1S Summer exam 2007 - Calculus Dr Paul May

 

1.      Answer all parts (a) to (d). All parts carry equal marks.

 

Determine the following:

 

            (a) dy/dx   if    y = 270x67

 

(b) du/dg if    u = 1.62g3 + 5g – 3×106

 

(c) dΩ/dΞ   if    Ω = 3tan Ξ

(d) d!/dö   if    ! = 9 exp(–7ö) + 6ö
                                                                                                            (4 marks)

 

2.      Answer all parts (a) to (d).  All parts carry equal marks.

Differentiate the following functions with respect to x, and simplify the result where appropriate:

 

(a)                                    (b) y = 9e6x cos x

 

(c)                                    (d) y = 6 ln
                                                            (8 marks)

 

3.      Answer all parts (a) to (c).

 

The function             has a stationary point at r = ¥

 

a)  Differentiate this function and thence determine the co-ordinates (r,y) of the remaining stationary point.
                                                                                                                      (3 marks)

 

b) The second differential of this function is:      

 

Determine whether the stationary point you just found is a local maximum or minimum.
                                                                                                                      (3 Marks)

 

c) Hence sketch this function between r = 0 and r = 4.
                                                                                                                      (6 marks)


Answers

 

1)

a) dy/dx = 18090x66                               b) du/dg = 4.86g2 + 5

c) dΩ/dΞ = 3 / cos2Ξ                              d) d!/dö = 63 exp(7ö) + 6

2)

 

a) Rules for Indices:      y = x3x4/5 + 3x1/2                 dy/dx = 3x-4 – (4/5)x-1/5 – (3/2)x-3/2

                                                                                             = 

 

b) Product Rule:           9e6x ( sin x)  +  (cos x) 54e6x  =   9e6x (6cos x sin x)

 

c) Quotient Rule:         

 

d) Funct. of a Funct.:    dy/dx =    

Alternatively, by the Laws of Logs,  

6 ln is the same as  6 ln(3x), so dy/dx =

 

3)  (a)   Quotient Rule:               dy/dr = (r.3er 3er.1) / r2       =          3er(r 1) / r2

 

   For turning point, 3er(r 1) / r2 = 0, so either: r2 = ¥              Þ        r = ¥,

                                                                        or         3er = 0             Þ        r = ¥

                                                            or         (r - 1) = 0,        Þ        r = 1

   The last answer is the required one.

 

   When r = 1,    y = 3e1/1    =    8.15.   So the turning point is at (1, 8.15).

 

b) Putting in the value of r = 1, we get d2y/dr2 = 3e, which is +ve, so the t.p. is a local minimum.

 

c) Sketch: (must get correct shape, label axes, and indicate t.p. for full 6 marks). 

When r = 0, y = ¥. 

When r = large, the er term makes y = ¥

When r =  a small number (e.g. 1/100), the r in the denominator makes y very large.