and 9 (24.5 mg). Fraction MK-II (6.5 g) was subjected to column chromatography with flash silica gel (230-400 mesh) using 7% EtOAc-hexanes to afford crystalline compound 18 (4 gm) and 19 (25 mg). Fractions MK-III-IV exhibited similar chromatograms, so they were pooled together (350 mg) and chromatographed over silica gel (230-400 mesh) with 15% EtOAc-hexanes to yield compounds 17 (85 mg) and 1 (8 mg). Fraction MK-V was also re-chromatographed with silica gel using 20% CH₂Cl₂-hexanes to yield compounds 11 (1.0 gm) and 5 (10 mg), and a mixture (130 mg) which was further separated using semi-preparative HPLC with 100% acetonitrile as the mobile phase (30 min, flow rate of 1 ml min⁻¹ with an Eclipse XDB-C-18; 5 μ m, 250 × 9.4 mm column) to afford compounds 2 (5 mg, $t_{\rm R}$ = 15.3 min) and 7 (6 mg, $t_{\rm R}$ = 18.1 min).

From the leaves. Ground leaves of Murraya koenigii (2 Kg) were extracted with $CHCl_3$: MeOH (1:1) at room temperature to yield 90 g of crude extract. The extract was subjected to fractionation in an open column using silica (100-200 mesh) gel as the solid phase and a gradient solvent system with hexaneethyl acetate of 9:1, 7:3, 1:1, and 100% ethyl acetate, resulting in five fractions (Fr.1-Fr.5). Fr.1 was subjected to silica (200-400 mesh) gel column chromatography and eluted with hexane-ethyl acetate (from 10:0 to 9:1) to give 11 (15 mg), 5 (23 mg), 8 (5 g), 12 (3 g) and 13 (2 g). Fr.2 was separated into five subfractions, Fr.2.1-Fr.2.5, using Sephadex LH-20 column chromatography and eluting with MeOH. Subfraction Fr.2.5 was separated using semi-preparative HPLC (Eclipse XDB-C-18; 5 μ m, 250 × 9.4 mm; isocratic 100% ACN, 30 min; 1 mL min⁻¹) to give compounds 13 (9 mg, $t_{\rm R}$ 14.5 min), 14 (20 mg, $t_{\rm R}$ 15.2 min), 6 (35 mg, $t_{\rm R}$ 20.07 min) and 3 (4 mg, $t_{\rm R}$ 25.03 min). Fraction Fr.3 was fractionated using a silica column eluting with $CHCl_3$ -MeOH (10:0 to 10:1, v/v) to give five subtractions (Fr.3.1-Fr.3.5). Fraction Fr.3.4 was purified using preparative TLC (9:1 CHCl₃: MeOH) to afford compounds 4 (5 mg) and 22 (12 mg). The fraction Fr.4 was divided into three subfractions

Paper

Organic & Biomolecular Chemistry

(Fr.4.1 to Fr.4.3) using silica gel column chromatography (hexane/EtOH from 8:2 to 1:9 and then a final elution with EtOAc). Compound **16** (35 mg) was purified from Fr 4.1 using preparative TLC (CHCl₃: MeOH, 9:1). Purification of the fraction Fr.4.2 using silica gel column chromatography (hexane/ EtOAc, from 7:3 to 2:8) yielded **20** (300 mg), **15** (20 mg) and **10** (5 mg). The third subfraction Fr.4.3 was subjected to semipreparative HPLC with an isocratic solvent of CH₃CN (Eclipse XDB-C-18; 5 µm, 250 × 9.4 mm; 100% ACN, 15 min; 1 mL min⁻¹) furnishing compounds **20** (50 mg, t_R 6.28 min), 7 (10 mg, t_R 6.71 min), **21** (11 mg, t_R 7.98 min) and **22** (9 mg, t_R 8.66 min).

Murrayakonine A (1). Pale-yellow amorphous powder; for 1D and 2D NMR data, see Table 1 and Fig. S1–S13 in the ESI;† IR (neat), ν_{max} 3436.2 (–NH), 1615 and 1612 cm⁻¹ (ar. system); U. V. spectrum, λ_{max} (acetonitrile) 226.0, 252.0 and 282.0 mAU (Fig. S13†); (+)-HR-ESI-MS ion peak at *m*/*z* 541.2847 [M + H]⁺ (calcd for C₃₇H₃₇N₂O₂, 541.2850).

