Adrian Mulholland

Molecular Structure and Bonding

( Electrons in Conjugated Organic Molecules

Lecture 2
Synopsis:
The Non Crossing Rule and Hückel Theory

Learning Objectives:

· To learn and understand the Non-Crossing Rule.  Proof in terms of qualitative application of the Variational principle.

The Non- Crossing Rule:


Potential Energy Curves for Electronic States of the Same Symmetry Cannot Cross

· To learn the Hückel Approximations for conjugated -electron systems.


see: P.W. Atkins, Physical Chemistry, Ed. 5, Pages 496-501. 

· To learn how these approximations lead to easily solvable equations for the energies of conjugated -electron systems and for the corresponding molecular orbitals.


To learn how to write down these equations for any conjugated -electron system.

The Non-Crossing Rule:

when we “mix” two wavefunctions to form a “better” wavefunction the new energies “repel” each other.  The lower of the two new energies is lower than either of the original two energies while the higher one is higher than either of the original energies.  A familiar example is the mixing of the two 1s atomic orbitals of the hydrogen atoms in H2, They “mix” to form bonding and antibonding molecular orbitals:
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(A and (B (( 
energies of original wavefunctions before mixing.

E1 and E2  ((
energies of new wavefunctions (molecular orbitals) after mixing.

We get a better wavefunction which is a combination of the two original wavefunctions.  

Returning to the example of HCl from lecture one, at any fixed internuclear separation the best wavefunction is a mixture of two wavefunctions, yion and ycov, describing respectively an ionic form of HCl (both electrons on the chlorine), and a covalent form (one electron on each atom).  





cov

H+ Cl– 




ion

( = cion (ion  + ccov (cov 

The coefficients cion and ccov can be found by the variational method (see lecture 1).  


[image: image2.wmf] 

e

cov

 

e

ion

 

 

E

2

 

 

E

1

 


This is the situation at a particular fixed H--Cl internuclear separation.  At different internuclear separations, the coefficients found by the variational method will be different.  For example, HCl dissociates into neutral atoms, so cov (which has one electron in the Cl 3p orbital, and one in the H 1s orbital) is a better description at large internuclear separations.  At short distances, though, the molecule is much more polar, with more tendency for both electrons to be associated with the chlorine, so ion is a better description.  As the nuclear separation changes the potential energy curves corresponding to the “ionic” and “covalent” wavefunctions cross.



However, we get a better description (a better wavefunction)  by allowing the ionic and covalent  wavefunctions to mix, giving two new ‘mixed’ states with energy E1 and E2.  




At every internuclear separation the original energies split apart.  The new energies “E” are better in the sense that they are closer to the exact correct results.  At points where the original energies ((ion and (cov ) are very close (or cross) the new better energies split apart and no longer cross.  The point of closest approach is called an avoided crossing point.

This mixing of wavefunctions will always happens when the two original wavefunctions have the same symmetry.  Instead of the potential energy curves crossing over each other, the two wavefunctions will mix, and the curves for the better, mixed, states will not cross.  

The Non- Crossing Rule:


Potential Energy Curves corresponding to Electronic States of the Same Symmetry Cannot Cross

This effect is important - avoided crossings are often the reason why chemical reactions have a barrier.  The Rule applies to molecular orbitals as well as wavefunctions for whole molecules.  For example, consider a situation where a molecule has two molecular orbitals.  The energies of these MOs are altered by a geometric change in the molecule

Each MO can be categorized with respect to the symmetry of the molecule.  Suppose the molecule has a plane of symmetry, then the MOs must be either symmetric, S, (unchanged) or antisymmetric, A, (all signs of the MO changed by reflection in this plane.  As the geometry of the molecule changes, the energies of the MOs will change.  Suppose there are two orbitals, I and II, and I is lower in energy at the beginning of the geometrical change, while II is lower at the end.  The potential energy curves will be different depending on the symmetries of the two orbitals.  Here are the two situations when the MOs have either the same or different symmetries:
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If the two orbitals have the same symmetry, they can overlap and interact.  This mixing together of the two original orbitals produces two new orbitals, one lower and one higher in energy than the original orbitals.  The interaction gets stronger as the two original orbitals come closer together in energy.  If the orbitals can overlap, they will, and will mix to give an avoided crossing.  If they have different symmetries on the other hand, they cannot overlap, and so the energy curves can cross each other.  

