7.	Trigonometrical Functions





	The common trig. functions are defined relative to a right-angled triangle.





�





	tan x = opposite/adjacent	O/A


	sin x = opposite/hypotenuse	O/H


	cos x = adjacent/hypotenuse	A/H





	This can be remembered using sOHcAHtOA


					 �SYMBOL 173 \f "Symbol"�     �SYMBOL 173 \f "Symbol"�     �SYMBOL 173 \f "Symbol"�


					sin   cos  tan








	In calculus, we need the angles measured in radians rather than degrees, with





2�SYMBOL 112 \f "Symbol"� radians in a circle = 360�SYMBOL 176 \f "Symbol"�








	so that 1 radian = 360�SYMBOL 176 \f "Symbol"�/2�SYMBOL 112 \f "Symbol"�.





	The common  points used:		    0�SYMBOL 176 \f "Symbol"� = 0 radians


						  90�SYMBOL 176 \f "Symbol"� = �SYMBOL 112 \f "Symbol"�/2 radians


						180�SYMBOL 176 \f "Symbol"� = �SYMBOL 112 \f "Symbol"� radians


						270�SYMBOL 176 \f "Symbol"� = 3�SYMBOL 112 \f "Symbol"�/2 radians


						360�SYMBOL 176 \f "Symbol"� = 2�SYMBOL 112 \f "Symbol"� radians





	For graphs of the common trig functions, see handout 2.





�
Inverse Trig. Functions





	If y = sin x,  then x = sin-1y		(also called arcsin y)


	   y = cos x, then x = cos-1y		(also called arccos y)


	   y = tan x,  then x = tan-1y		(also called arctan y).





Examples





	1.	sin x = 0.32,	x = sin-1 0.32 = 18.7�SYMBOL 176 \f "Symbol"� = 0.33 rads


	2.	tan x = 0.87,	x = tan-1 0.87 = 41�SYMBOL 176 \f "Symbol"�   = 0.71 rads








Differentials of Trig functions





	It can be shown that





If	y = sin x,	�EMBED Equation ��� = cos x





	y = cos x,	�EMBED Equation ��� =  - sin x





	y = tan x, 	�EMBED Equation ��� = �EMBED Equation ���









































We often meet compound functions in many applications and we can use the Product, Chain and Sequential rules as before.





Examples


	1.	y = sin(kx)





		�EMBED Equation ��� = cos(kx) ( k	= k.cos (kx)		�SYMBOL 172 \f "Symbol"� important


			�SYMBOL 173 \f "Symbol"�	 �SYMBOL 173 \f "Symbol"�


		differential of    differential of


		    sin (...)	      kx





	2.	y = 3cos x - 4sin(x2)





		�EMBED Equation ��� = -3sin x - 4 cos(x2).2x





		= -3sin x - 8x.cos(x2)





	3.	y = 7sin(5x2) + 6ln {tan(5x)}





		�EMBED Equation ��� = 7cos(5x2).10x  +  �EMBED Equation ��� ( 5





		= 70x.cos(5x2) + �EMBED Equation ���





	4.	�SYMBOL 121 \f "Symbol"�(x) = Asin � EMBED Equation.2  ���		�SYMBOL 172 \f "Symbol"� a typical wave function for an 								electron in an orbital.





		�EMBED Equation ��� = Acos.� EMBED Equation.2  ����EMBED Equation ���





		= �EMBED Equation ���.cos� EMBED Equation.2  ���.











�
8.	Integration - Calculating Areas





	In science, we often need to work out the area under a graph.  For example the work done to move a charged particle a distance r through a potential difference V is given by the area under the potential vs distance curve.





�





Another example is the total distance travelled by an object moving at velocity v(t), (which is a function of time so that the object is accelerating), is given by the area under the v(t) vs t graph.


�








Calculating Areas - counting squares





	The most obvious way to calculate the area under a graph is to draw it on graph paper and count the squares.





Example	What is the area under the curve y(x) = 2x2 from x = 1 to x = 3?





�





a)	Divide the area up into 2 trapezia


�





Area of trapezium = Area of �        +  area of �SYMBOL 68 \f "Symbol"�


		    = (length ( width) + ½ length ( height)





	Area of A = 1(2 + ½(1(6 = 5 units


	Area of B = 1(8 + ½(1(10 = 13 units





	Total Area = A+B = 5+13 = 18 sq. units








�
b)	Now do it again with 4 trapezia





�





Area of A = ½(2 + ½(½(2½     = 15/8


Area of B = ½(4½ + ½(½(3½  = 33/8


Area of C = ½(8 + ½(½(4½      = 51/8


Area of D = ½(12½ + ½(½(5½ = 75/8





		Total Area = A+B+C+D =	     17.75 sq.units





You can see that as we divide up the area into smaller and smaller strips, the approximation to the area gets better and better.  This is the basis for numerical solutions of areas (e.g. Simpson's Rule - see textbooks).





	The actual value of the area will be achieved when we have an infinite number of strips, of width zero!





	Needless to say we do not have to do this - there's a short cut - analytic integration








Integration - Notation





	The area under a curve, y(x), which has been divided up into many strips of width �SYMBOL 100 \f "Symbol"�x between the limits of x = a and x = b is given by adding up all the areas of the strips (�EMBED Equation ��� width ( height).





	i.e. 	Area = �EMBED Equation ��� height of strip ( width of strip





		Area = �EMBED Equation ���y(x) ( �SYMBOL 100 \f "Symbol"�x





Now, as �SYMBOL 100 \f "Symbol"�x�SYMBOL 174 \f "Symbol"�0 (i.e. the strips get vanishingly thin) we can replace the �SYMBOL 83 \f "Symbol"� with an integration sign �SYMBOL 242 \f "Symbol"�, which is an extended S, for sum.





So we get:





� EMBED Equation.2  ���





	The dx now serves to tell us what the name of the variable is - we say 'with respect to x'





	This process is called integration








Integration as the Reverse of Differentiation





We know that the differential of y(x) = x3 is 3x2.  The process of reversing this, whereby we generate a function from its derivative is integration.





i.e.	� EMBED Equation.2  ��� = y(x)		Integration of a differential gives the original function.





and	�EMBED Equation ���[�SYMBOL 242 \f "Symbol"� y(x).dx] = y(x)		Differential of an integral gives the original function.





So, integration is the reverse process to differentiation








Compare other reversible functions:	x2 and �EMBED Equation ���


					sin x and sin-1x


					ln x and ex.
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