Murrayakonine B (2). Colourless oil; for 1D and 2D NMR data, see Table 1 and Fig. S14–S21 in the ESI;† IR (neat), ν_{max} 3369 (–NH), 2827 (H–CO–), 1674 (–HC=O), 1608 and 1583 cm⁻¹ (ar. system); U.V. spectrum, λ_{max} (acetonitrile) 240.0 and 294.0 mAU (Fig. S21†); (+)-HR-ESI-MS ion peak at m/z 346.1805 [M + H]⁺ (calcd for C₂₃H₂₄NO₂, 346.1802).

Murrayakonine C (3). Greenish gum; for 1D and 2D NMR data, see Table 1 and Fig. S24–S33;† IR (neat), ν_{max} 3345 (–NH/–OH), 2827 (H–CO–), 1705 (–HC=O), 1614 and 1565 cm⁻¹ (ar. system); U.V. spectrum, λ_{max} (acetonitrile) 246.0, 268.0 and 320.0 mAU (Fig. S30†); (+)-HR-ESI-MS *m*/*z* 376.1909 [M + H]⁺ (calcd 376.1913).

Murrayakonine D (4). Bluish gum; for 1D and 2D NMR data, see Table 1 and Fig. S34–S42;† IR (neat), ν_{max} 3434 (–NH), 1624 and 1608 cm⁻¹ (ar. system); U.V. spectrum, λ_{max} (acetonitrile) 214.0, 238.0 and 304.0 mAU (Fig. S39†); (+)-HR-ESI-MS *m*/*z* 348.1956 [M + H]⁺ (calcd *m*/*z* 348.1958).

In vitro anti-inflammatory assay

Isolation of the PBMCs. Healthy volunteers of both sexes (22-35 years old) served as blood donors. Blood was withdrawn under authorized supervision from the subjects who had given their consent. The CSIR-Indian Institute of Integrative Medicine (IIIM), institutional bio-safety guidelines were followed for collection of the blood samples from the volunteers. Heparinised venous blood was taken from the healthy human volunteers. The mononuclear cells were isolated using a Ficoll-Hypaque density gradient using standard procedures, which separated the PBMCs from the whole blood. The buffy coat containing the PBMCs was removed carefully following centrifugation and washed twice using Phosphate Buffer Saline (PBS). The cells were counted and the samples were incubated with 1×10^6 cells per well in triplicate in 96 well microtiter plates. All the compounds (1-22) were tested to check their anti-inflammatory activity against TNF-a and IL-6 at three different concentrations. The anti-inflammatory activities against TNF- α and IL-6 were analyzed using the percentage inhibition of the production of these cytokines when the

human peripheral blood mononuclear cells (PBMCs) were treated with lipopolysaccharide (LPS). A dose response study was conducted using LPS (mitogen) (1 µg ml⁻¹) induced PBMCs with different concentrations *i.e.* 10, 5 and 1 µM of the compounds. The results were expressed in % inhibition with respect to the control. The experiments were done in triplicate and repeated three times. The anti-inflammatory effects shown in the compounds' dose response assays were used to determine the capacity of inhibition for these compounds with respect to production of the pro-inflammatory cytokines TNF- α and IL-6. The data represents the mean ± SEM of the representative compounds for the inhibition of TNF- α and IL-6 production, tested in three different assays.

