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The Sillium Model provides a straightforward method for the simulation of the structure of amorphous 
silicon or germanium. The Keating potential is used to crudely model the forces associated with tetrahedral 
bonding and only fourfold coordination is allowed. This enables structures to be randomised and annealed 
using a simple bond-switching process only. Originally invented merely as  an ad hoc procedure, this has 
proved very successful and now seems worthy of closer scrutiny: we present such an analysis in a 
preliminary form. 
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INTRODUCTION 

We present some recent work on the computer simulation of a continuous random 
network model of amorphous materials. The Sillium Model describes a network of 
tetrahedrally bonded atoms interacting through a Keating potential. This model has 
been defined and described elsewhere [I]; here we give only a brief description. We 
have been using computer simulations to study the thermodynamic behaviour of the 
system at different temperatures. An analytical model of topological rearrangements 
taking place in the network has also been developed, the results of which are com- 
pared and contrasted with simulation data. 

The Sillium Model 

The Sillium Model may be briefly defined by the following set of rules: 

1) 
2) 

Each atom is bonded to four neighbours 
The total energy of the system is given by the sum of bond-bending and bond- 
stretching terms, as described by the Keating potential. No vibrational motion is 
considered. 

1 I5 
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Figure I 
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3 )  

3 )  

S )  

Rearrangement 01' bonds used lo generate random networks; only parallel bonds may be 

The only degrees of freedom consist of bond switches or rearrangements, which 
shall be described ir, more detail below. 
Periodic boundary conditions are employed for the system of atoms (usually 216 
atoms. 432 bonds). 
Monte Carlo rules are used to carry out the structural rearrangements of bonds 
at different tcmperat ures. 

Simple bond rearrangements that do not introduce excessive network distortion are 
cmploycd. As shown in figure 1. a bond rearrangement exchanges two more-or-less 
parallel bonds, labelled as (6 ,5)  and (2.1), around the central bond (2 ,5) .  A rclaxation 
procedure is then used to bring the network to a geometrical configuration of 
minimum energy after a switch has becn introduced. 

Geometric relaxation is accomplished in the following manner. The forces acting 
on ;in atom are calculated for each atom in turn. the atom being moved to its 
approximate position of equilibrium under the bond-stretching and bond-bending 
force due to its nearest and next nearest neighbours. Each atom is repositioned i n  
turn. the process being repeated over enough cycles so that convergence to  equili- 
brium is reached f o r  the entire structure, with sufficient accuracy for the purposes at 
han tl . 

I J ~  practice two bonds arc switched on a random basis and the energies of the two 
structures compared. I f  the new structure has a lower energy, it is accepted; if the 
energy is higher. it 's accepted with probability cxp(-dEjkT). where d E  is the energy 
difference between the two configurations and T the temperature. 

One can obtain rmdomised networks by introducing large numbers of topological 
rearrangements into the ground state diamond cubic structure. Realistic amorphous 
networks can be attilined by 5imulated annealing [2],  which brings a randomised (and 
highly distorted) structure down to a low energy amorphous state. 

The Inciepcntient Bond Model 

In order to develop a quantitative theory of the effects of topological arrangements 
in the network. we must look more closely at the nature of the individual switching 
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process. First consider the introduction of switches (or so-called “defects”) into a 
crystalline network. Because of the constraint that bonds chosen for switching must 
be approximately parallel, there are only three possible rearrangements that can be 
introduced around one bond (between any two neighbouring atoms). 

Furthermore, if rearrangements are applied repeatedly between the same two 
atoms, only a finite number of bonding configurations are produced. Four distinct 
configurations can be obtained in the case of an isolated defect: the original ground 
state and three excited states raised by AE above the ground state. Thus one may 
consider the switching process as consisting of excitations of the bond around which 
the rearrangements take place. In the Sillium network AE is approximately equal to 
4.5 eV. 

In certain cases we expect the introduction of switches to be a spatially independent 
process. That is, the introduction of a switch at one point in the network should have 
no effect on the introduction of a switch at  another point. This is a reasonable 
assumption when small amounts of rearrangements have been introduced into a 
crystalline network. 

