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4.15C   Function of a Function (Chain Rule)
Suppose we want to differentiate (2x ‑ 1)3.  We could expand the bracket then differentiate term-by-term, but this is tedious!  We need a more direct method for expressions of this kind.

Now (2x ‑ 1)3 is a cubic function of the linear function (2x ‑ 1), i.e. it is a function of a function.

Other examples


(x2 ‑ 3)3 is a cubic function of a quadratic function,





 is a square root function of a quartic function,

There are 2 ways to go about solving functions-of-a-function:

(i)
Chain Rule

If we have y(x) = f (complicated expression), we let u = (complicated expression) then work out 
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The Chain Rule

Examples

1.
y = (2 – x3)4

let u = 2 – x3, 

so that y = u4
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and 
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So 
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Again, it may be necessary to simplify the answer.

2.
y(x) = 

  ,  i.e.  y = (1 – x2)–1

let u = (1 – x2),  so that 
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and y = u–1,  so that 
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(ii)
Sequential Step Method

With this method, we start with the outermost function, and differentiate our way to the centre, multiplying everything together along the way.

Examples

1.
y = (2 – x3)4

think of this as 
y = (expression)4

differentiating, 
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We now look at the expression in the brackets and differentiate that (= ‑3x2) and multiply it to our previous answer to give
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(which is the same as before)

2.
y = 

 

= (1 – x2)‑1
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        1 – x2
3.
y = 

  

=  (x2 ‑ 1)½
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4.
Refer back to this later, after we've covered sin and ln.


y = sin{ln(3x2 + 2)}
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       ln(...)
        3x2 + 2

5.
Exponential Functions

The general expression for an exponential function is

f(x) = kax



k & a = constants



 


An example is y = 3x
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ySYMBOL 124 \f "Symbol"1    3    9   27  81 ...

One of the most important properties of an exponential function is that the slope of the function at any value is proportional to the value of the function itself.

In other words,
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the value of this constant depends upon the 






function y(x).

Numerical examples
1.
y = 2x, plot the graph and measure the slopes at different values of x.

	


	

slope at x


measured

x
y
from graph     slopeSYMBOL 184 \f "Symbol"y

0
 1
    0.69

  0.69
1
 2
    1.38

  0.69
2
 4
    2.76

  0.69
3
 8
    5.52

  0.69
4
16
  11.04

  0.69



So for y = 2x, the constant is 0.69 

(later on we'll see this is ln 2

).

i.e. 

 
[image: image19.wmf]x

y

d

d

 = 0.69 × y(x)

2.
Try it again, but for  y = 3x
	


	x
y
slope
        slopeSYMBOL 184 \f "Symbol"y
0
 1
    1.1

  1.1
1
 3
    3.3

  1.1
2
 9
    9.9

  1.1
3
27
  29.7

  1.1
4
81
  89.0

  1.1



So for y = 3x, the constant = 1.1
Now, in the above 2 examples we used simple numbers (a = 2 and a = 3), but the constants we determined (0.69 and 1.1) were not simple numbers. 
But we can reason that there must be some number between 2 and 3 for which the constant = 1, exactly.


i.e for which 
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The value of  a  that gives this result is known as  e  and has the value:

    e = 2.718...    





an irrational number.

e is actually calculated from the following progression formula (see the Algebra part of the course later if you don’ understand this equation yet):

e = 


5.1  The Exponential Function

The function ex is known as the exponential function (as opposed to any other exponential function) and is extremely important in all branches of science:

· Radioactive materials undergo exponential decay,

· World human population is increasing exponentially,

· In first order chemical reactions (A SYMBOL 174 \f "Symbol" products) the concentration of A decreases exponentially,

· Chemical reaction rates depend exponentially upon the temperature, etc.

5.2  What does ex look like?

x = 0

ex = 1



x = 0

e‑x = 1

xSYMBOL 174 \f "Symbol" + SYMBOL 165 \f "Symbol"
exSYMBOL 174 \f "Symbol" + SYMBOL 165 \f "Symbol"


xSYMBOL 174 \f "Symbol" +SYMBOL 165 \f "Symbol"

e‑xSYMBOL 174 \f "Symbol" 0

xSYMBOL 174 \f "Symbol" ‑SYMBOL 165 \f "Symbol"

exSYMBOL 174 \f "Symbol" 0



xSYMBOL 174 \f "Symbol" ‑SYMBOL 165 \f "Symbol"

e‑xSYMBOL 174 \f "Symbol" + SYMBOL 165 \f "Symbol"
	    x
	    0
	  1
	    2
	    3
	    4
	    5

	   ex
	    1
	2.72
	7.39
	20.1
	54.6
	148

	   e‑ x
	    1
	0.37
	0.14
	0.05
	0.02
	0.007
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