1S Summer exam 2003 - Calculus Dr Paul May

1. Answer *all* parts (a) to (d).

Determine the following:

(a)
$$dy/dx$$
 if $y = 5x^9$

(1 mark)

(b)
$$dk/dp$$
 if $k = 3p^6 + 17p - 6$

(1 mark)

(c)
$$d\beta/d\theta$$
 if $\beta = -5\cos\theta$

(2 marks)

(d)
$$dj/dm$$
 if $j = 73e^{-25m}$

(2 marks)

2. Answer *all* parts (a) to (d). All parts carry equal marks.

Differentiate the following functions with respect to x, and simplify the result where possible:

(a)
$$y = (3x + 2)(1 - 11x)$$

(b)
$$y = -55x^{12} \ln x$$

(c)
$$y = \frac{(11x+7)}{(3x-2)}$$

(d)
$$y = \tan(x^6 - 3x^2)$$

(8 marks)

3. Answer *all* parts (a) to (c).

Consider the function:

$$y(x) = 5\sin(2x + \pi/2),$$

where x is in radians.

(a) Differentiate this function, and thence determine the co-ordinates (x,y) of the stationary points and whether they are local maxima or minima.

(5 Marks)

(b) Hence sketch this function between x = 0 and $x = \pi$.

(3 marks)

(c) Calculate the area under this function between x = 0 and $x = \pi/4$. [Hint: the relationship $\sin(-m + \pi/2) = \cos m$ might be useful].

(2 marks)

Answers

1) [1mark for (a) and (b), 2 marks for the rest].

a)
$$dy/dx = 45x^8$$

b)
$$dk/dp = 18p^5 + 17$$

c)
$$d\beta/d\theta = +5\sin\theta$$

d)
$$dj/dm = -1825e^{-25m}$$

2) [2 marks each].

$$(3x + 2) \cdot (-11) + (1 - 11x) \cdot 3 = -19 - 66x$$

$$-55x^{12}(1/x) + (\ln x).(-660 x^{11}) = -55x^{11}(1 + 12 \ln x)$$

$$-55x^{11}(1+12 \ln x)$$

$$\frac{(3x-2).11-(11x+7)(3)}{(3x-2)^2} = \frac{-43}{(3x-2)^2}$$

$$=\frac{-43}{(3x-2)}$$

d) Funct. of a Funct.:
$$[1/\{\cos^2(x^6-3x^2)\}] \times (6x^5-6x) = \frac{6x(x^4-1)}{\cos^2(x^6-3x^2)}$$

$$\frac{6x(x^4-1)}{\cos^2(x^6-3x^2)}$$

3)

a) Using Func. Of Func. Rule,
$$dy/dx = 5\cos(2x + \pi/2) \times 2 = \underline{10\cos(2x + \pi/2)}$$

[2 marks]

At the t.p.
$$dy/dx = 0$$
, so $10\cos(2x + \pi/2) = 0$,

so
$$\cos(2x + \pi/2) = 0$$
.

Since
$$\cos^{-1}(0) = \pi/2$$
, $3\pi/2$, $5\pi/2$,... *etc*, then:

$$(2x + \pi/2) = \pi/2, 3\pi/2, 5\pi/2, etc.$$

When
$$(2x + \pi/2) = \pi/2$$
, $2x = 0$, so $x = 0$, and $y = 5$, \Rightarrow a t.p at $(0, 5)$

or when
$$(2x + \pi/2) = 3\pi/2$$
, $2x = \pi$, so $x = \pi/2$, and $y = -5$, \Rightarrow a t.p at $(\pi/2, -5)$

and when
$$(2x + \pi/2) = 5\pi/2$$
, $2x = 2\pi$, so $x = \pi$, and $y = -5$, \Rightarrow a t.p at $(\pi, 5)$

...etc.

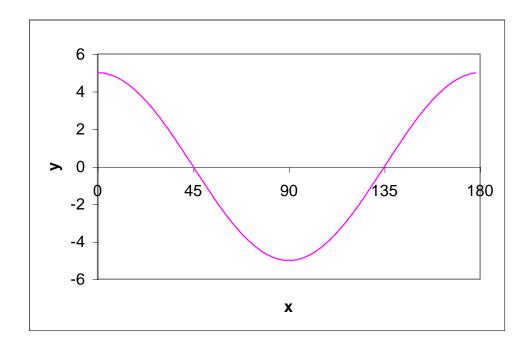
[2 marks]

b) $d^2y/dx^2 = -20\sin(2x + \pi/2)$, and at x = 0 this has a value of -20. So the t.p. is a maximum!

At
$$x = \pi/2$$
, d^2y/dx^2 has a value of +20, so it's a minimum.
At $x = 3\pi/2$, d^2y/dx^2 has a value of -20, so it's a maximum.

So it's an oscillating function (as you might expect for a sine wave), with repeating maxima and minima. [3 marks]

c) The sine function will take values from +1 to -1, so y will oscillate from +5 to -5. The x multiplier is 2, so the function will oscillate with twice the frequency of a normal sine wave, *i.e.* one wavelength every π rather than every 2π .



note: add t.p labels, etc...

d) We cannot integrate the original function easily, but using the relationship $\sin(-m + \pi/2) = \cos m$ we can see that $5\sin(2x + \pi/2) = 5\cos(-2x)$, which is much easier to integrate:

Area =
$$\int_{0}^{\pi/4} 5\cos(-2x).dx$$
 = $\left[-\frac{5}{2}\sin(-2x)\right]_{0}^{\pi/4}$

$$= 5/2 - 0 = 2.5 \text{ sq. units}$$