In vivo anti-inflammatory assay. Female Balb/C mice (Mus musculus) that were 8-10 weeks old and weighed 20-25 g, in groups of six, were used for the study. The experiments were designed to minimize the numbers of animals used and all the experiments were performed after approval (no. IIIM.IAEC.65/ 62/8/15) from the CSIR-Indian Institute of Integrative Medicine (IIIM) institutional animal ethics committee. The animals were housed under the standard laboratory conditions of 23 ± 1 °C, $55 \pm 10\%$ relative humidity and 12 h/12 h light/dark cycles, were fed with a standard pellet diet (Lipton India Ltd) and received water ad libitum. None of the animals were sacrificed during the study; however, as per the institute's normal procedure, the animals, after experimentation, were subjected to euthanasia using a high inhalational dose of diethyl ether and disposed off by incineration. The mice were orally treated with the test compound at different concentrations for 1 h. Then via i.p. administration 0.5 mg kg⁻¹ LPS was given. After 2.5 h, blood was obtained from the retro-orbital plexus and allowed to clot for 30 minutes at R.T. Serum was collected and stored at 80 °C until use in an ELISA.⁶⁰ Then it was analyzed for IL-6 and TNF- α using an ELISA. The cytokine analysis for IL-6 and TNF- α was performed using mouse TNF- α ELISA and mouse IL-6 ELISA kits purchased from Invitrogen, USA. The absorbance was read at 450 nm. The results were expressed as % inhibition with respect to the control (rolipram). The experiments were done in triplicate and repeated three times. The results are expressed as the mean ± SEM.

Determination of the antimicrobial activities

The compounds isolated from *Murraya koenigii* were evaluated for their antimicrobial activities against a panel of pathogens. Stock solutions of each culture were prepared using a normal saline solution (0.85% NaCl (w/v)) at a concentration of 10^8 cells/spores per ml. The method used for bacteria by Mueller-Hinton and PD broth for fungus were supplemented with the compounds at concentrations of 100, 50, 25, 12.5 and 6.25 µg ml⁻¹ dissolved in DMSO to obtain a stock solution of 10 µg ml⁻¹. Each well was inoculated with 10⁴ cells/spores of the relevant test organism and incubated at 37 °C for 24 h. The absorbance was measured by spectrophotometer at 620 nm and the IC₅₀ of the isolated compounds was calculated from the average percent inhibition of three replicates of each concentration.⁶¹

Acknowledgements

The authors are grateful to the University grant commission (UGC-New Delhi) and CSIR for providing financial support for the work of YN. VK and PA are supported by the Department of Science and Technology, New Delhi, India through an INSPIRE Junior Research Fellowship. YK, VK and PA acknowledge the AcSIR for their enrolment in a Ph.D program. We are also thankful to Dipika Singh for recording the NMR experiments. We kindly acknowledge Humaira and Ajaz Ganai from Hamdard University for the CD Spectropolarimeter analysis. The manuscript bears the institutional publication no. IIIM/ 1887/2016.

Notes and references

- 1 R. S. Verma, A. Chauhan, R. C. Padalia, S. K. Jat, S. Thul and V. Sundaresan, *Chem. Biodiversity*, 2013, **10**, 628–641.
- 2 A. C. Adebajo, G. Olayiwola, J. Eugen Verspohl,
 E. O. Iwalewa, N. O. A. Omisore, D. Bergenthal, V. Kumar and S. Kolawole Adesina, *Pharm. Biol.*, 2005, 42, 610–620.
- 3 K. C. Das, D. P. Chakraborty and P. K. Bose, *Experientia*, 1965, 21, 340.
- 4 M. Fiebig, J. M. Pezzuto, D. D. Soejarto and A. D. Kinghorn, *Phytochemistry*, 1985, **24**, 3041–3043.
- 5 M. S. Baliga, G. C. Jagetia, S. K. Rao and K. Babu, *Nahrung*, 2003, **47**, 261–264.
- 6 M. Vasudevan and M. Parle, *Phytother. Res.*, 2009, 23, 308-316.
- 7 R. S. Ramsewak, M. G. Nair, G. M. Strasburg, D. L. DeWitt and J. L. Nitiss, *J. Agric. Food Chem.*, 1999, **47**, 444–447.
- 8 S. Gupta, M. George, M. Singhal, G. N. Sharma and V. Garg, J. Adv. Pharm. Technol. Res., 2010, 1, 68–77.
- 9 A. S. Shah, A. S. Wakade and A. R. Juvekar, *Indian J. Exp. Biol.*, 2008, **46**, 505–509.
- M. Itoigawa, Y. Kashiwada, C. Ito, H. Furukawa, Y. Tachibana, K. F. Bastow and K. H. Lee, *J. Nat. Prod.*, 2000, 63, 893–897.
- 11 Y. Tachibana, H. Kikuzaki, N. H. Lajis and N. Nakatani, J. Agric. Food Chem., 2001, 49, 5589–5594.
- 12 T. A. Choi, R. Czerwonka, W. Fröhner, M. P. Krahl, K. R. Reddy, S. G. Franzblau and H.-J. Knölker, *ChemMed-Chem*, 2006, 1, 812–815.
- 13 T. A. Choi, R. Czerwonka, R. Forke, A. Jäger, J. Knöll, M. P. Krahl, T. Krause, K. R. Reddy, S. G. Franzblau and H.-J. Knölker, *Med. Chem. Res.*, 2008, **17**, 374–385.
- 14 N. S. Kumar, P. K. Mukherjee, S. Bhadra, B. P. Saha and B. C. Pal, *Phytother. Res.*, 2010, 24, 629–631.
- 15 H. J. Knolker and K. R. Reddy, *Chem. Rev.*, 2002, **102**, 4303–4427.
- 16 A. W. Schmidt, K. R. Reddy and H. J. Knolker, *Chem. Rev.*, 2012, **112**, 3193–3328.
- 17 H.-J. Knolker, Curr. Org. Synth., 2004, 1, 309-331.
- J. S. Smolen and G. Steiner, *Nat. Rev. Drug Discovery*, 2003, 2, 473–488.