In reality, however, the introduction of switches is not independent, as a rearrang- 
ment changes the network structure over nearest and next-nearest neighbours. In a 
random network the excitation energies vary over a continuous range of values; in 
fact. the spectrum of excitation energies broadens with increase in defect concentra- 
tion, while at the same time the average defect energy decreases [l]. 

By making the simplification of independent excitations associated with bonds, an 
analytical model for bond rearrangements can be developed. From the rate equations 
for a two-level system separated by energy AE (one ground state and three excited 
states) we can find a relationship for N,, the number of bonds in an excited state, 
using appropriate initial conditions. The total energy for a N-bond system is then 
given by the product N,AE, which as a function of temperature cind time is found to 
be 

3NbE exp( - AE/kT) 
I + 3exp(-AE/k’T) (E(7 .1 ) )  = -- (1 ~ e w‘) 

where W is a transition rate. The equilibrium conditions for this model are found by 
letting t -+ a. 

By employing a mean field approach the effects of defect interaction can be 
approximately taken into account. This is done by setting the defect energy to be 
a function of defect concentration, so that the total energy has to be recalculated in 
self-consistent manner, for each value of time or temperature. 

First let us propose a relationship between AE and the number of bonds in the 
excited state (corresponding to the number of defects present) by reference to the 
properties of the Sillium network. We expect the excitation energy to be equal to AE 
at small concentrations, ie 

AE(N,) = 4.5 when N, = 0. 

On the other hand for a network that is very disordered, we expect the introduction 
of a defect to increase or decrease the energy of the system with equal probability so 
that we may write 
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AE(N,) = 0 as N,  + cc 

The exact functional relationship between the above values is not known but we have 
taken it to be exponential. That is 

AE(N,) = C, exp (C2N,). 

From the above conditions we must have that C, = 4.5eV and that C2 is negative. 
The absolute value of C2 may be found by fitting to simulation data. 

SIMULATTON RESULTS 

During the course of work, in an effort to reduce computer running time, we found 
that significant reductions could be made by allowing greater freedom of topological 
arrangements. Earlier versions of the program had disallowed the creation of both 3 
and 4-fold rings when introducing a switch and had a restrictive method of choosing 
bonds as possible candidates for switching. In fact, by calculating the energies of all 
the possible switches admissable between two atoms it  was found that the program 
occasionally disallowed switches that could sometimes be energetically favourable. A 
method that switched bonds that were the “most parallel” was successfully in- 
troduced, cutting computer running time significantly. 

To study the process of introducing topological disorder into the crystalline net- 
work. we introduced defects into the diamond cubic structure at  a fixed temperature. 
The results shown in figure 2 show such a randomisation procedure at  kT = 2.0 eV 
for 215 atoms. From the plot of the increase in energy of the system as a function of 
time (in Monte Carlo steps) one can see that the network becomes saturated after 
about 2000 steps, giving a rough measure of the time i t  takes to reach equilibrium at 
tha t  temperature from the ground state. The diagram also shows the predictions of 
the independent bond model. as given by equation (1) with kT = 2.0 and N, the total 
number of bonds, equal to 432. As can be seen from this figure, the independent bond 
model energy rises more rapidly than that of the silliurn network. 

Of more interest i s  the behaviour of the system as a function of temperature. This 
was studied by raising the temperature linearly with every Monte Carlo step by 

choosing the value o f a  so that T was raised slowly enough for the system to come to 
quasi-equilibrium a t  every stage. Results of the heating process are shown in figure 
3. which shows the effect of raising the temperature up to kT = 2.0eV over 
12000 MC steps. From this graph we can roughly identify a “melting” transition a t  
about kT = I.OeV, which is in agreement with an estimate taken from the sudden 
change in the structure factor found to occur at this temperature [ 3 ] .  More MC steps 
ae required to estimate the transition with a reasonable degree of accuracy, as in this 
region fluctuations are particularly evident. We also note that the energy reached at 
the end of heating (kT = 2.0eV) is approximately 420eV. This confirms that the 
system is near equilibrium, since the same energy was reached by randomisation at  the 
fixed temperature of kT = 2.0eV; see Figure 2. 

