Adrian Mulholland

Molecular Structure and Bonding (II)

Lecture 1
Synopsis:
Ref: P.W. Atkins, Physical Chemistry, 6th edn., pages 406-410. 

The Variational Principle, The Variational Method and The Linear Combination of Atomic Orbitals (LCAO) Approximation

Learning Objectives:

SYMBOL 183 \f "Symbol" \s 10 \h
To Learn the Variation principle.

SYMBOL 183 \f "Symbol" \s 10 \h
To understand how it leads to the Variational method.

SYMBOL 183 \f "Symbol" \s 10 \h
To understand the linear combinations of atomic orbitals (LCAO) approximation in which a molecular orbital is approximated as a linear combination of atomic orbitals.

SYMBOL 183 \f "Symbol" \s 10 \h
To understand how the Variational method is used to determine the coefficients of the atomic  orbitals in the LCAO approximation.

SYMBOL 183 \f "Symbol" \s 10 \h
To understand how secular equations and secular determinants arise in the application of the Variational method and to understand in detail the procedure for solving secular equations.

The Variation Principle:


If an arbitrary or approximate wavefunction is used to calculate the energy of a system then the  value obtained is always greater than or equal to the exact ground state energy of the system.  

This principle can be stated mathematically as: 
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Another way of saying this is 

The energy of an approximate wavefunction is never less than the true energy

The Variation principle is the key to finding wavefunctions of molecules.  

Why calculate wavefunctions? 

To understand and predict the structure and reactions of molecules, we need to know about how electrons are arranged in them.  To study electrons, we need to use quantum mechanics.  In principle, all the information we need about a molecule is contained in its wavefunction (the wavefunction is a function of the coordinates of all the electrons and all the nuclei).  The trouble is, these are difficult to calculate.  We can make a first simplification by concentrating on the wavefunction for the electrons separately from that of the nuclei (the Born-Oppenheimer approximation).  The electronic wavefunction for a molecule will tell us all about its electronic structure - i.e. how the electrons are arranged in the molecule.  But how do we find the electronic wavefunction? 

The Variational Method:


This is a method, based on the variational principle, for finding approximate wavefunctions.  It is our main weapon in the struggle to find electronic wavefunctions for molecules and enables us to calculate molecular orbitals, molecular electronic wavefunctions and potential energy curves and surfaces.  The method works as follows:

1.
Construct an approximate wavefunction ( which depends on some parameters ci.  

2.
Calculate the energy using equation (1).  The energy calculated in this way, E(ci), will depend on the parameters ci which are part of the approximate wavefunction.    
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3.
Choose the parameters ci so as to minimize the energy
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This minimized energy is still above the true ground state energy.  The wavefunction with this set of parameters is the best wavefunction of the form which has been chosen.  It gives the lowest possible energy, as close as possible to that of the exact ground state wavefunction. 

As an example, consider HCl.  We can think of a wavefunction in which the bond is formed between H and Cl by pairing an electron in the hydrogen in the H 1s orbital with one in the Cl 3pz orbital.  This describes covalent bonding.  Let’s call this wavefunction cov.  
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cov
The energy of this wavefunction is cov.  

However, this wavefunction doesn’t give the full picture of bonding in HCl: because the electrons are paired, it doesn’t allow both electrons to be simultaneously on the chlorine atom.  It is only a partial description.  Chlorine is highly electronegative, so it is quite likely that a full description would allow more polar structures to play a part in the full description of HCl.  

We can write down another wavefunction which goes to the ionic extreme, and has both electrons on the chlorine atom, i.e. representing the H+Cl– structure.  In this wavefunction, ion, both electrons are in the chlorine 3pz orbital.  

Both of these wavefunctions, cov and ion, give only a partial description of the bonding in HCl, each representing one extreme.  A better overall description - a better wavefunction- is given by combining the two:

 = ccovcov + cionion 

The coefficients ccov and cion are numbers which give the relative contribution of the ionic and covalent forms.  The variation principle tells us that the best wavefunction (of this sort) is the one with the lowest energy.  This means we can find the best wavefunction by varying the coefficients until we find the wavefunction which has the lowest energy - this is the variational method.  

We might find, for example, that the best wavefunction at a particular internuclear distance is  = 0.3 cov + 0.95 ion (indicating that the ionic form plays a bigger role than the covalent form).  


[image: image5.wmf] 

e

cov

 

e

ion

 

 

E

2

 

 

E

1

 


The energy of the better wavefunction resulting from a combination of the original wavefunctions is lower than the energies of either of the original wavefunctions.  The values of the coefficients is found by minimizing the energy with respect to them - the variational method.  

The variational method is the most important way of finding molecular wavefunctions.  

Molecular Orbitals and the Linear Combination of Atomic Orbitals (LCAO) Approximation

To find electronic wavefunctions of molecules, usually the problem is broken down to simplify it.  The overall wavefunction () is treated as a product of molecular orbitals ():

= |123….n|

Each MO is a wavefunction for one electron, and each MO spreads over the whole molecule.  We will see that individual MOs can tell us a lot about molecular behaviour.  

In the linear combination of atomic orbitals (LCAO) approximation, each MO is treated as being made up of the AOs of the atoms in the molecule.  To find the MOs, we need to find the coefficients which appear in the linear combination, by the variational method.  

Consider a molecular orbital which is written as a linear combination of atomic orbitals:
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where  is the molecular orbital and (1 etc. are the atomic orbitals centred on the different atoms.

( is our approximate wavefunction.  We will substitute it into eq.2 above and use the variational method to determine the molecular orbital coefficients c1 etc.  

As a simple example, we will expand our molecular orbital as a linear combination of just two atomic orbitals (this could, for example, be the two 1s AOs in the hydrogen molecule):
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Now substituting into eq. 2 we obtain:
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We now define the hamiltonian and overlap matrix elements:

Hamiltonian matrix element:
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Overlap matrix element:
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(8)

Note the symmetry H12 = H21 and S12= S21 in these matrix elements or integrals.

Eq. 6 now simplifies to give:
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(9)

This can be rewritten in the form:
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Now differentiating eq.10 with respect to c1 we obtain:
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We now set 
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If we differentiate eq.10 with respect to c2 we obtain the equation :
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Secular Equations and Secular Determinants 
Equations 12 and 13 form the secular equations:
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These equation have a "trivial" and useless solution c1= c2 = 0.  The condition that there should exist a nontrivial solution of these equations is that the secular determinant should be zero:
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Everything in this equation is a known number except E.  The equation is therefore an equation for E.  In the present case where the molecular orbital was a linear combination of just two atomic orbitals it is a quadratic equation and has two solution for E.  These two values of E are the molecular orbital energies.  We always get the same number of molecular orbitals as atomic orbitals we start with.

If we multiply out the secular determinant we obtain:
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which you should now be able to recognise as a quadratic equation for E.  It has two solutions E1 and E2.  These are the two molecular orbital energies.

We now take one of these, E1 , and place it in the secular equations (eq. 14).  These equations now have a nontrivial solution and we find the ratio  c2/c1 by solving them.  The absolute value of the coefficients c1 and c2 can only be found by using the normalization condition:
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We now add an extra index to the coefficients c1 and c2 to show that they belong to molecular orbital no. 1.  We obtain the coefficients for molecular orbital No. 2 in the same way by substituting the second solution of the secular equations, E2 , into the secular equations. 

Molecular orbital no. 1

Molecular orbital energy:   E1
Molecular orbital:
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Molecular orbital no. 2

Molecular orbital energy:
E2
Molecular orbital:
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