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4.12  Types of Stationary Point

If xsp is the stationary point, then if we consider points either side of xsp, there are 4 types of behaviour of the gradient.

	
	x < xsp
	x = xsp
	x > xsp
	t.p.type



	      (i)
	+ve
	zero
	‑ve
	maximum

	     (ii)
	‑ve
	zero
	+ve
	minimum

	    (iii)
	+ve
	zero
	+ve
	inflection

	    (iv)
	‑ve
	zero
	‑ve
	inflection




Stationary points like (iii) and (iv), where the gradient doesn't change sign produce S-shaped curves, and the stationary points are called points of inflection.

[image: image1.emf]

  [image: image2.emf]

  [image: image3.emf]

   [image: image4.emf]


    Minimum    
Maximum

+ve p.o.i  
‑ve p.o.i
4.13  How to determine if a stationary point is a max, min or point of inflection

The rate of change of the slope either side of a turning point reveals its type.  But a rate of change is a differential.  So all we need to do is differentiate the slope, 
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 with respect to x.  In other words we need the 2nd differential, or 
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, more usually called 
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(“dee-2-y by dee-x-squared”)

Examples

1.
y(x) = 9x2 ‑ 2
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2.
y(x) = 4x5 ‑ 
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3.
p = 3q3 ‑ 4q2 + 6
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4.14  Rules for stationary points


i)
At a local maximum, 
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ii)
At a local minimum, 
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iii)
At a point of inflection,
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and we must examine the gradient either side of the turning point to 

find out if the curve is a +ve or ‑ve p.o.i.

Examples
1.
Taking the same example as we used before:


y(x) = x3 ‑ 3x + 1
(a cubic function – you should be expecting 2 t.p.s)
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 = 3x2 ‑ 3     SYMBOL 174 \f "Symbol" stationary points at ( ‑1, 3) and (1, ‑1)
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At stationary point (‑1,3), x = ‑1,   so 
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 = ‑6,    so this point is a maximum.
At stationary point (1, ‑1), x = +1,   so 
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 = +6,    so this point is a minimum
So we can finally sketch the curve:
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2.
y = x3 + 8

(a cubic function – you should be expecting 2 t.p.s)
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 = 3x2,       which is equal to zero at the turning point(s).


If 3x2 = 0,   x = 0,     and so y = +8, so the t.p. is at (0,8).

[The fact that we’ve found only one turning point for a cubic function (for which you would normally expect two) should tell you either you’ve done it wrong, or that the t.p. might be ‘unusual’].


Now 
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So, at the t.p. (0,8), i.e when x = 0, 
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 = 0, so we have a point of inflection.  But 
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 is +ve either side of this point (e.g. at  x = +1, 
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 = +3 i.e. increasing, at x = ‑1, 
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 = +3, also increasing), so the curve has a positive point of inflection.
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3.
Where are the turning point(s), and does it (or they) indicate a max or min 

in the function p(q) = 4 ‑ 2q ‑ 3q2 ?    [How many t.p.s do we expect?]
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so ‑2 ‑ 6q = 0,    SYMBOL 92 \f "Symbol"6q = ‑2,   so  q = ‑

, and p = 4


We have one t.p. at   ( ‑

, 4

).
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 = ‑6, which is –ve,     so the t.p. is a maximum.

(This is consistent with what we said earlier, that for quadratics if the x2 term is ‑ve, we have a (-shaped parabola).




4.15  More Complicated Differentiation Rules

So far, we’ve only dealt with simple polynomial functions.  But in chemistry we’re likely to meet a whole bunch of other, more complicated functions, which we also need to differentiate.  For many of these, the ‘magic formula’ is insufficient, so we need to learn 3 more rules, and recognise when to apply them.  These rules are: the Product Rule, the Quotient Rule, and the Function of a Function rule.
4.15A  Product Rule

Say we have functions like:

y(x) = (3x2 – 2x +3)(4x4 +6x ‑ 9);
   or
x2 ln x ;

or
3x sinx
where the function y(x) can be written as two other functions multiplied together, e.g. in the second example we have x2×lnx.  We name the first function u(x) and the second one v(x), so that 

y(x) = u(x) ( v(x)

then the differential of y(x) is given by the Product Rule:
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In words: ‘The first function multiplied by the differential of the second, plus the second function multiplied by the differential of the first’.
Examples

1.
y(x) = (x2 + 2)(x + 1)


let u = x2 + 2,

so that 
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let v = x + 1,

so that 
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so 
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= 3x2 + 2x + 2

(Note: in this case we can double check this is correct by expanding out the brackets)


y(x) = x3 + x2 + 2x + 1,       
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2.
y(x) =  x3 (3 ‑ 

 + 3x2)
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3.
((SYMBOL 108 \f "Symbol") = (2SYMBOL 108 \f "Symbol" + SYMBOL 108 \f "Symbol"2)(
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4.15B   Quotient Rule

Sometimes we come across rational functions, where one function is divided by another.  Examples include:
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or
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Again, we call them u and v, making sure that u is on the top of the fraction, so that:


y(x) = 

,

To differentiate this, we use the Quotient Rule:
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Example


y(x) = 



so that u = x2 + 1    and    
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and     v = 2x + 3     and   
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You may need to simplify/tidy up the answer:
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There will be lots more examples of how to use both the Product Rule and the Quotient Rule in the tutorial/workshops.[image: image59.emf]
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