- 19 G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson and B. M. Spiegelman, *J. Clin. Invest.*, 1995, 95, 2409–2415.
- 20 R. C. Newton and C. P. Decicco, J. Med. Chem., 1999, 42, 2295-2314.
- 21 K. Selmaj, C. S. Raine, B. Cannella and C. F. Brosnan, J. Clin. Invest., 1991, 87, 949–954.
- J. Such, D. J. Hillebrand, C. Guarner, L. Berk, P. Zapater, J. Westengard, C. Peralta, G. Soriano, J. Pappas and B. A. Runyon, *Dig. Dis. Sci.*, 2001, 46, 2360–2366.
- 23 H. G. Rus, F. Niculescu and R. Vlaicu, *Atherosclerosis*, 1991, **89**, 247–254.
- 24 F. Lovering and Y. Zhang, *Curr. Drug Targets: CNS Neurol. Disord.*, 2005, 4, 161–168.
- 25 A. J. Ruiz-Alcaraz, M. Martinez-Esparza, R. Cano, T. Hernandez-Caselles, C. Recarti, L. Llanos, P. Zapater, A. Tapia-Abellan, E. Martin-Orozco, M. Perez-Mateo, J. Such, P. Garcia-Penarrubia and R. Frances, *Eur. J. Clin. Invest.*, 2011, 41, 8–15.
- 26 M. M. Jahromi, B. A. Millward and A. G. Demaine, *J. Interferon Cytokine Res.*, 2000, **20**, 885–888.
- 27 N. Rosler, I. Wichart and K. A. Jellinger, *Acta Neurol. Scand.*, 2001, **103**, 126–130.
- 28 A. Guirado, J. I. López Sánchez, A. J. Ruiz-Alcaraz, D. Bautista and J. Gálvez, *Eur. J. Med. Chem.*, 2012, 54, 87– 94.
- 29 C. Ito, T. S. Wu and H. Furukawa, *Chem. Pharm. Bull.*, 1990, 38, 1143–1146.
- 30 C. Uvarani, M. Sankaran, N. Jaivel, K. Chandraprakash, A. Ata and P. S. Mohan, *J. Nat. Prod.*, 2013, **76**, 993–1000.
- 31 W. Tian-Shung, W. Meei-Ling and W. Pei-Lin, *Phytochemistry*, 1996, **43**, 785–789.
- 32 S. Roy and D. P. Chakraborty, *Phytochemistry*, 1974, 13, 2893.
- 33 C. Schuster, K. K. Julich-Gruner, H. Schnitzler, R. Hesse, A. Jäger, A. W. Schmidt and H.-J. Knölker, *J. Org. Chem.*, 2015, 80, 5666–5673.
- 34 P. Crabbé and W. Klyne, Tetrahedron, 1967, 23, 3449–3503.
- 35 R. Hesse, K. K. Gruner, O. Kataeva, A. W. Schmidt and H.-J. Knoelker, *Chem. Eur. J.*, 2013, **19**, 14098–14111.
- 36 T.-S. Wu, M.-L. Wang, P.-L. Wu, C. Ito and H. Furukawa, *Phytochemistry*, 1996, **41**, 1433–1435.
- 37 C. Gassner, R. Hesse, A. W. Schmidt and H.-J. Knolker, Org. Biomol. Chem., 2014, 12, 6490–6499.
- 38 S. P. Kureel, R. S. Kapil and S. P. Popli, *Experientia*, 1970, 26, 1055.
- 39 J. L. Songue, Kouam, E. Dongo, T. N. Mpondo and R. L. White, *Molecules*, 2012, 17, 13673–13686.
- 40 K. K. Gruner, T. Hopfmann, K. Matsumoto, A. Jager, T. Katsuki and H.-J. Knolker, *Org. Biomol. Chem.*, 2011, 9, 2057–2061.
- 41 K. K. Gruner and H.-J. Knolker, *Org. Biomol. Chem.*, 2008, 6, 3902–3904.
- 42 H.-J. Knölker and C. Hofmann, *Tetrahedron Lett.*, 1996, 37, 7947–7950.
- 43 Y. Tachibana, H. Kikuzaki, N. H. Lajis and N. Nakatani, J. Agric. Food Chem., 2003, **51**, 6461–6467.

