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5.3  Variants of the Exponential Function
In most applications the exponent is not simply x, but some function of x, or the exponent is multiplied by some other function of x.

Notation:
We normally write the exponential function as y = ex, but if the exponent is a function (e.g. x2 + 1), it's often easier to write it as y = exp(x2 + 1), which is equivalent to 

.  (Note ‑ This ‘exp’ is not the same as ‘EXP on your calculator, which refers to 10x)

Examples
y = ebx,

y = e‑bx,
y = 

,



y = e


or
y = exp(2x2 ‑ 1)



y = 5ex,

y = 5x.e‑bx,
y = (x2 ‑ 1)e

, 
etc.

5.4  Pre-exponential factors and Time Constants

A generic exponential function is:   y(x) = Ae‑bx,    where A and b are constants.

The number or expression in front of the exponential (in the above example this is A) is called the ‘pre-exponential factor’.  You can see that when x=0, y=A, so this is actually the intercept on the y-axis.  You’ll come across this in kinetics, where the Arrhenius equation shows that the rate constant k of a chemical reaction depends on temperature, T, via:
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In this case, when the activation barrier Ea for the reaction is zero, so that all collisions result in a reaction, then k = A.  So the pre-exponential factor A has a real meaning here, it is the rate at which molecules collide.
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Any constant, b, that multiplies to x inside the exponential has the effect of changing the rate of decay (or increase) of y (see plot, above).  For this reason it is often called a ‘rate constant’, a ‘decay constant’, or a ‘time constant’.  For example, in a first-order reaction, the concentration of a reactant A depends upon time via:

[A]t(t) = [A]0 e‑kt
where [A]t means concentration of A at time, t, [A]0 is concentration at time t = 0 (i.e. the starting concentration), and k is the first-order rate constant.
5.5  Differentiating ex
The reason why ex is so important is that it is the only function which doesn't change when you differentiate it.

   y = ex,
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Examples

1.
y = 5ex,
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2.
y = 3ex + 2,
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3.
y = ebx
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and
          y = eu, 
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Alternatively, using the sequential step rule:
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Or as a general rule:
4.
y = e‑x,
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5.
y = exp(x2 + 1), 
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6.
y = x.e ‑bx.   This requires the product rule
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7.
What is the gradient of the curve y = 5e‑2x + 1 at the point x = 2?
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and at x = 2, slope = ‑0.183.  


	




6. Logarithmic Functions

If we have the relationship




y = a x
then there must be the inverse relationship such that




x = f (y).

We call the function, f (y), the ‘logarithm to base a’.




x = loga(y)


valid only for y>0

There are 2 types of logarithm in common use:

a) Common logs have base 10 and are written    log10x
b) Natural logs have base e and are written        logex   or   ln x
So, if



y = ex, 


then ln y = x


y = 10x, 

then log10 y = x
6.1  Laws of Logarithms

1.

ln A + ln B  =  ln (AB)

2.

ln A ‑ ln B  =  ln (A/B)

3.


ln Ax = x.ln A
Examples

1.
ln 2 + ln 3 =  1.792  =  ln 6

2.
ln x + ln (x2+1) = ln {x.(x2+1)} = ln (x3+x)

3.
ln 6 ‑ ln 3 = 0.693 = ln 2

4.
ln (x+1) ‑ ln (3 – x2) = ln 


5.
ln x + ln (x+3) ‑ ln (x2+4) = ln 


6.
ln (x2 + 1)3 = 3ln (x2 + 1)

7.
ln (x2+3)x+1 = (x+1) ln (x2+3)

8.
ln 

 = 
ln(x ‑1) 

=  ‑ ln x

SYMBOL 172 \f "Symbol" important

Numerical Example: when x =2,

9.
ln 


 =
 ln 

   
=
 ln 

 
= 
0.118


or


= 2ln (x+1) ‑ ln (4x) 
= 
2ln 3 ‑ ln 8
=
0.118

6.2  The Differential of  ln x
It can be shown that, if

y = ln x, 
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We can now use this, together with the Product, Chain and Sequential Rules to find the differentials of log functions.

Examples

1.
 y = ln (ax + b)
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2.
y = ln (2(x) + 3x2
=
ln (2x½) + 3x2
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3. Where are the turning points in y = ln(x) – x ?
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So the slope = 0 when  

 = 0, 
i.e., when x =1, and y = ‑1.
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which at (1,-1) is ‑ve, 

                      so the t.p. is a maximum.
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