1S Summer exam 2001 - Calculus Dr Paul May

 

1) Determine the following:

 

            a) dy/dx   if    y = 3x3                           b) dy/dm if    y = 4m7 + 5m - 1

 

            c) dy/dq   if    y = 9cos q                      d) dp/dq   if    p = 1252e–56q     (6 marks)

 

2) Differentiate the following functions with respect to x, and simplify the result where possible:

 

            a) y = (5x + 2)(3 – 6x)             b) y = 2x3 ln x

 

            c)                          d) y = sin (5x4 – 9x)                             (8 marks)

 

3) The function :

 

                                    y =

 

has stationary points at r = ± ¥

 

a)  Differentiate this function and thence determine the co-ordinates (r,y) of the remaining stationary point.                                                                                            (3 marks)

 

b) The second differential of this function is:

 

                                   

 

Determine whether the stationary point you just found is a local maximum or minimum.                                                                                                                         (3 Marks)

 

c) Hence sketch this function between r = 0 and r = 8.                          (4 marks)

 

 


Answers

 

1) [1mark for (a) and (b), 2 marks for the rest].

 

a) dy/dx = 9x2                          b) dy/dr = 28m6 + 5

c) dy/dq = -9sin q                     d) dp/dq = -70112e-56q

 

2) [2 marks each].

 

a) Product Rule:            (5x + 2).(-6) + (3 - 6x).5         =          3 - 60x

 

b) Product Rule:           2x3(1/x) + (ln x).6x2                 =          2x2(1 + 3ln x)

 

c) Quotient Rule:                                =         

 

d) Funct. of a Funct.:  cos (5x4 – 9x).(20x3 – 9)            =          (20x3 – 9) cos (5x4 – 9x)

 

3)

a)

   Quotient Rule:            dy/dr = (r.2er - 2er.1) / r2        =          2er(r - 1) / r2    [2 marks]

 

   For turning point, 2er(r - 1) / r2 = 0, so either: r2 = ¥  Þ        r = ± ¥,

                                                          or 2er = 0             Þ        r = - ¥

                                                            or         (r - 1) = 0,        Þ        r = 1

   The last answer is the required one.

 

   So the turning point is at (1, 5.44).                                                      [1 mark]

 

b) Determine the sign of the second differential, d2y/dr2.  Putting in the value of r = 1, we get d2y/dr2 = 4e, which is +ve, so the t.p. is a local minimum.                  [3 marks]

 

c) Sketch: (must get correct shape, label axes, and indicate t.p., and infinities for full 4 marks).