- 44 B. S. Joshi, V. N. Kamat and D. H. Gawad, *Tetrahedron*, 1970, **26**, 1475–1482.
- 45 C. Schuster, M. Rönnefahrt, K. K. Julich-Gruner, A. Jäger, A. W. Schmidt and H.-J. Knölker, *Synthesis*, 2016, 150–160.
- 46 N. S. Narasimhan, M. V. Paradkar and S. L. Kelkar, *Indian J. Chem.*, 1970, **8**, 473–474.
- 47 M. Mukherjee, S. Mukherjee, A. K. Shaw and S. N. Ganguly, *Phytochemistry*, 1983, **22**, 2328–2329.
- 48 R. Forke, M. P. Krahl, F. Däbritz, A. Jäger and H.-J. Knölker, *Synlett*, 2008, 1870–1876, DOI: 10.1055/s-2008-1078508.
- 49 H.-J. Knölker, H. Goesmann and C. Hofmann, *Synlett*, 1996, 1737–1740, DOI: 10.1055/s-1996-5516.
- 50 H.-J. Knolker and M. Bauermeister, J. Chem. Soc., Chem. Commun., 1990, 664–665, DOI: 10.1039/C39900000664.
- 51 C. Cui, B. Cai, S. Yan and X. Yao, US Pat., CN1332157A, 2002.
- 52 Q. Ma, J. Tian, J. Yang, A. Wang, T. Ji, Y. Wang and Y. Su, *Fitoterapia*, 2013, **87**, 1–6.

- 53 Y.-S. Wang, H.-P. He, Y.-M. Shen, X. Hong and X.-J. Hao, J. Nat. Prod., 2003, 66, 416–418.
- 54 C. Ito, H. Kanbara, W. Tian-Shung and H. Furukawa, *Phytochemistry*, 1992, **31**, 1083–1084.
- 55 U. Songsiang, T. Thongthoom, C. Boonyarat and C. Yenjai, J. Nat. Prod., 2011, 74, 208–212.
- 56 M. Fuchsenberger, R. Forke and H.-J. Knölker, *Synlett*, 2011, 2056–2058, DOI: 10.1055/s-0030-1260972.
- 57 B. Gayathri, N. Manjula, K. S. Vinaykumar, B. S. Lakshmi and A. Balakrishnan, *Int. Immunopharmacol.*, 2007, 7, 473– 482.
- 58 H. P. T. Ammon, Phytomedicine, 2010, 17, 862-867.
- 59 W. C. Lin and J. Y. Lin, J. Agric. Food Chem., 2011, 59, 184– 192.
- 60 A. T. Smolinski and J. J. Pestka, *Food Chem. Toxicol.*, 2003, 41, 1381–1390.
- 61 J. N. Eloff, Planta Med., 1998, 64, 711-713.