1S Summer exam 2006 - Calculus Dr Paul May

1. Answer *all* parts (a) to (d). All parts carry equal marks.

Determine the following:

(a) dy/dx if $y = 27x^5$ (b) du/dz if $u = 3.2z^2 + 6z - 5.7$ (c) $d\beta/d\theta$ if $\beta = 8\cos\theta$ (d) $d^{3/2}/d^{3/2}$ if $\mathfrak{S} = 7 \exp(-19^{3/2})$

(4 marks)

2. Answer *all* parts (a) to (d). All parts carry equal marks.

Differentiate the following functions with respect to *x*, and simplify the result where possible:

(a)
$$y = (5 - 3x)(2 - 20x)$$

(b) $y = 2.8x^{56} \sin x$
(c) $y = \frac{(2x^7 - 3x)}{(5x^3 - 3x + 1.67)}$
(d) $y = 3 \ln(3x^2 - 6x^5)$
(8 marks)

3. Answer *all* parts (a) to (d).

The Lennard-Jones potential used to describe the van der Waals interaction energy between two neutral molecules is given by the following equation:

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

where ε is the well depth and σ is the hard-sphere radius of the molecule. Measurements of *V* versus *r* are given in the table.

<i>r</i> / Å	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6
$V/(\text{kJ mol}^{-1})$	66.4	19.6	0	-7.58	-9.83	-9.82	-8.91	-7.74	-6.57

(a) Plot these data as a graph and estimate the co-ordinates (r_{\min}, V_{\min}) of the minimum of the curve

(4 marks)

(b) Differentiate the equation for the Lennard-Jones potential, and obtain an expression for r_{\min} in terms of σ .

(4 marks)

(c) Put this expression for r_{\min} back into the original Lennard-Jones equation, and calculate an expression for V_{\min} in terms of ε . Compare this to your estimate from (ii) and hence obtain a value for ε .

(2 marks)

(d) Using your estimate for r_{\min} from (a) and your expression for r_{\min} from (b), calculate a value for σ .

(2 marks)

Answers

1)
a)
$$dy/dx = 135x^4$$

b) $du/dz = 6.4z + 6$
c) $d\beta/d\theta = -8\sin\theta$
d) $d^{3/2}/dx = -133 \exp(-19x)$
2)
a) Product Rule: $(5 - 3x).(-20) + (2 - 20x).(-3) = 120x - 106$
b) Product Rule: $2.8x^{56}(\cos x) + (\sin x)(156.8x^{55}) = 2.8x^{55}(x \cos x + 56\sin x)$
c) Quotient Rule: $\frac{dy}{dx} = \frac{(5x^3 - 3x + 1.67)(14x^6 - 3) - (2x^7 - 3x)(15x^2 - 3)}{(5x^3 - 3x + 1.67)^2}$
d) Funct. of a Funct.: $3\ln(3x^2 - 6x^5)$ $dy/dx = \frac{dy}{dx} = \frac{3}{(3x^2 - 6x^5)} \cdot \frac{(6x - 30x^4)}{(3x^2 - 6x^5)} = 0$

$$\frac{dy}{dx} = \frac{(6-30x^3)}{(x-2x^4)} = \frac{dy}{dx} = \frac{6(1-5x^3)}{x(1-2x^3)}$$

3) (a)

The graph shows that r_{\min} should be between 2.2 and 2.3 Å, and V_{\min} should be around -10 kJ mol⁻¹.

$$V = 4\varepsilon \left[\sigma^{12}r^{-12} - \sigma^6 r^{-6}\right]$$

(b) Rewrite it as:

$$\frac{dV}{dr} = 4\varepsilon \left[-12\sigma^{12}r^{-13} + 6\sigma^{6}r^{-7} \right]$$

At the minimum, $dV/dr = 0$, so $0 = 4\varepsilon \left[-12\sigma^{12}r^{-13} + 6\sigma^{6}r^{-7} \right]$
Dividing by 4 ε , $0 = -12\sigma^{12}r^{-13} + 6\sigma^{6}r^{-7}$
 $12\sigma^{12}r^{-13} = 6\sigma^{6}r^{-7}$
 $2\sigma^{6}r^{-6} = 1$
or $2\sigma^{6} = r^{6}$
Sixth rooting: $r_{\min} = \sigma^{6}\sqrt{2}$ i.e $r_{\min} = 1.122\sigma$

(c) Substituting back this value for r_{\min} into the original LJ equation we get:

$$V_{\min} = 4\epsilon \left[\left(\frac{\sigma}{\sigma \sqrt[6]{2}} \right)^{12} - \left(\frac{\sigma}{\sigma \sqrt[6]{2}} \right)^{6} \right]$$

Cancelling the σ 's, we get:

Dividing by 4ϵ ,

Sixth rooting:

or

$$V_{\min} = 4\varepsilon \left[\left(\frac{1}{2^2} \right) - \left(\frac{1}{2} \right) \right]$$
$$V_{\min} = 4\varepsilon \left[\frac{1}{4} - \frac{1}{2} \right]$$

which should be around $\underline{-10 \text{ kJ mol}}^{\text{-1}}$ (which isn't surprising as ϵ is So $V_{\min} = -\varepsilon$, called the 'well depth', so should be the minimum of the curve!)

(d) Using $r_{\min} = 1.122\sigma$ and a value from the graph of $r_{\min} \sim 2.24$, we get $\sigma = 2 \text{ Å}$ (which you could also get from the fact that when V=0 in the LJ equation, $r = \overline{\sigma}$, so the graph crosses the axis at $r = \sigma$, which from the graph is 2 Å).