The Hückel secular determinant for ethene is:

 

 

 

Therefore E=a + b (x = –1) or E=ab (x = 1).

 

For the lower energy E1=a + b (x = –1) we substitute into the secular equations (eq. 6):

 

 

 

This gives c11=c12

 

y1 = c11 ( f1 + f2 )

 

The normalization condition is:

 

 

 

Therefore:

 

 

Summary: the Hückel MOs of ethene