Hückel Theory:

Approximate treatment of Conjugated -electron systems.


see: P.W. Atkins, Physical Chemistry, 6th edn., pages 412-416. 


Consider the (-MOs of ethene, i, which we shall assume can be constructed as linear combinations of the carbon 2p atomic orbitals perpendicular to the molecular plane.
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In this equation i labels the particular MO, p the individual carbon atoms. (1 and (2 are the carbon 2p atomic orbitals (AOs) as shown in the figure.  Note that in this case there are only two AOs (p=1,2) and consequently only two MOs (i=1 and 2).  The cip  are the MO coefficients which are  determined by minimizing the energy (i.e., using the variation principle) - we now discuss this in detail.
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The expression for the energy can be written as:
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where the integrals are over all space.  The energy calculated in this manner will depend on the coefficients ci1, and ci2,


The variational principle states that if an approximate wavefunction (such as this) is used to calculate the energy, the value obtained for the energy is always greater than or equal to the exact ground state energy of the system, i.e,

E ( Eexact

So the next stage in this case is to minimize the energy with respect to the cip,, i.e, ci1  and ci2.  This minimized energy will still be above the true ground state energy.  The wavefunction with the values of ci1 and ci2 that give the minimum energy is the best wavefunction it is possible to obtain using just a simple combination of two atomic orbitals.  It gives the energy closest to the exact ground state energy.


As we have seen in the previous lecture this leads to secular equations and the secular determinant.
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We can write them in matrix form:
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(2)

The trivial solution of these is ci1 = ci2  = 0.  (Why is this of no interest?)


A nontrivial solution exists only if

det(H - ES) =0, i.e.,
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This determinant is known as the SECULAR DETERMINANT.  Expanding the determinant, we get a quadratic equation for E:

(H11 - ES11)(H22 - ES22) - (H12 - ES12)2 = 0


This means that there will be two values of E which satisfy this equation.  These two values  are the energies of the two molecular orbitals and  the index “i” has been used to label them.  We denote the two molecular orbital energies as E1 and E2.  In our example, one will be the bonding, the other the antibonding (-orbital formed by the combination of the two C 2p orbitals.


The original atomic orbital energies, (1 and (2, are
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(3)


When we have established the molecular orbital energies E1 and E2, we can go back to the secular equations and insert, in turn, each of the energies.  The equations now have non-trivial solutions. Solving the equations gives us THE RATIO ci1/ci2.


We must still normalize the MOs, using the normalization condition:
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From this,
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Since we know 
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 this extra condition fixes the values of the coefficients absolutely.


In general the calculation of all the matrix elements is not straightforward.  The Hückel method makes some severe approximations as to the values of the Hamiltonian and the overlap matrix elements:

Hückel Approximations:

(i)
Hrr = ( for all conjugated carbon atoms r
(ii)
Hrs = ( for any conjugated carbon link r-s, 




i.e if atoms r and s are adjacent


Hrs = 0 otherwise

(iii)
Srs = 0 for r ( s, i.e. zero overlap for r ( s.

 is often referred to as a 'Coulomb integral'.  Use of equation (3) shows that  is the atomic 2p energy.   is often referred to as the 'resonance integral' or 'bond integral' since the value of    determines the strength of the bonding interactions.  Both  and  are NEGATIVE.  


Making approximation (iii) and taking 1 and 2 to be normalized (i.e., that S11 and S22 both equal 1) the secular equations in (2) become
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(4)

Simplification of the Hückel molecular orbital (HMO) matrices:


The secular equation for ethene, once the Hückel approximations have been applied, should have the form:
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To give this equation a simpler form we divide through each line by (  and set x=(( – E)/( to obtain:


[image: image24.wmf]þ

ý

ü

=

+

=

+

0

0

2

1

2

1

i

i

i

i

xc

c

c

xc


or


[image: image25.wmf]0

1

1

2

1

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

i

i

c

c

x

x




(6)

The energies are now measured in units of ( (which you should remember is a negative number!)

The secular determinant is:
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Therefore E=( + ( (x = –1) or E=( - ( (x = 1).

For the lower energy E1=( + ( (x = –1) we substitute into the secular equations (eq. 6):
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This gives c11=c12

(1 = c11 ( (1 + (2 )

The normalization condition is:
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therefore:
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Summary:

E1=( + (
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E2=( - (
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