Figure 3 also shows the predicted values of energy from the independent bond 
model and the mean field approximation. both showing reasonable agreement in the 
range o f  temperatures simulated, except in the region kT = I .0 eV, where fluctua- 
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Figure 2 The total energy of the network increases with the introduction of defects. Temperature was fixed 
at kT = 2.0eV throughout and time is measured in Monte Carlo steps. The smooth curve is the prediction 
of the independent bond model. 

tions are strong. The predictions of the independent bond model were found by taking 
equilibrium values of equation ( 1 )  (t -+ GO), and plotting as a function of temperature. 
The parameter (C,) in the mean field correction was chosen so that the value of the 
energy corresponded to the equilibrium value of the network simulation at 
kT = 2.0 eV. As we have seen in Figure 2 the equilibrium energy is about 420 eV at 
this temperature. 

We have also investigated the minimum energy reached for amorphous structures 
for different annealing rates, to see whether we could find structures similar to those 
that had been annealed on a supercomputer [ I ] .  In this case the temperature is 
decreased exponentially during simulation by 

T = (cc)’T, 

The starting structure used was a network that has been randomised at kT = 2.0 eV 
for 3000 steps, so that To was taken 2.0, and an annealing run was carried out for 
10000 steps. Annealing runs almost completely removed 3-fold rings in the network 
that had been introduced by the randomisation process, confirming that our modified 
rules still gave the correct type of structure once annealed. Despite the improvements 
to our algorithms, however, somewhat longer anneal times are still required to obtain 
structures with a small number of 4-fold rings and with less distortion. As can be seen 
from Figure 3, the annealing schedule was not able to reduce the energy of the 
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Figure 3 Eriergy as a furlchon of temperature. The jagged curvc IS computed for linearly rising iem- 
perature, as described in the text. Also shown are (equilibrii.imJ predictions by the independent bond model. 
iiicun held correction and results of subsequent cooling by an  annealing schedule. Thc ratc used lor the 
anneal iis shown in the diagram was r = 0.9994 

network below 150 eV. Previous calculations succeeded in reducing this energy to 
xoev  [ I ] .  

CONCLUSION 

We rcalise that our  results contain significant levels of noise. and that further simula- 
tions still have to be carricd out. However, the overall results support the validity of 
the independent bond model and have given us confidence in using such an approach 
for further analysii. 
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APPENDIX: METHODOLOGY 

The algorithm used to generate and anneal random networks consists of an iterative 
sequence of topological rearrangement and geometrical relaxation. 

Topological Rearrangement 

When carrying out topological rearrangements, two bonds are switched on a random 
basis and the energies of the two structures arc compared. The Metropolis rule is then 
used to decide whether a switch can be made. If the new structure has a lower energy, 
it is accepted; if the energy is higher, it is accepted with probability exp (-AE/kT), 
where AE is the energy difference between the two configurations and T the tem- 
perature. Every trial structure produced has to be relaxed and then compared, so that 
the computational time involved in every Monte Carlo decision is quite lengthy. 

Geometrical Reluxutinn 

The potential function used to carry out geometrical relaxation of the structure is the 
Keating potential, which is given by two terms 

Here s[ and p are the bond-stretching and bond-bending force constants, and d is the 
equilibrium Si-Si bond length in the diamond structure. The first term gives the sum 
of the bond stretching for the whole network by summing over all atoms 1 and their 
four neighbours given by i. The second term gives bond bending contributions by 
summing over all atoms and pairs of distinct neighbours. 

Relaxation is accomplished in the following manner. The forces acting on an atom are 
calculated for each atom in turn, the atom being moved to its approximate position 
of equilibrium under the bond-stretching and bond-bending forces due to its nearest 
and next nearest neighbours. Each atom is repositioned in turn, and the process is 
repeated over enough cycles so that convergence to equilibrium is reached for the 
entire structure. In practice, the number of cycles used in order to obtain convergence 
may be between 10 and 30. At the end of relaxation all atoms are required to be within 
E of the exact equilibrium values, where E is typically 0.1% of the nearest neighbour 
distance d. 

Overrill Iterative Sequence 

The iterative sequence of topological switching and relaxation is shown in the dia- 
gram. In the computer code, the coordinates of each atom and its nearest neighbours 
are kept in two arrays. At the first step, corresponding to a Monte Carlo switch, the 
nearest neighbour table is changed. At the second stage the relaxation takes place and 
the coordinates of the atoms are changed. A full simulation consists in repeating this 
sequence many times. 


